import os import pandas as pd from PIL import Image import codecs import numpy as np import glob import io def create_dataset(): print("Starting dataset creation...") # Create output directory for images os.makedirs("processed_images", exist_ok=True) # Find all label files matching pattern print("Finding label files...") label_files = glob.glob("./original/test/round3?_best2019.label") print(f"Found {len(label_files)} label files") # Parse image filenames and captions data = [] for i, label_path in enumerate(label_files): print(f"\nProcessing label file {i+1}/{len(label_files)}: {label_path}") # Read label file with Windows-874 encoding print("Reading label file...") with codecs.open(label_path, 'r', encoding='cp874') as f: lines = f.readlines() print(f"Found {len(lines)} entries") for j, line in enumerate(lines): if j % 100 == 0: print(f"Processing entry {j}/{len(lines)}") filename, caption = line.strip().split(' ', 1) # Get folder name from first 3 chars of filename folder = filename[:3] image_path = f"./original/test/{folder}/{filename}" # Load and verify image exists if os.path.exists(image_path): try: # Load image and convert to bytes img = Image.open(image_path) img_byte_arr = io.BytesIO() img.save(img_byte_arr, format='PNG') # Force PNG format img_bytes = {"bytes":bytearray(img_byte_arr.getvalue())} data.append({ 'image': img_bytes, # Store as numpy array of bytes 'text': caption, 'label_file': os.path.basename(label_path) }) except Exception as e: print(f"Error processing image {image_path}: {e}") print(f"\nProcessed {len(data)} total images successfully") # Convert to dataframe and save as parquet print("Converting to dataframe...") df = pd.DataFrame(data) print("Saving to parquet file...") df.to_parquet("train-0000.parquet", index=False) print("Dataset creation complete!") if __name__ == "__main__": create_dataset()