luxai commited on
Commit
a024f23
·
verified ·
1 Parent(s): 09c71ee

Upload folder using huggingface_hub

Browse files
Files changed (2) hide show
  1. data/meta_data.csv +0 -0
  2. yolksac_human.py +32 -9
data/meta_data.csv ADDED
The diff for this file is too large to render. See raw diff
 
yolksac_human.py CHANGED
@@ -74,8 +74,11 @@ class RNAExp(datasets.ArrowBasedBuilder):
74
  citation=CITATION,
75
  url="https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-MTAB-11673")
76
 
77
- features = {"raw_counts": datasets.features.Sequence(feature=datasets.Value("int32"))}
78
- # features = {gene: datasets.Value("int32") for gene in adata.var.index.str.lower().tolist()}
 
 
 
79
  for feature in self.config.features:
80
  if features.get(feature,None) is None:
81
  features[feature] = datasets.Value("string")
@@ -84,16 +87,17 @@ class RNAExp(datasets.ArrowBasedBuilder):
84
 
85
  return datasets.DatasetInfo(
86
  description= self.config.description,
87
- features=None,#datasets.Features(features),
88
  homepage=self.config.url,
89
  citation=self.config.citation,
90
  )
91
 
92
  def _split_generators(self, dl_manager):
93
- # self.gene_names_file = dl_manager.download_and_extract(
94
- # "data/gene_names.csv"
95
- # )
96
  self.anndata_file = dl_manager.download_and_extract(self.config.data_url)
 
97
 
98
  return [
99
  datasets.SplitGenerator(
@@ -107,6 +111,8 @@ class RNAExp(datasets.ArrowBasedBuilder):
107
  # genes = pd.read_csv(gene_names_file)
108
  adata = ad.read_h5ad(expression_file)
109
  self.genes_list = adata.var.index.str.lower().tolist()
 
 
110
  if self.config.raw_counts =="X":
111
  X = adata.X
112
  else:
@@ -124,20 +130,37 @@ class RNAExp(datasets.ArrowBasedBuilder):
124
  def _generate_tables(self, expression_file,batch_size,split):
125
  idx = 0
126
  adata = ad.read_h5ad(expression_file)
 
 
 
 
 
 
 
 
 
 
 
127
  # self.info.description = adata.var.index.str.lower().tolist() #"+".join(adata.var.index.str.lower().tolist())
128
  for batch in range(0,adata.shape[0],batch_size):
129
  chunk = adata.X[batch:batch+batch_size].todense().astype('int32')
130
  df = pd.DataFrame(chunk,columns=adata.var.index.str.lower())
131
- df["raw_counts"] = [x for x in df.to_numpy()]
132
- df = df[["raw_counts"]]
 
 
 
133
  ## We create a dummy column with all the names of the genes as list. We don't use this as value since this would unnecessarily increase the size of the dataset
134
  ## Another option would be to replace the description with the list of genes
135
- df[",".join(adata.var.index.str.lower().tolist())] = True
 
 
136
  for feature in self.config.features:
137
  if feature != "raw_counts":
138
  df[feature] = adata.obs[feature][batch:batch+batch_size].tolist()
139
 
140
  # df['gene_names'] = [adata.var.index.str.lower().tolist()]*batch_size
 
141
  pa_table = pa.Table.from_pandas(df)
142
  yield idx, pa_table
143
  idx += 1
 
74
  citation=CITATION,
75
  url="https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-MTAB-11673")
76
 
77
+ # features = {"raw_counts": datasets.features.Sequence(feature=datasets.Value("int32"))}
78
+
79
+ # features = {"raw_counts": datasets.features.Sequence(feature={"gene":datasets.Value("string"),"count":datasets.Value("int32")})}
80
+ # features = {"raw_counts": datasets.Value("int32") for gene in adata.var.index.str.lower().tolist()}
81
+ features = {}
82
  for feature in self.config.features:
83
  if features.get(feature,None) is None:
84
  features[feature] = datasets.Value("string")
 
87
 
88
  return datasets.DatasetInfo(
89
  description= self.config.description,
90
+ features=None,#,datasets.Features(features),
91
  homepage=self.config.url,
92
  citation=self.config.citation,
93
  )
94
 
95
  def _split_generators(self, dl_manager):
96
+ self.gene_names_file = dl_manager.download_and_extract(
97
+ "./data/meta_data.csv"
98
+ )
99
  self.anndata_file = dl_manager.download_and_extract(self.config.data_url)
100
+
101
 
102
  return [
103
  datasets.SplitGenerator(
 
111
  # genes = pd.read_csv(gene_names_file)
112
  adata = ad.read_h5ad(expression_file)
113
  self.genes_list = adata.var.index.str.lower().tolist()
114
+
115
+
116
  if self.config.raw_counts =="X":
117
  X = adata.X
118
  else:
 
130
  def _generate_tables(self, expression_file,batch_size,split):
131
  idx = 0
132
  adata = ad.read_h5ad(expression_file)
133
+ genes = adata.var_names.str.lower().to_list()
134
+
135
+ # features = {"raw_counts": datasets.features.Sequence(datasets.features.ClassLabel(names = genes))}
136
+ # for feature in self.config.features:
137
+ # if features.get(feature,None) is None:
138
+ # features[feature] = datasets.Value("string")
139
+
140
+ # self.info.features = datasets.features.Features(features)
141
+
142
+ # self.info.features['gene_names'] = datasets.features.ClassLabel(names = genes)
143
+
144
  # self.info.description = adata.var.index.str.lower().tolist() #"+".join(adata.var.index.str.lower().tolist())
145
  for batch in range(0,adata.shape[0],batch_size):
146
  chunk = adata.X[batch:batch+batch_size].todense().astype('int32')
147
  df = pd.DataFrame(chunk,columns=adata.var.index.str.lower())
148
+ # df["raw_counts"] = [x for x in df.to_numpy()]
149
+ # df.apply(lambda x: [(x,y) for x,y in zip(genes, x)],axis=1)
150
+
151
+ # [x for x in df.to_numpy()]
152
+ # df = df[["raw_counts"]]
153
  ## We create a dummy column with all the names of the genes as list. We don't use this as value since this would unnecessarily increase the size of the dataset
154
  ## Another option would be to replace the description with the list of genes
155
+ # df[",".join(adata.var.index.str.lower().tolist())] = True
156
+ # df['gene_names'] = True
157
+
158
  for feature in self.config.features:
159
  if feature != "raw_counts":
160
  df[feature] = adata.obs[feature][batch:batch+batch_size].tolist()
161
 
162
  # df['gene_names'] = [adata.var.index.str.lower().tolist()]*batch_size
163
+ # print(df)
164
  pa_table = pa.Table.from_pandas(df)
165
  yield idx, pa_table
166
  idx += 1