Upload turl_table_col_type.py
Browse filesUpload TURL Table Column Type Annotation Dataset Loading Script
- turl_table_col_type.py +150 -0
turl_table_col_type.py
ADDED
@@ -0,0 +1,150 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""This dataset is for the task of column type annotation"""
|
2 |
+
import json
|
3 |
+
import datasets
|
4 |
+
|
5 |
+
_CITATION = """\
|
6 |
+
@article{deng2020turl,
|
7 |
+
title={TURL: table understanding through representation learning},
|
8 |
+
author={Deng, Xiang and Sun, Huan and Lees, Alyssa and Wu, You and Yu, Cong},
|
9 |
+
journal={ACM SIGMOD Record},
|
10 |
+
volume={51},
|
11 |
+
number={1},
|
12 |
+
pages={33--40},
|
13 |
+
year={2022},
|
14 |
+
publisher={ACM New York, NY, USA}
|
15 |
+
}"""
|
16 |
+
|
17 |
+
_DESCRIPTION = """\
|
18 |
+
Column Type Annotation(TURL)
|
19 |
+
"""
|
20 |
+
|
21 |
+
_HOMEPAGE = "https://github.com/sunlab-osu/TURL"
|
22 |
+
|
23 |
+
_GIT_ARCHIVE_URL = "https://huggingface.co/datasets/stanford-crfm/helm-scenarios/tree/main/turl-column-type-annotation"
|
24 |
+
|
25 |
+
_LICENSE = "CC BY 4.0"
|
26 |
+
|
27 |
+
class ColumnAnnotation(datasets.GeneratorBasedBuilder):
|
28 |
+
"""The TURL Column Annotation dataset"""
|
29 |
+
|
30 |
+
def _info(self):
|
31 |
+
return datasets.DatasetInfo(
|
32 |
+
description=_DESCRIPTION,
|
33 |
+
features=datasets.Features(
|
34 |
+
{
|
35 |
+
"page_title" : datasets.Value("string"),
|
36 |
+
"section_title" : datasets.Value("string"),
|
37 |
+
"table_caption" : datasets.Value("string"),
|
38 |
+
"table": {"header": datasets.features.Sequence(datasets.Value("string")),
|
39 |
+
"rows": datasets.features.Sequence(datasets.features.Sequence(datasets.Value("string")))},
|
40 |
+
"vocab": datasets.features.Sequence(datasets.Value("string")),
|
41 |
+
"colname": datasets.Value("string"),
|
42 |
+
"annotations": datasets.features.Sequence(datasets.Value("string")),
|
43 |
+
}
|
44 |
+
),
|
45 |
+
supervised_keys=None,
|
46 |
+
homepage=_HOMEPAGE,
|
47 |
+
license=_LICENSE,
|
48 |
+
citation=_CITATION,
|
49 |
+
)
|
50 |
+
|
51 |
+
# To understand the json fields extracted here, refer to https://github.com/sunlab-osu/TURL?tab=readme-ov-file#column-type-annotation
|
52 |
+
def _load_table(self, table_data):
|
53 |
+
headers = table_data[5]
|
54 |
+
col_count = len(table_data[6])
|
55 |
+
row_count = max([x[-1][0][0] for x in table_data[6]])
|
56 |
+
rows = []
|
57 |
+
for i in range(row_count):
|
58 |
+
row = []
|
59 |
+
for j in range(col_count):
|
60 |
+
try:
|
61 |
+
column_json = table_data[6][j]
|
62 |
+
k = -1
|
63 |
+
while k < row_count:
|
64 |
+
k = k + 1
|
65 |
+
if column_json[k][0][0] == i:
|
66 |
+
break
|
67 |
+
|
68 |
+
if k < row_count:
|
69 |
+
val = table_data[6][j][k][1][1]
|
70 |
+
else:
|
71 |
+
val = ''
|
72 |
+
except:
|
73 |
+
val = ''
|
74 |
+
row.append(val)
|
75 |
+
if not all(value == '' for value in row):
|
76 |
+
rows.append(row)
|
77 |
+
return {
|
78 |
+
"header": headers,
|
79 |
+
"rows": rows,
|
80 |
+
}
|
81 |
+
|
82 |
+
def _split_generators(self, dl_manager):
|
83 |
+
"""Returns SplitGenerators."""
|
84 |
+
|
85 |
+
from huggingface_hub import hf_hub_download
|
86 |
+
|
87 |
+
# Specify the repository and sub-directory
|
88 |
+
repo_id = "stanford-crfm/helm-scenarios"
|
89 |
+
sub_dir = "turl-column-type-annotation"
|
90 |
+
|
91 |
+
# Specify file names
|
92 |
+
train_file_name = "train.table_col_type.json"
|
93 |
+
dev_file_name = "dev.table_col_type.json"
|
94 |
+
test_file_name = "test.table_col_type.json"
|
95 |
+
vocab_file_name = "type_vocab.txt"
|
96 |
+
|
97 |
+
# Download files from hf
|
98 |
+
train_file_path = f"{sub_dir}/{train_file_name}"
|
99 |
+
train_file_path = hf_hub_download(repo_id, filename=train_file_path, repo_type="dataset", revision="main")
|
100 |
+
|
101 |
+
dev_file_path = f"{sub_dir}/{dev_file_name}"
|
102 |
+
dev_file_path = hf_hub_download(repo_id, filename=dev_file_path, repo_type="dataset", revision="main")
|
103 |
+
|
104 |
+
test_file_path = f"{sub_dir}/{test_file_name}"
|
105 |
+
test_file_path = hf_hub_download(repo_id, filename=test_file_path, repo_type="dataset", revision="main")
|
106 |
+
|
107 |
+
vocab_file_path = f"{sub_dir}/{vocab_file_name}"
|
108 |
+
vocab_file_path = hf_hub_download(repo_id, filename=vocab_file_path, repo_type="dataset", revision="main")
|
109 |
+
|
110 |
+
return [
|
111 |
+
datasets.SplitGenerator(
|
112 |
+
name=datasets.Split.TRAIN,
|
113 |
+
gen_kwargs={"vocabpath": vocab_file_path, "filepath": train_file_path},
|
114 |
+
),
|
115 |
+
datasets.SplitGenerator(
|
116 |
+
name=datasets.Split.VALIDATION,
|
117 |
+
gen_kwargs={"vocabpath": vocab_file_path, "filepath": dev_file_path},
|
118 |
+
),
|
119 |
+
datasets.SplitGenerator(
|
120 |
+
name=datasets.Split.TEST,
|
121 |
+
gen_kwargs={"vocabpath": vocab_file_path, "filepath": test_file_path},
|
122 |
+
),
|
123 |
+
]
|
124 |
+
|
125 |
+
def _generate_examples(self, vocabpath, filepath):
|
126 |
+
with open(filepath, 'r', encoding='utf-8') as json_file:
|
127 |
+
data = json.load(json_file)
|
128 |
+
|
129 |
+
|
130 |
+
with open(vocabpath, 'r', encoding='utf-8') as txt_file:
|
131 |
+
lines = txt_file.readlines()
|
132 |
+
vocab = [line[:-1].split('\t')[1] for line in lines]
|
133 |
+
|
134 |
+
index = 0
|
135 |
+
for idx, table_data in enumerate(data):
|
136 |
+
# Load table contents using the _load_table method
|
137 |
+
table_content = self._load_table(table_data)
|
138 |
+
for col_idx in range(len(table_data[5])):
|
139 |
+
yield index, {
|
140 |
+
"page_title" : table_data[1],
|
141 |
+
"section_title" : table_data[3],
|
142 |
+
"table_caption" : table_data[4],
|
143 |
+
"table": table_content,
|
144 |
+
"vocab": vocab,
|
145 |
+
"colname": table_data[5][col_idx],
|
146 |
+
"annotations": table_data[7][col_idx],
|
147 |
+
}
|
148 |
+
index += 1
|
149 |
+
|
150 |
+
|