Upload blog/multi-lora-serving/multi-lora-serving-pattern.ipynb with huggingface_hub
Browse files
blog/multi-lora-serving/multi-lora-serving-pattern.ipynb
ADDED
@@ -0,0 +1,185 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"id": "3b26d339-8e2d-4f7e-8dbf-24c649932de4",
|
7 |
+
"metadata": {
|
8 |
+
"tags": []
|
9 |
+
},
|
10 |
+
"outputs": [
|
11 |
+
{
|
12 |
+
"name": "stdout",
|
13 |
+
"output_type": "stream",
|
14 |
+
"text": [
|
15 |
+
"Note: you may need to restart the kernel to use updated packages.\n"
|
16 |
+
]
|
17 |
+
}
|
18 |
+
],
|
19 |
+
"source": [
|
20 |
+
"%pip install -q huggingface-hub plotly numpy"
|
21 |
+
]
|
22 |
+
},
|
23 |
+
{
|
24 |
+
"cell_type": "code",
|
25 |
+
"execution_count": null,
|
26 |
+
"id": "b7aebf99-b8fb-4892-90e2-2261202ac576",
|
27 |
+
"metadata": {
|
28 |
+
"tags": []
|
29 |
+
},
|
30 |
+
"outputs": [],
|
31 |
+
"source": [
|
32 |
+
"import plotly.graph_objects as go\n",
|
33 |
+
"import numpy as np\n",
|
34 |
+
"\n",
|
35 |
+
"# Setting the time scale\n",
|
36 |
+
"time = np.arange(0, 24, 0.1) # 24 hours, in increments of 0.1 hour\n",
|
37 |
+
"\n",
|
38 |
+
"# Generating usage patterns\n",
|
39 |
+
"np.random.seed(42)\n",
|
40 |
+
"low_usage = (np.random.poisson(70, len(time)) * (np.random.rand(len(time)) < 0.15).astype(int))//2 \n",
|
41 |
+
"bursty_usage = np.random.poisson(70, len(time)) * (np.random.rand(len(time)) < 0.15).astype(int)\n",
|
42 |
+
"bursty_usage = np.random.poisson(100, len(time)) * (np.random.rand(len(time)) < 0.2).astype(int)//1.4\n",
|
43 |
+
"\n",
|
44 |
+
"high_volume = np.random.normal(loc=15, scale=2, size=len(time))*1.75\n",
|
45 |
+
"\n",
|
46 |
+
"# Applying smoothing\n",
|
47 |
+
"smooth_low_usage = np.convolve(low_usage, np.ones(50)/50, mode='same')\n",
|
48 |
+
"smooth_bursty_usage = np.convolve(bursty_usage, np.ones(50)/50, mode='same')\n",
|
49 |
+
"smooth_high_volume = np.convolve(high_volume, np.ones(50)/50, mode='same')\n",
|
50 |
+
"total_usage = smooth_low_usage + smooth_bursty_usage + smooth_high_volume\n",
|
51 |
+
"\n",
|
52 |
+
"# Plotting using Plotly\n",
|
53 |
+
"fig = go.Figure()\n",
|
54 |
+
"fig.add_trace(go.Scatter(x=time, y=smooth_low_usage, mode='lines', name='Low Usage', line=dict(color='#B0C4DE'))) # Light Steel Blue\n",
|
55 |
+
"fig.add_trace(go.Scatter(x=time, y=smooth_bursty_usage, mode='lines', name='Bursty Usage', line=dict(color='#FFB6C1'))) # Light Pink\n",
|
56 |
+
"fig.add_trace(go.Scatter(x=time, y=smooth_high_volume, mode='lines', name='High Volume', line=dict(color='#98FB98'))) # Pale Green\n",
|
57 |
+
"fig.add_trace(go.Scatter(x=time, y=total_usage, mode='lines', name='Total Usage', line=dict(color='#2F4F4F', width=3))) # Dark Slate Gray\n",
|
58 |
+
"\n",
|
59 |
+
"fig.update_layout(\n",
|
60 |
+
" title={\n",
|
61 |
+
" 'text': 'Comparison of Usage Models and Total Impact',\n",
|
62 |
+
" 'y': 0.9,\n",
|
63 |
+
" 'x': 0.5,\n",
|
64 |
+
" 'xanchor': 'center',\n",
|
65 |
+
" 'yanchor': 'top',\n",
|
66 |
+
" 'font': {\n",
|
67 |
+
" 'size': 24 # Adjust the font size as needed\n",
|
68 |
+
" }\n",
|
69 |
+
" },\n",
|
70 |
+
" xaxis_title='Time (hours)',\n",
|
71 |
+
" yaxis_title='Requests',\n",
|
72 |
+
" legend_title='Usage Pattern',\n",
|
73 |
+
" xaxis=dict(\n",
|
74 |
+
" title_font_size=28, # Larger axis title font size\n",
|
75 |
+
" tickfont_size=16 # Larger tick label font size\n",
|
76 |
+
" ),\n",
|
77 |
+
" yaxis=dict(\n",
|
78 |
+
" title_font_size=28, # Larger axis title font size\n",
|
79 |
+
" tickfont_size=16 # Larger tick label font size\n",
|
80 |
+
" ),\n",
|
81 |
+
" legend=dict(\n",
|
82 |
+
" x=0.5, # Horizontal position, 0 is left\n",
|
83 |
+
" y=-0.1, # Vertical position, negative values to move it down\n",
|
84 |
+
" orientation=\"h\", # Horizontal layout\n",
|
85 |
+
" xanchor='center', # Anchor the legend at the center\n",
|
86 |
+
" yanchor='top' # Anchor the legend at the top\n",
|
87 |
+
" ),\n",
|
88 |
+
" template='plotly_white'\n",
|
89 |
+
")\n",
|
90 |
+
"\n",
|
91 |
+
"\n",
|
92 |
+
"fig.show()\n"
|
93 |
+
]
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"cell_type": "markdown",
|
97 |
+
"id": "fc54b448-2eb3-44cc-8304-983e27138296",
|
98 |
+
"metadata": {},
|
99 |
+
"source": [
|
100 |
+
"# Push Image"
|
101 |
+
]
|
102 |
+
},
|
103 |
+
{
|
104 |
+
"cell_type": "code",
|
105 |
+
"execution_count": null,
|
106 |
+
"id": "4ef615e2-ab36-43f1-b310-cac8b17d29b7",
|
107 |
+
"metadata": {
|
108 |
+
"tags": []
|
109 |
+
},
|
110 |
+
"outputs": [],
|
111 |
+
"source": [
|
112 |
+
"image_out = \"multi-lora-serving-pattern.png\"\n",
|
113 |
+
"fig.write_image(image_out, width=1920, height=1080, scale=2)"
|
114 |
+
]
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"cell_type": "code",
|
118 |
+
"execution_count": null,
|
119 |
+
"id": "13d8ee16-65ec-4a32-84e9-e6b99aab92af",
|
120 |
+
"metadata": {
|
121 |
+
"tags": []
|
122 |
+
},
|
123 |
+
"outputs": [],
|
124 |
+
"source": [
|
125 |
+
"from huggingface_hub import HfApi\n",
|
126 |
+
"\n",
|
127 |
+
"api = HfApi()\n",
|
128 |
+
"api.upload_file(\n",
|
129 |
+
" path_or_fileobj=image_out,\n",
|
130 |
+
" path_in_repo=f\"blog/multi-lora-serving/{image_out}\",\n",
|
131 |
+
" repo_id=\"huggingface/documentation-images\",\n",
|
132 |
+
" repo_type=\"dataset\",\n",
|
133 |
+
" commit_message=\"Updating title\",\n",
|
134 |
+
")"
|
135 |
+
]
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"cell_type": "markdown",
|
139 |
+
"id": "81e6b86b-c439-4acd-a072-2ef3ab782f90",
|
140 |
+
"metadata": {},
|
141 |
+
"source": [
|
142 |
+
"# Push Notebook"
|
143 |
+
]
|
144 |
+
},
|
145 |
+
{
|
146 |
+
"cell_type": "code",
|
147 |
+
"execution_count": null,
|
148 |
+
"id": "adca7ec0-25c3-42e3-84b7-f7f9342e4e4f",
|
149 |
+
"metadata": {},
|
150 |
+
"outputs": [],
|
151 |
+
"source": [
|
152 |
+
"from huggingface_hub import HfApi\n",
|
153 |
+
"\n",
|
154 |
+
"api = HfApi()\n",
|
155 |
+
"api.upload_file(\n",
|
156 |
+
" path_or_fileobj=\"multi-lora-serving-pattern.ipynb\",\n",
|
157 |
+
" path_in_repo=\"blog/multi-lora-serving/multi-lora-serving-pattern.ipynb\",\n",
|
158 |
+
" repo_id=\"huggingface/documentation-images\",\n",
|
159 |
+
" repo_type=\"dataset\",\n",
|
160 |
+
")"
|
161 |
+
]
|
162 |
+
}
|
163 |
+
],
|
164 |
+
"metadata": {
|
165 |
+
"kernelspec": {
|
166 |
+
"display_name": "Python 3 (ipykernel)",
|
167 |
+
"language": "python",
|
168 |
+
"name": "python3"
|
169 |
+
},
|
170 |
+
"language_info": {
|
171 |
+
"codemirror_mode": {
|
172 |
+
"name": "ipython",
|
173 |
+
"version": 3
|
174 |
+
},
|
175 |
+
"file_extension": ".py",
|
176 |
+
"mimetype": "text/x-python",
|
177 |
+
"name": "python",
|
178 |
+
"nbconvert_exporter": "python",
|
179 |
+
"pygments_lexer": "ipython3",
|
180 |
+
"version": "3.10.14"
|
181 |
+
}
|
182 |
+
},
|
183 |
+
"nbformat": 4,
|
184 |
+
"nbformat_minor": 5
|
185 |
+
}
|