File size: 1,681 Bytes
0be1a5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
#!/usr/bin/python3
# -*- coding: utf-8 -*-
"""
### convert to parquet

```text
参考:
https://huggingface.co/docs/datasets/main/en/cli#convert-to-parquet

在本地命令行输入 `huggingface-cli login` 后输入 token 登录.
$ huggingface-cli login

在本地命令行登录成功后执行:
datasets-cli convert_to_parquet intelli-zen/demand --trust_remote_code

执行完成后, 它会自动在 qgyd2021/demand 的 community 开启一个 duscussion.
You can find your PR to convert the dataset to Parquet at: https://huggingface.co/datasets/qgyd2021/demand/discussions/1

访问链接在下面找到 Merge, 点击将其合并. 之后, 很快 dataser viewer 就可以查看了.

```

"""
import argparse

from datasets import load_dataset

from project_settings import project_path


def get_args():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--dataset_path",
        default="demand.py",
        # default="E:/Users/tianx/HuggingDatasets/demand/demand.py",
        type=str
    )
    parser.add_argument("--dataset_name", default="kitchen_16k", type=str)
    parser.add_argument(
        "--dataset_cache_dir",
        default=(project_path / "hub_datasets").as_posix(),
        type=str
    )
    args = parser.parse_args()
    return args


def main():
    args = get_args()

    dataset = load_dataset(
        path=args.dataset_path,
        name=args.dataset_name,
        cache_dir=args.dataset_cache_dir,
        # streaming=True,
        trust_remote_code=True,
    )
    print(dataset.builder_configs)
    for sample in dataset["train"]:
        print(sample)
        print("-" * 150)

    return


if __name__ == '__main__':
    main()