# coding=utf-8 # Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """The RNA Expression Baseclass.""" import json import os import anndata as ad import pyarrow as pa import pandas as pd import numpy as np import datasets CITATION = """ Test """ DESCRIPTION = """ Test """ class RNAExpConfig(datasets.BuilderConfig): """BuilderConfig for RNAExpConfig.""" def __init__(self, features, data_url, citation, url, raw_counts="X", **kwargs): """BuilderConfig for RNAExpConfig. Args: features: `list[string]`, list of the features that will appear in the feature dict. Should not include "label". data_url: `string`, url to download the zip file from. citation: `string`, citation for the data set. url: `string`, url for information about the data set. **kwargs: keyword arguments forwarded to super. """ # Version history: # 0.0.1: Initial version. super(RNAExpConfig, self).__init__(version=datasets.Version("0.0.1"), **kwargs) self.features = features self.data_url = data_url self.citation = citation self.url = url self.raw_counts = raw_counts # Could be raw.X self.batch = 1000 self.species = None # class RNAExp(datasets.GeneratorBasedBuilder): class RNAExp(datasets.ArrowBasedBuilder): """RNA Expression Baseclass.""" def _info(self): self.config = RNAExpConfig( name="human_yolk_sac", description = DESCRIPTION, features=["raw_counts",'LVL1', 'LVL2', 'LVL3'], raw_counts = "X", data_url="./data/17_04_24_YolkSacRaw_F158_WE_annots.h5ad", citation=CITATION, url="https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-MTAB-11673") features = {"raw_counts": datasets.features.Sequence(feature=datasets.Value("int32"))} # features = {"raw_counts": datasets.features.Sequence(feature={"gene":datasets.Value("string"),"count":datasets.Value("int32")})} # features = {"raw_counts": datasets.Value("int32") for gene in adata.var.index.str.lower().tolist()} for feature in self.config.features: if features.get(feature,None) is None: features[feature] = datasets.Value("string") # features["gene_names"] = datasets.Sequence(datasets.Value("string")) return datasets.DatasetInfo( description= self.config.description, features=None, #datasets.Features(features), homepage=self.config.url, citation=self.config.citation, ) def _split_generators(self, dl_manager): self.anndata_file = dl_manager.download_and_extract(self.config.data_url) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"split": "train","expression_file": self.anndata_file,"batch_size":self.config.batch},#,"gene_names_file": self.gene_names_file}, ) ] def _generate_examples(self, expression_file, split): # genes = pd.read_csv(gene_names_file) adata = ad.read_h5ad(expression_file) self.genes_list = adata.var.index.str.lower().tolist() if self.config.raw_counts =="X": X = adata.X else: X = adata.var[raw_counts] num_cells = X.shape[0] for _id,cell in enumerate(X): example = {"raw_counts": cell.toarray().flatten()} for feature in self.config.features: if example.get(feature,None) is None: example[feature] = adata.obs[feature][_id] yield _id,example def _generate_tables(self, expression_file,batch_size,split): idx = 0 adata = ad.read_h5ad(expression_file,backed='r') genes = adata.var_names.str.lower().to_list() features = {"raw_counts": datasets.features.Sequence(datasets.features.Value("int32"),id = ",".join(adata.var.index.str.lower().tolist()))} for feature in self.config.features: if features.get(feature,None) is None: features[feature] = datasets.Value("string") self.info.features = datasets.Features(features) # self.info.features['gene_names'] = datasets.features.ClassLabel(names = genes) # self.info.description = adata.var.index.str.lower().tolist() #"+".join(adata.var.index.str.lower().tolist()) for batch in range(0,adata.shape[0],batch_size): chunk = adata.X[batch:batch+batch_size].todense().astype('int32') df = pd.DataFrame(chunk,columns=adata.var.index.str.lower()) df["raw_counts"] = [x for x in df.to_numpy()] df = df[["raw_counts"]] ## We create a dummy column with all the names of the genes as list. We don't use this as value since this would unnecessarily increase the size of the dataset ## Another option would be to replace the description with the list of genes # df[",".join(adata.var.index.str.lower().tolist())] = True # df['gene_names'] = True for feature in self.config.features: if feature != "raw_counts": df[feature] = adata.obs[feature][batch:batch+batch_size].tolist() # df['gene_names'] = [adata.var.index.str.lower().tolist()]*batch_size # print(df) pa_table = pa.Table.from_pandas(df) yield idx, pa_table idx += 1