|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" AfriSpeech-200 Dataset""" |
|
|
|
|
|
import csv |
|
import os |
|
|
|
import datasets |
|
from datasets.utils.py_utils import size_str |
|
from tqdm import tqdm |
|
|
|
|
|
_CITATION = """ TBD """ |
|
|
|
_DESCRIPTION = """\ |
|
AFRISPEECH-200 is a 200hr Pan-African speech corpus for clinical and general domain English accented ASR; |
|
a dataset with 120 African accents from 13 countries and 2,463 unique African speakers. |
|
Our goal is to raise awareness for and advance Pan-African English ASR research, |
|
especially for the clinical domain. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/intron-innovation/AfriSpeech-Dataset-Paper" |
|
|
|
_LICENSE = "http://creativecommons.org/licenses/by-nc-sa/4.0/" |
|
|
|
|
|
|
|
_BASE_URL = "https://huggingface.co/datasets/intron/afrispeech-200/main/" |
|
|
|
_AUDIO_URL = _BASE_URL + "audio/{split}/{split}_{shard_idx}.tar.gz" |
|
|
|
_TRANSCRIPT_URL = _BASE_URL + "transcripts/{split}.csv" |
|
|
|
_SHARDS = { |
|
'train': 35, |
|
'dev': 2, |
|
'test': 4 |
|
} |
|
|
|
|
|
class AfriSpeech(datasets.GeneratorBasedBuilder): |
|
DEFAULT_WRITER_BATCH_SIZE = 1000 |
|
VERSION = datasets.Version("1.1.0") |
|
DEFAULT_CONFIG_NAME = "all" |
|
|
|
def _info(self): |
|
description = _DESCRIPTION |
|
features = datasets.Features( |
|
{ |
|
"speaker_id": datasets.Value("string"), |
|
"path": datasets.Value("string"), |
|
"audio": datasets.features.Audio(sampling_rate=44_100), |
|
"transcript": datasets.Value("string"), |
|
"age_group": datasets.Value("string"), |
|
"gender": datasets.Value("string"), |
|
"accent": datasets.Value("string"), |
|
"domain": datasets.Value("string"), |
|
"country": datasets.Value("string"), |
|
"duration": datasets.Value("float"), |
|
} |
|
) |
|
|
|
return datasets.DatasetInfo( |
|
description=description, |
|
features=features, |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
version=self.VERSION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
n_shards = _SHARDS |
|
|
|
audio_urls = {} |
|
splits = ("train", "dev") |
|
for split in splits: |
|
audio_urls[split] = [ |
|
_AUDIO_URL.format(split=split, shard_idx=i) for i in range(n_shards[split]) |
|
] |
|
archive_paths = dl_manager.download(audio_urls) |
|
local_extracted_archive_paths = dl_manager.extract(archive_paths) if not dl_manager.is_streaming else {} |
|
|
|
meta_urls = {split: _TRANSCRIPT_URL.format(split=split) for split in splits} |
|
meta_paths = dl_manager.download_and_extract(meta_urls) |
|
|
|
split_generators = [] |
|
split_names = { |
|
"train": datasets.Split.TRAIN, |
|
"dev": datasets.Split.VALIDATION, |
|
|
|
} |
|
for split in splits: |
|
split_generators.append( |
|
datasets.SplitGenerator( |
|
name=split_names.get(split, split), |
|
gen_kwargs={ |
|
"local_extracted_archive_paths": local_extracted_archive_paths.get(split), |
|
"archives": [dl_manager.iter_archive(path) for path in archive_paths.get(split)], |
|
"meta_path": meta_paths[split], |
|
}, |
|
), |
|
) |
|
|
|
return split_generators |
|
|
|
def _generate_examples(self, local_extracted_archive_paths, archives, meta_path): |
|
"""Yields examples as (key, example) tuples.""" |
|
|
|
|
|
|
|
|
|
data_fields = list(self._info().features.keys()) |
|
metadata = {} |
|
with open(meta_path, "r", encoding="utf-8") as f: |
|
reader = csv.DictReader(f) |
|
for row in tqdm(reader, desc="Reading metadata..."): |
|
row["speaker_id"] = row["user_ids"] |
|
|
|
for field in data_fields: |
|
if field not in row: |
|
row[field] = "" |
|
metadata[row["audio_paths"]] = row |
|
|
|
for i, audio_archive in enumerate(archives): |
|
for filename, file in audio_archive: |
|
_, filename = os.path.split(filename) |
|
if filename in metadata: |
|
result = dict(metadata[filename]) |
|
|
|
path = os.path.join(local_extracted_archive_paths[i], filename) if local_extracted_archive_paths else filename |
|
result["audio"] = {"path": path, "bytes": file.read()} |
|
|
|
result["path"] = path if local_extracted_archive_paths else filename |
|
|
|
yield path, result |
|
|