introvoyz041
commited on
Migrated from GitHub
Browse files
data/create_label_dict.py
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
from pathlib import Path
|
3 |
+
from tqdm import tqdm
|
4 |
+
import json
|
5 |
+
|
6 |
+
|
7 |
+
MASK = '[mask]'
|
8 |
+
PAD = '[pad]'
|
9 |
+
UNK = '[unk]'
|
10 |
+
special_tokens = [MASK,PAD,UNK]
|
11 |
+
|
12 |
+
corpus = 'en_city' # en_city/en_disease/de_city/de_disease
|
13 |
+
|
14 |
+
|
15 |
+
def prep_data(corpus = 'en_city'):
|
16 |
+
original_path = 'data/wikisection/'
|
17 |
+
processed_path = 'processed_data/'
|
18 |
+
|
19 |
+
Path(processed_path).mkdir(parents=True, exist_ok=True)
|
20 |
+
if corpus == 'en_city':
|
21 |
+
original_path = original_path + 'wikisection_en_city_'
|
22 |
+
processed_path = processed_path + 'wikisection_en_city_'
|
23 |
+
elif corpus == 'en_disease':
|
24 |
+
original_path = original_path + 'wikisection_en_disease_'
|
25 |
+
processed_path = processed_path + 'wikisection_en_disease_'
|
26 |
+
elif corpus == 'de_city':
|
27 |
+
original_path = original_path + 'wikisection_de_city_'
|
28 |
+
processed_path = processed_path + 'wikisection_de_city_'
|
29 |
+
elif corpus == 'de_disease':
|
30 |
+
original_path = original_path + 'wikisection_de_disease_'
|
31 |
+
processed_path = processed_path + 'wikisection_de_disease_'
|
32 |
+
else:
|
33 |
+
return None
|
34 |
+
filenames = ['train.json','validation.json','test.json']
|
35 |
+
|
36 |
+
labels = set()
|
37 |
+
|
38 |
+
for fn in filenames:
|
39 |
+
print('Now processing: ' + str(fn))
|
40 |
+
with open(original_path + fn, 'r+') as f:
|
41 |
+
data = json.load(f)
|
42 |
+
|
43 |
+
processed_data = []
|
44 |
+
for data_idx in tqdm(range(0, len(data))):
|
45 |
+
data_item = data[data_idx]
|
46 |
+
t = data_item['text']
|
47 |
+
a = data_item['annotations']
|
48 |
+
sections = []
|
49 |
+
for ai in a:
|
50 |
+
labels.add(ai['sectionLabel'])
|
51 |
+
|
52 |
+
#create label dict
|
53 |
+
print('Now creating label dict')
|
54 |
+
labels = [PAD,MASK,UNK] + list(labels)
|
55 |
+
label_dict = dict([(v, i) for i, v in enumerate(labels)])
|
56 |
+
with open(processed_path + 'label_dict', 'w+') as f:
|
57 |
+
for key in label_dict:
|
58 |
+
f.write(str(key) + ' ' + str(label_dict[key]) + '\n')
|
59 |
+
print('Done!')
|
60 |
+
|
61 |
+
if __name__ == "__main__":
|
62 |
+
parser = argparse.ArgumentParser()
|
63 |
+
parser.add_argument('--corpus', help="en_city/en_disease/de_city/de_disease")
|
64 |
+
|
65 |
+
args = parser.parse_args()
|
66 |
+
|
67 |
+
|
68 |
+
prep_data(args.corpus)
|
69 |
+
|
data/prepare_pairwise_sentence_embeddings.py
ADDED
@@ -0,0 +1,236 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Create pairwise sentence ebmeddings.
|
3 |
+
"""
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
import json
|
7 |
+
import tensorflow as tf
|
8 |
+
from transformers import BertTokenizer, BertModel, AutoTokenizer, AutoModel, TFAutoModel, TFBertForNextSentencePrediction, BertForNextSentencePrediction
|
9 |
+
import nltk
|
10 |
+
from nltk.tokenize import sent_tokenize
|
11 |
+
import math
|
12 |
+
import argparse
|
13 |
+
import torch
|
14 |
+
from pathlib import Path
|
15 |
+
from tqdm import tqdm
|
16 |
+
|
17 |
+
nltk.download('punkt')
|
18 |
+
|
19 |
+
|
20 |
+
MASK = '[mask]'
|
21 |
+
PAD = '[pad]'
|
22 |
+
UNK = '[unk]'
|
23 |
+
special_tokens = [MASK,PAD,UNK]
|
24 |
+
|
25 |
+
corpus = 'en_city' # en_city/en_disease/de_city/de_disease
|
26 |
+
|
27 |
+
def assign_GPU_pt(Tokenizer_output):
|
28 |
+
output = {}
|
29 |
+
for i in Tokenizer_output:
|
30 |
+
output[i] = Tokenizer_output[i].to('cuda:0')
|
31 |
+
|
32 |
+
return output
|
33 |
+
|
34 |
+
def prep_data(model = 'BERT', corpus = 'en_city', max_sent = 512, test_d_size = None, is_tf = True,train=True,validation=True,test=True):
|
35 |
+
original_path = 'data/wikisection/'
|
36 |
+
processed_path = 'processed_data/' + model + '/'
|
37 |
+
|
38 |
+
Path(processed_path).mkdir(parents=True, exist_ok=True)
|
39 |
+
if corpus == 'en_city':
|
40 |
+
original_path = original_path + 'wikisection_en_city_'
|
41 |
+
processed_path = processed_path + 'wikisection_en_city_pairwise_'
|
42 |
+
elif corpus == 'en_disease':
|
43 |
+
original_path = original_path + 'wikisection_en_disease_'
|
44 |
+
processed_path = processed_path + 'wikisection_en_disease_pairwise_'
|
45 |
+
elif corpus == 'de_city':
|
46 |
+
original_path = original_path + 'wikisection_de_city_'
|
47 |
+
processed_path = processed_path + 'wikisection_de_city_pairwise_'
|
48 |
+
elif corpus == 'de_disease':
|
49 |
+
original_path = original_path + 'wikisection_de_disease_'
|
50 |
+
processed_path = processed_path + 'wikisection_de_disease_pairwise_'
|
51 |
+
else:
|
52 |
+
return None
|
53 |
+
filenames = []
|
54 |
+
if train:
|
55 |
+
filenames.append('train.json')
|
56 |
+
if validation:
|
57 |
+
filenames.append('validation.json')
|
58 |
+
if test:
|
59 |
+
filenames.append('test.json')
|
60 |
+
|
61 |
+
model_dict = {
|
62 |
+
'tf': {
|
63 |
+
'ALBERT': 'albert-base-v2',
|
64 |
+
'BERT': 'bert-base-cased',
|
65 |
+
'BERTL': 'bert-large-cased',
|
66 |
+
'BLUEBERT': 'ttumyche/bluebert',
|
67 |
+
'DEBERT': 'bert-base-german-cased',
|
68 |
+
'XLNET': 'xlnet-base-cased'
|
69 |
+
},
|
70 |
+
'pytorch': {
|
71 |
+
'BIOCLINICALBERT': 'emilyalsentzer/Bio_ClinicalBERT',
|
72 |
+
'BIOMED_ROBERTA': 'allenai/biomed_roberta_base',
|
73 |
+
}
|
74 |
+
|
75 |
+
}
|
76 |
+
|
77 |
+
assert (is_tf and model in model_dict['tf']) or (not is_tf and model in model_dict['pytorch']), 'Model found for ' + model + (is_tf and ' on tf' or ' on pytorch')
|
78 |
+
# if model == 'BERT':
|
79 |
+
# model_name = 'bert-base-cased'
|
80 |
+
# elif model == 'BERTL':
|
81 |
+
# model_name = 'bert-large-cased'
|
82 |
+
# elif model == 'BLUEBERT':
|
83 |
+
# model_name = 'ttumyche/bluebert'
|
84 |
+
# elif model == 'BIOCLINICALBERT':
|
85 |
+
# model_name = 'emilyalsentzer/Bio_ClinicalBERT'
|
86 |
+
# assert not is_tf, 'Not TF model found for ' + model_name
|
87 |
+
# elif model == 'DEBERT':
|
88 |
+
# model_name = 'bert-base-german-cased'
|
89 |
+
# elif model == 'XLNET':
|
90 |
+
# model_name = 'xlnet-base-cased'
|
91 |
+
# elif model == 'ALBERT':
|
92 |
+
# model_name = 'albert-base-v2'
|
93 |
+
# elif model == 'ROBERTA':
|
94 |
+
# model_name = 'roberta-base'
|
95 |
+
# elif model == 'BIOMED_ROBERTA':
|
96 |
+
# model_name = 'allenai/biomed_roberta_base'
|
97 |
+
# assert not is_tf, 'Not TF model found for ' + model_name
|
98 |
+
|
99 |
+
model_name = is_tf and model_dict['tf'][model] or model_dict['pytorch'][model]
|
100 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
101 |
+
|
102 |
+
if is_tf and (model=='BERT' or model=='DEBERT'):
|
103 |
+
Model = TFBertForNextSentencePrediction.from_pretrained(model_name)
|
104 |
+
elif is_tf:
|
105 |
+
Model = TFAutoModel.from_pretrained(model_name)
|
106 |
+
elif not is_tf and model=='BIOCLINICALBERT':
|
107 |
+
Model = BertForNextSentencePrediction.from_pretrained(model_name)
|
108 |
+
else:
|
109 |
+
Model = AutoModel.from_pretrained(model_name, return_dict=True)
|
110 |
+
|
111 |
+
|
112 |
+
labels = set()
|
113 |
+
sep_id = tokenizer.convert_tokens_to_ids(tokenizer.sep_token)
|
114 |
+
|
115 |
+
for fn in filenames:
|
116 |
+
print('Now processing: ' + str(fn))
|
117 |
+
with open(original_path + fn, 'r+') as f:
|
118 |
+
data = json.load(f)
|
119 |
+
|
120 |
+
# test
|
121 |
+
if test_d_size and test_d_size > 0:
|
122 |
+
data = data[:test_d_size]
|
123 |
+
|
124 |
+
processed_data = []
|
125 |
+
for data_idx in tqdm(range(0, len(data))):
|
126 |
+
data_item = data[data_idx]
|
127 |
+
t = data_item['text']
|
128 |
+
a = data_item['annotations']
|
129 |
+
sections = []
|
130 |
+
for ai in a:
|
131 |
+
si = {}
|
132 |
+
si['text'] = t[ai['begin']: ai['begin'] + ai['length']]
|
133 |
+
si['label'] = ai['sectionLabel']
|
134 |
+
sections.append(si)
|
135 |
+
labels.add(ai['sectionLabel'])
|
136 |
+
sents = []
|
137 |
+
current_section = ''
|
138 |
+
|
139 |
+
sentences = []
|
140 |
+
for si in sections:
|
141 |
+
st = sent_tokenize(si['text'])
|
142 |
+
sentences.extend(st)
|
143 |
+
|
144 |
+
sentences = sentences[:max_sent]
|
145 |
+
|
146 |
+
for i in range(len(sentences) - 1):
|
147 |
+
# create pairwise sentence embeddings
|
148 |
+
if is_tf:
|
149 |
+
encoding = tokenizer(sentences[i],sentences[i+1], return_tensors="tf",padding=True,truncation=True,max_length=512)
|
150 |
+
if model == 'BERT' or model == 'DEBERT':
|
151 |
+
# for BERT and DEBERT with Tensorflow
|
152 |
+
# we have extracted CLS and SEP embeddings
|
153 |
+
output = Model(encoding['input_ids'], token_type_ids=encoding['token_type_ids'], output_hidden_states=True, return_dict=True)
|
154 |
+
sep_idx = np.where(encoding['input_ids'][0]==sep_id)[0][0]
|
155 |
+
sents.append({'cls': str(output['hidden_states'][-1][:,0,:].numpy().tolist()[0]), 'sep': str(output['hidden_states'][-1][:,sep_idx,:].numpy().tolist()[0])})
|
156 |
+
elif model == 'XLNET':
|
157 |
+
# for XLNET with Tensorflow
|
158 |
+
output = Model(encoding['input_ids'], token_type_ids=encoding['token_type_ids'], return_dict=True)
|
159 |
+
sep_idx = np.where(encoding['input_ids'][0]==sep_id)[0][0]
|
160 |
+
sents.append({'cls': str(output['last_hidden_state'][:,-1,:].numpy().tolist()[0]), 'sep': str(output['last_hidden_state'][:,sep_idx,:].numpy().tolist()[0])})
|
161 |
+
elif model == 'ALBERT':
|
162 |
+
# for ALBERT with Tensorflow
|
163 |
+
output = Model(encoding['input_ids'], token_type_ids=encoding['token_type_ids'], return_dict=True)
|
164 |
+
sep_idx = np.where(encoding['input_ids'][0]==sep_id)[0][0]
|
165 |
+
sents.append({'cls': str(output['last_hidden_state'][:,0,:].numpy().tolist()[0]), 'sep': str(output['last_hidden_state'][:,sep_idx,:].numpy().tolist()[0])})
|
166 |
+
elif model == 'ROBERTA':
|
167 |
+
# for ROBERTA with Tensorflow
|
168 |
+
output = Model(encoding['input_ids'], return_dict=True)
|
169 |
+
sep_idx = np.where(encoding['input_ids'][0]==sep_id)[0][0]
|
170 |
+
sents.append({'cls': str(output['last_hidden_state'][:,0,:].numpy().tolist()[0]), 'sep': str(output['last_hidden_state'][:,sep_idx,:].numpy().tolist()[0])})
|
171 |
+
elif not is_tf and model == 'BIOCLINICALBERT':
|
172 |
+
# for BIOCLINICALBERT with Pytorch
|
173 |
+
encoding = tokenizer(sentences[i],sentences[i+1], return_tensors="pt",padding=True,truncation=True,max_length=512)
|
174 |
+
sep_idx = np.where(encoding['input_ids'][0]==sep_id)[0][0]
|
175 |
+
if torch.cuda.is_available():
|
176 |
+
dev = "cuda:0"
|
177 |
+
inputs = assign_GPU_pt(encoding)
|
178 |
+
Model = Model.to(dev)
|
179 |
+
output = Model(**inputs, output_hidden_states = True, return_dict=True)
|
180 |
+
sents.append({'cls': str(output['hidden_states'][:,0,:].cpu().detach().numpy().tolist()[0]), 'sep': str(output['hidden_states'][:,sep_idx,:].cpu().detach().numpy().tolist()[0])})
|
181 |
+
else:
|
182 |
+
output = Model(**encoding, output_hidden_states = True, return_dict=True)
|
183 |
+
sents.append({'cls': str(output['hidden_states'][:,0,:].detach().numpy().tolist()[0]), 'sep': str(output['hidden_states'][:,sep_idx,:].detach().numpy().tolist()[0])})
|
184 |
+
elif not is_tf and model == 'BIOMED_ROBERTA':
|
185 |
+
# for BIOMED_ROBERTA with Pytorch
|
186 |
+
encoding = tokenizer(sentences[i],sentences[i+1], return_tensors="pt",padding=True,truncation=True,max_length=512)
|
187 |
+
sep_idx = np.where(encoding['input_ids'][0]==sep_id)[0][0]
|
188 |
+
if torch.cuda.is_available():
|
189 |
+
dev = "cuda:0"
|
190 |
+
inputs = assign_GPU_pt(encoding)
|
191 |
+
Model = Model.to(dev)
|
192 |
+
output = Model(**inputs)
|
193 |
+
sents.append({'cls': str(output.last_hidden_state[:,0,:].cpu().detach().numpy().tolist()[0]), 'sep': str(output.last_hidden_state[:,sep_idx,:].cpu().detach().numpy().tolist()[0])})
|
194 |
+
else:
|
195 |
+
output = Model(**encoding, output_hidden_states = True, return_dict=True)
|
196 |
+
sents.append({'cls': str(output.last_hidden_state[:,0,:].detach().numpy().tolist()[0]), 'sep': str(output.last_hidden_state[:,sep_idx,:].detach().numpy().tolist()[0])})
|
197 |
+
processed_data.append(sents)
|
198 |
+
|
199 |
+
with open(processed_path + fn, 'w+') as f:
|
200 |
+
json.dump(processed_data,f)
|
201 |
+
|
202 |
+
print('Done!')
|
203 |
+
|
204 |
+
if __name__ == "__main__":
|
205 |
+
parser = argparse.ArgumentParser()
|
206 |
+
parser.add_argument('--model', help="BERT/BERTL/BLUEBERT/BIOCLINICALBERT/DEBERT")
|
207 |
+
parser.add_argument('--corpus', help="en_city/en_disease/de_city/de_disease")
|
208 |
+
parser.add_argument('--max_sent', help="maximum number of sentence in a document", default='512')
|
209 |
+
parser.add_argument('--test_d_size', help="for testing only: number of data used create output", default='None')
|
210 |
+
parser.add_argument('--tf', help="Tensorflow if true; Pytorch if false (T/F)", default='T')
|
211 |
+
parser.add_argument('--train',default='T')
|
212 |
+
parser.add_argument('--validation',default='T')
|
213 |
+
parser.add_argument('--test',default='T')
|
214 |
+
|
215 |
+
args = parser.parse_args()
|
216 |
+
|
217 |
+
|
218 |
+
assert args.max_sent.isdigit(), 'max_sent should be an integer'
|
219 |
+
max_sent = int(args.max_sent)
|
220 |
+
|
221 |
+
assert args.test_d_size.isdigit() or args.test_d_size == 'None', 'test_d_size should be an integer or None'
|
222 |
+
|
223 |
+
if args.test_d_size.isdigit():
|
224 |
+
test_d_size = int(args.test_d_size)
|
225 |
+
else:
|
226 |
+
test_d_size = None
|
227 |
+
|
228 |
+
assert args.tf == 'T' or args.tf == 'F', 'tf can be T or F'
|
229 |
+
if args.tf == 'T':
|
230 |
+
is_tf = True
|
231 |
+
elif args.tf == 'F':
|
232 |
+
is_tf = False
|
233 |
+
|
234 |
+
|
235 |
+
prep_data(args.model,args.corpus,max_sent,test_d_size,is_tf,args.train=='T',args.validation=='T',args.test=='T')
|
236 |
+
|
data/prepare_single_sentence_embeddings.py
ADDED
@@ -0,0 +1,175 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import json
|
3 |
+
import tensorflow as tf
|
4 |
+
from transformers import BertTokenizer, BertModel, AutoTokenizer, AutoModel, TFAutoModel
|
5 |
+
import nltk
|
6 |
+
from nltk.tokenize import sent_tokenize
|
7 |
+
import math
|
8 |
+
import argparse
|
9 |
+
import torch
|
10 |
+
from pathlib import Path
|
11 |
+
from tqdm import tqdm
|
12 |
+
|
13 |
+
nltk.download('punkt')
|
14 |
+
|
15 |
+
|
16 |
+
MASK = '[mask]'
|
17 |
+
PAD = '[pad]'
|
18 |
+
UNK = '[unk]'
|
19 |
+
special_tokens = [MASK,PAD,UNK]
|
20 |
+
|
21 |
+
corpus = 'en_city' # en_city/en_disease/de_city/de_disease
|
22 |
+
|
23 |
+
def assign_GPU_pt(Tokenizer_output):
|
24 |
+
output = {}
|
25 |
+
for i in Tokenizer_output:
|
26 |
+
output[i] = Tokenizer_output[i].to('cuda:0')
|
27 |
+
return output
|
28 |
+
|
29 |
+
def prep_data(model = 'BERT', corpus = 'en_city', max_sent = 512, test_d_size = None, is_tf = True,train=True,validation=True,test=True):
|
30 |
+
original_path = 'data/wikisection/'
|
31 |
+
processed_path = 'processed_data/' + model + '/'
|
32 |
+
|
33 |
+
Path(processed_path).mkdir(parents=True, exist_ok=True)
|
34 |
+
if corpus == 'en_city':
|
35 |
+
original_path = original_path + 'wikisection_en_city_'
|
36 |
+
processed_path = processed_path + 'wikisection_en_city_'
|
37 |
+
elif corpus == 'en_disease':
|
38 |
+
original_path = original_path + 'wikisection_en_disease_'
|
39 |
+
processed_path = processed_path + 'wikisection_en_disease_'
|
40 |
+
elif corpus == 'de_city':
|
41 |
+
original_path = original_path + 'wikisection_de_city_'
|
42 |
+
processed_path = processed_path + 'wikisection_de_city_'
|
43 |
+
elif corpus == 'de_disease':
|
44 |
+
original_path = original_path + 'wikisection_de_disease_'
|
45 |
+
processed_path = processed_path + 'wikisection_de_disease_'
|
46 |
+
else:
|
47 |
+
return None
|
48 |
+
filenames = []
|
49 |
+
if train:
|
50 |
+
filenames.append('train.json')
|
51 |
+
if validation:
|
52 |
+
filenames.append('validation.json')
|
53 |
+
if test:
|
54 |
+
filenames.append('test.json')
|
55 |
+
|
56 |
+
model_dict = {
|
57 |
+
'tf': {
|
58 |
+
'ALBERT': 'albert-base-v2',
|
59 |
+
'BERT': 'bert-base-cased',
|
60 |
+
'BERTL': 'bert-large-cased',
|
61 |
+
'BLUEBERT': 'ttumyche/bluebert',
|
62 |
+
'DEBERT': 'bert-base-german-cased',
|
63 |
+
'XLNET': 'xlnet-base-cased'
|
64 |
+
},
|
65 |
+
'pytorch': {
|
66 |
+
'BIOCLINICALBERT': 'emilyalsentzer/Bio_ClinicalBERT',
|
67 |
+
'BIOMED_ROBERTA': 'allenai/biomed_roberta_base',
|
68 |
+
}
|
69 |
+
|
70 |
+
}
|
71 |
+
|
72 |
+
assert (is_tf and model in model_dict['tf']) or (not is_tf and model in model_dict['pytorch']), 'Model found for ' + model + (is_tf and ' on tf' or ' on pytorch')
|
73 |
+
model_name = is_tf and model_dict['tf'][model] or model_dict['pytorch'][model]
|
74 |
+
|
75 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
76 |
+
|
77 |
+
if is_tf:
|
78 |
+
Model = TFAutoModel.from_pretrained(model_name)
|
79 |
+
else:
|
80 |
+
Model = AutoModel.from_pretrained(model_name, return_dict=True)
|
81 |
+
|
82 |
+
|
83 |
+
labels = set()
|
84 |
+
|
85 |
+
for fn in filenames:
|
86 |
+
print('Now processing: ' + str(fn))
|
87 |
+
with open(original_path + fn, 'r+') as f:
|
88 |
+
data = json.load(f)
|
89 |
+
|
90 |
+
# test
|
91 |
+
if test_d_size and test_d_size > 0:
|
92 |
+
data = data[:test_d_size]
|
93 |
+
|
94 |
+
processed_data = []
|
95 |
+
for data_idx in tqdm(range(0, len(data))):
|
96 |
+
data_item = data[data_idx]
|
97 |
+
t = data_item['text']
|
98 |
+
a = data_item['annotations']
|
99 |
+
sections = []
|
100 |
+
for ai in a:
|
101 |
+
si = {}
|
102 |
+
si['text'] = t[ai['begin']: ai['begin'] + ai['length']]
|
103 |
+
si['label'] = ai['sectionLabel']
|
104 |
+
sections.append(si)
|
105 |
+
labels.add(ai['sectionLabel'])
|
106 |
+
sents = []
|
107 |
+
current_section = ''
|
108 |
+
for si in sections:
|
109 |
+
st = sent_tokenize(si['text'])
|
110 |
+
for sti in st:
|
111 |
+
if len(sents) >= max_sent:
|
112 |
+
# truncate
|
113 |
+
break
|
114 |
+
begin = 0 if (current_section == si['label']) else 1
|
115 |
+
current_section = si['label']
|
116 |
+
if is_tf:
|
117 |
+
if model == 'XLNET':
|
118 |
+
inputs = tokenizer(sti, return_tensors="tf",padding=True,truncation=True,max_length=512)
|
119 |
+
outputs = Model(inputs)
|
120 |
+
# each sentence dictionary has 'cls', 'label' and 'begin' keys, the values are the sentence embedding, the topic label and begin sentence indicator
|
121 |
+
sents.append({'cls': str(outputs[0][:,-1,:].numpy().tolist()[0]), 'label': si['label'], 'begin': begin})
|
122 |
+
else:
|
123 |
+
inputs = tokenizer(sti, return_tensors="tf",padding=True,truncation=True,max_length=512)
|
124 |
+
outputs = Model(inputs)
|
125 |
+
sents.append({'cls': str(outputs[0][:,0,:].numpy().tolist()[0]), 'label': si['label'], 'begin': begin})
|
126 |
+
else:
|
127 |
+
if torch.cuda.is_available():
|
128 |
+
dev = "cuda:0"
|
129 |
+
inputs = assign_GPU_pt(tokenizer(sti, return_tensors="pt",padding=True,truncation=True,max_length=512))
|
130 |
+
Model = Model.to(dev)
|
131 |
+
outputs = Model(**inputs)
|
132 |
+
sents.append({'cls': str(outputs.last_hidden_state[:,0,:].cpu().detach().numpy().tolist()[0]), 'label': si['label'], 'begin': begin})
|
133 |
+
else:
|
134 |
+
dev = "cpu"
|
135 |
+
inputs = tokenizer(sti, return_tensors="pt",padding=True,truncation=True,max_length=512)
|
136 |
+
outputs = Model(**inputs)
|
137 |
+
sents.append({'cls': str(outputs.last_hidden_state[:,0,:].detach().numpy().tolist()[0]), 'label': si['label'], 'begin': begin})
|
138 |
+
doc_len = len(sents)
|
139 |
+
#for i in range(0,(max_sent-len(sents))):
|
140 |
+
# padding
|
141 |
+
#sents.append({'cls': str(np.zeros(768).tolist()), 'label': '[pad]', 'begin': '[pad]'})
|
142 |
+
processed_data.append({'sent':sents, 'doc_len': doc_len})
|
143 |
+
|
144 |
+
with open(processed_path + fn, 'w+') as f:
|
145 |
+
json.dump(processed_data,f)
|
146 |
+
|
147 |
+
print('Done!')
|
148 |
+
|
149 |
+
if __name__ == "__main__":
|
150 |
+
parser = argparse.ArgumentParser()
|
151 |
+
parser.add_argument('--model', help="BERT/BERTL/BLUEBERT/BIOCLINICALBERT/DEBERT")
|
152 |
+
parser.add_argument('--corpus', help="en_city/en_disease/de_city/de_disease")
|
153 |
+
parser.add_argument('--max_sent', help="maximum number of sentence in a document", default='512')
|
154 |
+
parser.add_argument('--test_d_size', help="for testing only: number of data used create output", default='None')
|
155 |
+
parser.add_argument('--tf', help="Tensorflow if true; Pytorch if false (T/F)", default='T')
|
156 |
+
parser.add_argument('--train',default='T')
|
157 |
+
parser.add_argument('--validation',default='T')
|
158 |
+
parser.add_argument('--test',default='T')
|
159 |
+
|
160 |
+
args = parser.parse_args()
|
161 |
+
|
162 |
+
|
163 |
+
assert args.max_sent.isdigit(), 'max_sent should be an integer'
|
164 |
+
max_sent = int(args.max_sent)
|
165 |
+
|
166 |
+
assert args.test_d_size.isdigit() or args.test_d_size == 'None', 'test_d_size should be an integer or None'
|
167 |
+
|
168 |
+
if args.test_d_size.isdigit():
|
169 |
+
test_d_size = int(args.test_d_size)
|
170 |
+
else:
|
171 |
+
test_d_size = None
|
172 |
+
|
173 |
+
|
174 |
+
prep_data(args.model,args.corpus,max_sent,test_d_size,args.tf.upper() == 'T',args.train.upper()=='T',args.validation.upper()=='T',args.test.upper()=='T')
|
175 |
+
|
data/transformer_squared_pairwise_only.py
ADDED
@@ -0,0 +1,526 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import tensorflow as tf
|
2 |
+
import numpy as np
|
3 |
+
import tensorflow.keras.backend as K
|
4 |
+
from tensorflow.keras import activations
|
5 |
+
import random
|
6 |
+
from itertools import product, combinations
|
7 |
+
import math
|
8 |
+
import json
|
9 |
+
import argparse
|
10 |
+
from sklearn.utils import shuffle
|
11 |
+
import glob
|
12 |
+
import os
|
13 |
+
import segeval
|
14 |
+
from tqdm import tqdm
|
15 |
+
|
16 |
+
TRAIN_DATA = []
|
17 |
+
DEV_DATA = []
|
18 |
+
TEST_DATA = []
|
19 |
+
PAD = '[pad]'
|
20 |
+
|
21 |
+
#------------------------model-------------------
|
22 |
+
def get_angles(pos, i, d_model):
|
23 |
+
angle_rates = 1 / np.power(10000, (2 * (i//2)) / np.float32(d_model))
|
24 |
+
return pos * angle_rates
|
25 |
+
|
26 |
+
def positional_encoding(position, d_model):
|
27 |
+
angle_rads = get_angles(np.arange(position)[:, np.newaxis],
|
28 |
+
np.arange(d_model)[np.newaxis, :],
|
29 |
+
d_model)
|
30 |
+
# apply sin to even indices in the array; 2i
|
31 |
+
angle_rads[:, 0::2] = np.sin(angle_rads[:, 0::2])
|
32 |
+
|
33 |
+
# apply cos to odd indices in the array; 2i+1
|
34 |
+
angle_rads[:, 1::2] = np.cos(angle_rads[:, 1::2])
|
35 |
+
|
36 |
+
pos_encoding = angle_rads[np.newaxis, ...]
|
37 |
+
|
38 |
+
return tf.cast(pos_encoding, dtype=tf.float32)
|
39 |
+
|
40 |
+
def scaled_dot_product_attention(q, k, v, mask):
|
41 |
+
"""Calculate the attention weights.
|
42 |
+
q, k, v must have matching leading dimensions.
|
43 |
+
k, v must have matching penultimate dimension, i.e.: seq_len_k = seq_len_v.
|
44 |
+
The mask has different shapes depending on its type(padding or look ahead)
|
45 |
+
but it must be broadcastable for addition.
|
46 |
+
|
47 |
+
Args:
|
48 |
+
q: query shape == (..., seq_len_q, depth)
|
49 |
+
k: key shape == (..., seq_len_k, depth)
|
50 |
+
v: value shape == (..., seq_len_v, depth_v)
|
51 |
+
mask: Float tensor with shape broadcastable
|
52 |
+
to (..., seq_len_q, seq_len_k). Defaults to None.
|
53 |
+
|
54 |
+
Returns:
|
55 |
+
output, attention_weights
|
56 |
+
"""
|
57 |
+
|
58 |
+
matmul_qk = tf.matmul(q, k, transpose_b=True) # (..., seq_len_q, seq_len_k)
|
59 |
+
|
60 |
+
# scale matmul_qk
|
61 |
+
dk = tf.cast(tf.shape(k)[-1], tf.float32)
|
62 |
+
scaled_attention_logits = matmul_qk / tf.math.sqrt(dk)
|
63 |
+
|
64 |
+
# add the mask to the scaled tensor.
|
65 |
+
if mask is not None:
|
66 |
+
scaled_attention_logits += (mask * -1e9)
|
67 |
+
|
68 |
+
# softmax is normalized on the last axis (seq_len_k) so that the scores
|
69 |
+
# add up to 1.
|
70 |
+
attention_weights = tf.nn.softmax(scaled_attention_logits, axis=-1) # (..., seq_len_q, seq_len_k)
|
71 |
+
|
72 |
+
output = tf.matmul(attention_weights, v) # (..., seq_len_q, depth_v)
|
73 |
+
|
74 |
+
return output, attention_weights
|
75 |
+
|
76 |
+
class MultiHeadAttention(tf.keras.layers.Layer):
|
77 |
+
def __init__(self, d_model, num_heads):
|
78 |
+
super(MultiHeadAttention, self).__init__()
|
79 |
+
self.num_heads = num_heads
|
80 |
+
self.d_model = d_model
|
81 |
+
|
82 |
+
assert d_model % self.num_heads == 0
|
83 |
+
|
84 |
+
self.depth = d_model // self.num_heads
|
85 |
+
|
86 |
+
self.wq = tf.keras.layers.Dense(d_model)
|
87 |
+
self.wk = tf.keras.layers.Dense(d_model)
|
88 |
+
self.wv = tf.keras.layers.Dense(d_model)
|
89 |
+
|
90 |
+
self.dense = tf.keras.layers.Dense(d_model)
|
91 |
+
|
92 |
+
def split_heads(self, x, batch_size):
|
93 |
+
"""Split the last dimension into (num_heads, depth).
|
94 |
+
Transpose the result such that the shape is (batch_size, num_heads, seq_len, depth)
|
95 |
+
"""
|
96 |
+
x = tf.reshape(x, (batch_size, -1, self.num_heads, self.depth))
|
97 |
+
return tf.transpose(x, perm=[0, 2, 1, 3])
|
98 |
+
|
99 |
+
def call(self, v, k, q, mask):
|
100 |
+
batch_size = tf.shape(q)[0]
|
101 |
+
|
102 |
+
q = self.wq(q) # (batch_size, seq_len, d_model)
|
103 |
+
k = self.wk(k) # (batch_size, seq_len, d_model)
|
104 |
+
v = self.wv(v) # (batch_size, seq_len, d_model)
|
105 |
+
|
106 |
+
q = self.split_heads(q, batch_size) # (batch_size, num_heads, seq_len_q, depth)
|
107 |
+
k = self.split_heads(k, batch_size) # (batch_size, num_heads, seq_len_k, depth)
|
108 |
+
v = self.split_heads(v, batch_size) # (batch_size, num_heads, seq_len_v, depth)
|
109 |
+
|
110 |
+
# scaled_attention.shape == (batch_size, num_heads, seq_len_q, depth)
|
111 |
+
# attention_weights.shape == (batch_size, num_heads, seq_len_q, seq_len_k)
|
112 |
+
scaled_attention, attention_weights = scaled_dot_product_attention(
|
113 |
+
q, k, v, mask)
|
114 |
+
|
115 |
+
scaled_attention = tf.transpose(scaled_attention, perm=[0, 2, 1, 3]) # (batch_size, seq_len_q, num_heads, depth)
|
116 |
+
|
117 |
+
concat_attention = tf.reshape(scaled_attention,
|
118 |
+
(batch_size, -1, self.d_model)) # (batch_size, seq_len_q, d_model)
|
119 |
+
|
120 |
+
output = self.dense(concat_attention) # (batch_size, seq_len_q, d_model)
|
121 |
+
|
122 |
+
return output, attention_weights
|
123 |
+
|
124 |
+
def point_wise_feed_forward_network(d_model, dff):
|
125 |
+
return tf.keras.Sequential([
|
126 |
+
tf.keras.layers.Dense(dff, activation='relu'), # (batch_size, seq_len, dff)
|
127 |
+
tf.keras.layers.Dense(d_model) # (batch_size, seq_len, d_model)
|
128 |
+
])
|
129 |
+
|
130 |
+
class EncoderLayer(tf.keras.layers.Layer):
|
131 |
+
def __init__(self, d_model, num_heads, dff, rate=0.1):
|
132 |
+
super(EncoderLayer, self).__init__()
|
133 |
+
|
134 |
+
self.mha = MultiHeadAttention(d_model, num_heads)
|
135 |
+
self.ffn = point_wise_feed_forward_network(d_model, dff)
|
136 |
+
|
137 |
+
self.layernorm1 = tf.keras.layers.LayerNormalization(epsilon=1e-6)
|
138 |
+
self.layernorm2 = tf.keras.layers.LayerNormalization(epsilon=1e-6)
|
139 |
+
|
140 |
+
self.dropout1 = tf.keras.layers.Dropout(rate)
|
141 |
+
self.dropout2 = tf.keras.layers.Dropout(rate)
|
142 |
+
|
143 |
+
def call(self, x, training, mask):
|
144 |
+
|
145 |
+
attn_output, _ = self.mha(x, x, x, mask) # (batch_size, input_seq_len, d_model)
|
146 |
+
attn_output = self.dropout1(attn_output, training=training)
|
147 |
+
out1 = self.layernorm1(x + attn_output) # (batch_size, input_seq_len, d_model)
|
148 |
+
|
149 |
+
ffn_output = self.ffn(out1) # (batch_size, input_seq_len, d_model)
|
150 |
+
ffn_output = self.dropout2(ffn_output, training=training)
|
151 |
+
out2 = self.layernorm2(out1 + ffn_output) # (batch_size, input_seq_len, d_model)
|
152 |
+
|
153 |
+
return out2
|
154 |
+
|
155 |
+
class Encoder(tf.keras.layers.Layer):
|
156 |
+
def __init__(self, num_layers, d_model, num_heads, dff,
|
157 |
+
maximum_position_encoding, rate=0.1):
|
158 |
+
super(Encoder, self).__init__()
|
159 |
+
|
160 |
+
self.d_model = d_model
|
161 |
+
self.num_layers = num_layers
|
162 |
+
|
163 |
+
self.embedding = tf.keras.layers.InputLayer(input_shape=(maximum_position_encoding,self.d_model))
|
164 |
+
self.pos_encoding = positional_encoding(maximum_position_encoding,
|
165 |
+
self.d_model)
|
166 |
+
|
167 |
+
|
168 |
+
self.enc_layers = [EncoderLayer(d_model, num_heads, dff, rate)
|
169 |
+
for _ in range(num_layers)]
|
170 |
+
|
171 |
+
self.dropout = tf.keras.layers.Dropout(rate)
|
172 |
+
|
173 |
+
def call(self, x, training, mask):
|
174 |
+
|
175 |
+
seq_len = tf.shape(x)[1]
|
176 |
+
|
177 |
+
# adding embedding and position encoding.
|
178 |
+
x = self.embedding(x) # (batch_size, input_seq_len, d_model)
|
179 |
+
x *= tf.math.sqrt(tf.cast(self.d_model, tf.float32))
|
180 |
+
x += self.pos_encoding[:, :seq_len, :]
|
181 |
+
|
182 |
+
x = self.dropout(x, training=training)
|
183 |
+
|
184 |
+
for i in range(self.num_layers):
|
185 |
+
x = self.enc_layers[i](x, training, mask)
|
186 |
+
|
187 |
+
return x # (batch_size, input_seq_len, d_model)
|
188 |
+
|
189 |
+
|
190 |
+
class Joint_Tobert_TextSeg(tf.keras.Model):
|
191 |
+
def __init__(self, seq_len=150, embed_dim=768, begin_output_dim=4, label_output_dim=4, drop_rate=0.1, attn_head=8, encoder_layers=2, encoder_dff=30):
|
192 |
+
super(Joint_Tobert_TextSeg, self).__init__()
|
193 |
+
self.encoder_block = Encoder(num_layers=encoder_layers, d_model=embed_dim, num_heads=attn_head,
|
194 |
+
dff=encoder_dff,
|
195 |
+
maximum_position_encoding=seq_len)
|
196 |
+
self.masking1 = tf.keras.layers.Masking()
|
197 |
+
self.masking2 = tf.keras.layers.Masking()
|
198 |
+
self.dropout1 = tf.keras.layers.Dropout(drop_rate)
|
199 |
+
self.dense1 = tf.keras.layers.Dense(begin_output_dim, activation="softmax", name="begin_output")
|
200 |
+
self.dense2 = tf.keras.layers.Dense(label_output_dim, activation="softmax", name="label_output")
|
201 |
+
|
202 |
+
def call(self, inputs, training=False):
|
203 |
+
x = self.encoder_block(inputs[0], training=training, mask=inputs[1])
|
204 |
+
x1 = self.masking1(tf.math.multiply(x, inputs[2]))
|
205 |
+
x1 = self.dropout1(x1,training=training)
|
206 |
+
x2 = self.masking2(tf.math.multiply(x, inputs[3]))
|
207 |
+
x2 = self.dropout1(x2,training=training)
|
208 |
+
return [self.dense1(x1),self.dense2(x2)]
|
209 |
+
|
210 |
+
|
211 |
+
#--------------------data--------------------------
|
212 |
+
|
213 |
+
def get_begin_dict():
|
214 |
+
begin_dict = {
|
215 |
+
PAD: 0,
|
216 |
+
0: 1,
|
217 |
+
1: 2
|
218 |
+
}
|
219 |
+
return begin_dict
|
220 |
+
|
221 |
+
def get_label_dict(model = 'BERT', corpus='en_city'):
|
222 |
+
label_dict = {}
|
223 |
+
with open(os.path.join('processed_data', 'wikisection_' + corpus + '_label_dict'), 'r+') as f:
|
224 |
+
for l in f.readlines():
|
225 |
+
key, value = l.strip().split()
|
226 |
+
label_dict[key] = int(value)
|
227 |
+
return label_dict
|
228 |
+
|
229 |
+
def load_train_data(model = 'BERT', corpus='en_city'):
|
230 |
+
print('loading train data',end='...')
|
231 |
+
with open(os.path.join('processed_data', model, 'wikisection_' + corpus + '_train.json'), 'r+') as f:
|
232 |
+
original = json.load(f)
|
233 |
+
with open(os.path.join('processed_data', model, 'wikisection_' + corpus + '_pairwise_train.json'), 'r+') as f:
|
234 |
+
pairwise = json.load(f)
|
235 |
+
|
236 |
+
assert len(original) == len(pairwise), 'data size not match'
|
237 |
+
train_data = []
|
238 |
+
for idx in tqdm(range(len(original))):
|
239 |
+
data = original[idx]
|
240 |
+
data['pairwise'] = pairwise[idx]
|
241 |
+
train_data.append(data)
|
242 |
+
TRAIN_DATA.extend(train_data)
|
243 |
+
|
244 |
+
print('Done!')
|
245 |
+
|
246 |
+
|
247 |
+
def load_dev_data(model = 'BERT', corpus='en_city'):
|
248 |
+
print('loading dev data',end='...')
|
249 |
+
with open(os.path.join('processed_data', model, 'wikisection_' + corpus + '_validation.json'), 'r+') as f:
|
250 |
+
original = json.load(f)
|
251 |
+
with open(os.path.join('processed_data', model, 'wikisection_' + corpus + '_pairwise_validation.json'), 'r+') as f:
|
252 |
+
pairwise = json.load(f)
|
253 |
+
|
254 |
+
assert len(original) == len(pairwise), 'data size not match'
|
255 |
+
dev_data = []
|
256 |
+
for idx in tqdm(range(len(original))):
|
257 |
+
data = original[idx]
|
258 |
+
data['pairwise'] = pairwise[idx]
|
259 |
+
dev_data.append(data)
|
260 |
+
|
261 |
+
DEV_DATA.extend(dev_data)
|
262 |
+
print('Done!')
|
263 |
+
|
264 |
+
def load_test_data(model = 'BERT', corpus='en_city'):
|
265 |
+
print('loading test data',end='...')
|
266 |
+
with open(os.path.join('processed_data', model, 'wikisection_' + corpus + '_test.json'), 'r+') as f:
|
267 |
+
original = json.load(f)
|
268 |
+
with open(os.path.join('processed_data', model, 'wikisection_' + corpus + '_pairwise_test.json'), 'r+') as f:
|
269 |
+
pairwise = json.load(f)
|
270 |
+
|
271 |
+
assert len(original) == len(pairwise), 'data size not match'
|
272 |
+
test_data = []
|
273 |
+
for idx in tqdm(range(len(original))):
|
274 |
+
data = original[idx]
|
275 |
+
data['pairwise'] = pairwise[idx]
|
276 |
+
test_data.append(data)
|
277 |
+
|
278 |
+
TEST_DATA.extend(test_data)
|
279 |
+
print('Done!')
|
280 |
+
|
281 |
+
def get_test_true_begin(seq_len = 150, flattened = True):
|
282 |
+
batch_output = []
|
283 |
+
begin_dict = get_begin_dict()
|
284 |
+
if flattened:
|
285 |
+
for doc in TEST_DATA:
|
286 |
+
for sent in doc['sent'][:seq_len]:
|
287 |
+
batch_output.append(begin_dict[sent['begin']])
|
288 |
+
for i in range(max(seq_len-len(doc['sent']), 0)):
|
289 |
+
batch_output.append(begin_dict[PAD])
|
290 |
+
else:
|
291 |
+
for doc in TEST_DATA:
|
292 |
+
doc_output = []
|
293 |
+
for sent in doc['sent'][:seq_len]:
|
294 |
+
doc_output.append(begin_dict[sent['begin']])
|
295 |
+
for i in range(max(seq_len-len(doc['sent']), 0)):
|
296 |
+
doc_output.append(begin_dict[PAD])
|
297 |
+
batch_output.append(doc_output)
|
298 |
+
return batch_output
|
299 |
+
|
300 |
+
def get_test_true_label(model='BERT', seq_len = 150, flattened = True, corpus = 'en_city'):
|
301 |
+
batch_output = []
|
302 |
+
label_dict = get_label_dict(model, corpus)
|
303 |
+
if flattened:
|
304 |
+
for doc in TEST_DATA:
|
305 |
+
for sent in doc['sent'][:seq_len]:
|
306 |
+
batch_output.append(label_dict[sent['label']])
|
307 |
+
for i in range(max(seq_len-len(doc['sent']), 0)):
|
308 |
+
batch_output.append(label_dict[PAD])
|
309 |
+
else:
|
310 |
+
for doc in TEST_DATA:
|
311 |
+
doc_output = []
|
312 |
+
for sent in doc['sent'][:seq_len]:
|
313 |
+
doc_output.append(label_dict[sent['label']])
|
314 |
+
for i in range(max(seq_len-len(doc['sent']), 0)):
|
315 |
+
doc_output.append(label_dict[PAD])
|
316 |
+
batch_output.append(doc_output)
|
317 |
+
return batch_output
|
318 |
+
|
319 |
+
def gen_batch_input(data, model = 'BERT', seq_len=72, embed_dim=768, mask_b_rate = 1, mask_i_rate = 0.5, corpus = 'en_city'):
|
320 |
+
"""
|
321 |
+
:param mask_b_rate: probability of begin segment remains
|
322 |
+
:param mask_i_rate: probability of inner segment remains
|
323 |
+
"""
|
324 |
+
begin_dict = get_begin_dict()
|
325 |
+
label_dict = get_label_dict(model, corpus)
|
326 |
+
batch_input_cls = []
|
327 |
+
batch_input_eval_mask = []
|
328 |
+
batch_input_transformer_mask = []
|
329 |
+
batch_segment_output = []
|
330 |
+
batch_label_output = []
|
331 |
+
for doc in data:
|
332 |
+
doc_chunk_len = len(doc['sent'])
|
333 |
+
input_cls = [[0.0001] * embed_dim] + [eval(sent['cls']) for sent in doc['pairwise']] + [[0.] * embed_dim] * max(seq_len - doc_chunk_len, 0)
|
334 |
+
input_cls = input_cls[:seq_len]
|
335 |
+
input_eval_mask = []
|
336 |
+
input_transformer_mask = []
|
337 |
+
for sent in doc['sent']:
|
338 |
+
r = np.random.random()
|
339 |
+
if (sent['begin'] == 0 and r > mask_i_rate) or (sent['begin'] == 1 and r > mask_b_rate):
|
340 |
+
# replace output to 0
|
341 |
+
input_eval_mask.append(1.)
|
342 |
+
else:
|
343 |
+
input_eval_mask.append(0.)
|
344 |
+
input_transformer_mask.append(0.)
|
345 |
+
input_eval_mask = input_eval_mask + [1.] * max(seq_len - doc_chunk_len, 0)
|
346 |
+
input_eval_mask = input_eval_mask[:seq_len]
|
347 |
+
input_transformer_mask = input_transformer_mask + [1.] * max(seq_len - doc_chunk_len, 0)
|
348 |
+
input_transformer_mask = input_transformer_mask[:seq_len]
|
349 |
+
segment_output = [ [begin_dict[sent['begin']]] for sent in doc['sent'] ]
|
350 |
+
segment_output = segment_output + [[begin_dict[PAD]]] * max(seq_len - doc_chunk_len, 0)
|
351 |
+
segment_output = segment_output[:seq_len]
|
352 |
+
label_output = [ [label_dict[sent['label']]] for sent in doc['sent'] ]
|
353 |
+
label_output = label_output + [[label_dict[PAD]]] * max(seq_len - doc_chunk_len, 0)
|
354 |
+
label_output = label_output[:seq_len]
|
355 |
+
batch_input_cls.append(input_cls)
|
356 |
+
batch_input_eval_mask.append(input_eval_mask)
|
357 |
+
batch_input_transformer_mask.append(input_transformer_mask)
|
358 |
+
batch_segment_output.append(segment_output)
|
359 |
+
batch_label_output.append(label_output)
|
360 |
+
|
361 |
+
return [np.asarray(batch_input_cls),np.asarray(batch_input_transformer_mask)[:,np.newaxis,np.newaxis,:],np.not_equal(np.expand_dims(batch_input_eval_mask,axis=-1),1).astype(float),np.not_equal(np.expand_dims(batch_input_transformer_mask,axis=-1),1).astype(float)], [np.asarray(batch_segment_output),np.asarray(batch_label_output)]
|
362 |
+
|
363 |
+
def train_generator(batch_size, model = 'BERT', seq_len=72, embed_dim=768, mask_b_rate = 1, mask_i_rate = 0.5, corpus = 'en_city'):
|
364 |
+
_train_data = TRAIN_DATA
|
365 |
+
while True:
|
366 |
+
_train_data = shuffle(_train_data)
|
367 |
+
for i in range(0,len(_train_data),batch_size):
|
368 |
+
yield gen_batch_input(_train_data[i:i+batch_size], model=model, seq_len=seq_len,embed_dim=embed_dim, mask_b_rate = mask_b_rate, mask_i_rate = mask_i_rate, corpus = corpus)
|
369 |
+
|
370 |
+
def dev_generator(batch_size, model = 'BERT', seq_len=72, embed_dim=768, mask_b_rate = 1, mask_i_rate = 0.5, corpus = 'en_city'):
|
371 |
+
while True:
|
372 |
+
for i in range(0,len(DEV_DATA),batch_size):
|
373 |
+
yield gen_batch_input(DEV_DATA[i:i+batch_size], model=model,seq_len=seq_len,embed_dim=embed_dim, mask_b_rate = mask_b_rate, mask_i_rate = mask_i_rate, corpus = corpus)
|
374 |
+
|
375 |
+
def test_generator(batch_size, model = 'BERT', seq_len=72, embed_dim=768, corpus = 'en_city'):
|
376 |
+
while True:
|
377 |
+
for i in range(0,len(TEST_DATA),batch_size):
|
378 |
+
#taking every sentence into account
|
379 |
+
yield gen_batch_input(TEST_DATA[i:i+batch_size], model=model,seq_len=seq_len,embed_dim=embed_dim, mask_b_rate = 1, mask_i_rate = 1, corpus = corpus)
|
380 |
+
|
381 |
+
|
382 |
+
|
383 |
+
|
384 |
+
if __name__ == "__main__":
|
385 |
+
|
386 |
+
parser = argparse.ArgumentParser()
|
387 |
+
parser.add_argument('--model', help="BERT/BLUEBERT", default='en_city')
|
388 |
+
parser.add_argument('--corpus', help="corpus:en_city/en_disease/de_city/de_disease", default='en_city')
|
389 |
+
parser.add_argument('--seq_len', help="maximum number of document chunks", default='150')
|
390 |
+
parser.add_argument('--embed_dim', help="input chunk cls dimension", default='768')
|
391 |
+
parser.add_argument('--attn_head', help="number of attention heads", default='12')
|
392 |
+
parser.add_argument('--encoder_layers', help="number of encoder layers", default='10')
|
393 |
+
parser.add_argument('--encoder_dff', help="dimension of feed forward pointwise network", default='768')
|
394 |
+
parser.add_argument('--epoch', help="number of epochs in training", default='100')
|
395 |
+
parser.add_argument('--batch_size', help="batch size", default='32')
|
396 |
+
parser.add_argument('--mask_b_rate', help="probability of begin segment remains", default='1')
|
397 |
+
parser.add_argument('--mask_i_rate', help="probability of inner segment remains", default='0.5')
|
398 |
+
parser.add_argument('--train_step', help="number of training steps for each epoch", default='100')
|
399 |
+
parser.add_argument('--val_step', help="number of validation steps for each epoch", default='100')
|
400 |
+
parser.add_argument('--lr', help="learning rate", default='0.0001')
|
401 |
+
parser.add_argument('--patience', help="learning rate", default='10')
|
402 |
+
parser.add_argument('--output_model', help="output model name", default='model_test')
|
403 |
+
parser.add_argument('--output_result', help="output model name prefix", default='result_test')
|
404 |
+
|
405 |
+
args = parser.parse_args()
|
406 |
+
|
407 |
+
assert args.corpus in ['en_city','en_disease','de_city','de_disease'], "Invalid corpus"
|
408 |
+
assert args.seq_len.isdigit(),'seq_len must be integer'
|
409 |
+
assert args.embed_dim.isdigit(),'embed_dim must be integer'
|
410 |
+
assert args.attn_head.isdigit(),'attn_head must be integer'
|
411 |
+
assert args.epoch.isdigit(),'epoch must be integer'
|
412 |
+
assert args.batch_size.isdigit(),'batch_size must be integer'
|
413 |
+
assert args.train_step.isdigit(),'train_step must be integer'
|
414 |
+
assert args.val_step.isdigit(),'val_step must be integer'
|
415 |
+
assert args.encoder_layers.isdigit(),'encoder_layers must be integer'
|
416 |
+
assert args.encoder_dff.isdigit(),'encoder_dff must be integer'
|
417 |
+
assert args.patience.isdigit(),'patience must be integer'
|
418 |
+
try:
|
419 |
+
float(args.lr)
|
420 |
+
float(args.mask_b_rate)
|
421 |
+
float(args.mask_i_rate)
|
422 |
+
except ValueError:
|
423 |
+
raise "lr/mask_b_rate/mask_i_rate must be float"
|
424 |
+
|
425 |
+
print(args)
|
426 |
+
|
427 |
+
load_train_data(model = args.model, corpus=args.corpus)
|
428 |
+
load_dev_data(model = args.model, corpus=args.corpus)
|
429 |
+
optimizer = tf.keras.optimizers.Adam(learning_rate=float(args.lr))
|
430 |
+
|
431 |
+
model = Joint_Tobert_TextSeg(seq_len=int(args.seq_len), embed_dim=int(args.embed_dim), begin_output_dim=len(get_begin_dict()), label_output_dim=len(get_label_dict(model = args.model, corpus=args.corpus)), attn_head=int(args.attn_head), encoder_layers = int(args.encoder_layers),encoder_dff = int(args.encoder_dff))
|
432 |
+
|
433 |
+
loss = tf.keras.losses.SparseCategoricalCrossentropy()
|
434 |
+
print('Compiling model')
|
435 |
+
model.compile(loss=loss, optimizer=optimizer,metrics = tf.keras.metrics.SparseCategoricalAccuracy())
|
436 |
+
print('Training model')
|
437 |
+
model.fit(train_generator(batch_size = int(args.batch_size), model=args.model, seq_len=int(args.seq_len), embed_dim=int(args.embed_dim), mask_b_rate = float(args.mask_b_rate), mask_i_rate = float(args.mask_i_rate), corpus = args.corpus),
|
438 |
+
steps_per_epoch=int(args.train_step),
|
439 |
+
epochs=int(args.epoch),
|
440 |
+
validation_data=dev_generator(batch_size = int(args.batch_size), model=args.model, seq_len=int(args.seq_len), embed_dim=int(args.embed_dim), mask_b_rate = float(args.mask_b_rate), mask_i_rate = float(args.mask_i_rate), corpus = args.corpus),
|
441 |
+
validation_steps=int(args.val_step),
|
442 |
+
callbacks=[
|
443 |
+
tf.keras.callbacks.EarlyStopping(monitor='val_loss', patience=int(args.patience))
|
444 |
+
],)
|
445 |
+
# print('Saving model')
|
446 |
+
# model.save(args.output_model)
|
447 |
+
|
448 |
+
print('Evaluating model')
|
449 |
+
|
450 |
+
del train_generator
|
451 |
+
del dev_generator
|
452 |
+
del TRAIN_DATA
|
453 |
+
del DEV_DATA
|
454 |
+
load_test_data(model = args.model, corpus=args.corpus)
|
455 |
+
true_begin = get_test_true_begin(seq_len=int(args.seq_len))
|
456 |
+
true_label = get_test_true_label(model=args.model, seq_len=int(args.seq_len), corpus = args.corpus)
|
457 |
+
predictions = model.predict(test_generator(batch_size = int(args.batch_size), model=args.model, seq_len=int(args.seq_len), embed_dim=int(args.embed_dim), corpus = args.corpus),steps=math.ceil(len(TEST_DATA)/int(args.batch_size)))
|
458 |
+
begin_predictions_prob = predictions[0]
|
459 |
+
begin_predictions = np.argmax(begin_predictions_prob,axis=-1)
|
460 |
+
label_predictions = predictions[1]
|
461 |
+
#print(begin_predictions.shape)
|
462 |
+
label_predictions
|
463 |
+
#pred_prob_flattened = []
|
464 |
+
|
465 |
+
# for j in predictions.tolist():
|
466 |
+
# for i in j:
|
467 |
+
# pred_prob_flattened.append(i)
|
468 |
+
begin_pred_flattened = []
|
469 |
+
for i in begin_predictions:
|
470 |
+
begin_pred_flattened.extend(i)
|
471 |
+
|
472 |
+
label_pred_flattened = []
|
473 |
+
for i in label_predictions:
|
474 |
+
label_pred_flattened.extend(np.argmax(i,axis=-1))
|
475 |
+
# pred = np.argmax(np.asarray(predictions),axis= -1)
|
476 |
+
|
477 |
+
true_pred_begin_pairs = list(zip(get_test_true_begin(seq_len=int(args.seq_len),flattened=False),begin_predictions))
|
478 |
+
|
479 |
+
pk_scores = []
|
480 |
+
for pair in true_pred_begin_pairs:
|
481 |
+
# document
|
482 |
+
true_seg = []
|
483 |
+
pred_seg = []
|
484 |
+
true_count = 0
|
485 |
+
pred_count = 0
|
486 |
+
for j in range(len(pair[0])):
|
487 |
+
if pair[0][j] == 0:
|
488 |
+
break
|
489 |
+
if pair[0][j] == 2:
|
490 |
+
if true_count != 0:
|
491 |
+
true_seg.append(true_count)
|
492 |
+
true_count = 1
|
493 |
+
else:
|
494 |
+
true_count += 1
|
495 |
+
if pair[1][j] == 2:
|
496 |
+
if pred_count != 0:
|
497 |
+
pred_seg.append(pred_count)
|
498 |
+
pred_count = 1
|
499 |
+
else:
|
500 |
+
pred_count += 1
|
501 |
+
true_seg.append(true_count)
|
502 |
+
pred_seg.append(pred_count)
|
503 |
+
pk_scores.append(segeval.pk(pred_seg,true_seg,window_size=10))
|
504 |
+
|
505 |
+
# print('Outputting result')
|
506 |
+
# with open('results/' + 'tobert_masked_crf_' + args.output_result + '_prob', 'w+') as f:
|
507 |
+
# for item in list(zip(true_targets,pred_prob_flattened)):
|
508 |
+
# f.write(str(item[0]) + ',' + str(item[1]) + '\n')
|
509 |
+
# with open('results/'+ 'tobert_masked_joint_' + args.output_result + '_begin_record', 'w+') as f:
|
510 |
+
# for item in list(zip(true_begin,begin_pred_flattened)):
|
511 |
+
# f.write(str(item[0]) + ',' + str(item[1]) + '\n')
|
512 |
+
|
513 |
+
# with open('results/'+ 'tobert_masked_joint_' + args.output_result + '_label_record', 'w+') as f:
|
514 |
+
# for item in list(zip(true_label,label_pred_flattened)):
|
515 |
+
# f.write(str(item[0]) + ',' + str(item[1]) + '\n')
|
516 |
+
|
517 |
+
print('outputing metrics')
|
518 |
+
print('pk: ' + str(sum(pk_scores)/len(pk_scores)))
|
519 |
+
with open('results/' + 'tobert_masked_joint_' + args.output_result + '_metrics.txt', 'w+') as f:
|
520 |
+
# eval_metrics = model.evaluate(test_generator(batch_size = int(args.batch_size), seq_len=int(args.seq_len), embed_dim=int(args.embed_dim)),steps=math.ceil(len(TEST_DATA)/int(args.batch_size)))
|
521 |
+
# eval_metrics = list(zip(model.metrics_names,eval_metrics))
|
522 |
+
f.write(str(args) + '\n')
|
523 |
+
f.write('pk: ' + str(sum(pk_scores)/len(pk_scores)) + '\n')
|
524 |
+
# for i in eval_metrics:
|
525 |
+
# f.write(str(i[0]) + ': ' + str(i[1]) + '\n')
|
526 |
+
|
data/transformer_squared_single_pairwise.py
ADDED
@@ -0,0 +1,556 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import tensorflow as tf
|
2 |
+
import numpy as np
|
3 |
+
import tensorflow.keras.backend as K
|
4 |
+
from tensorflow.keras import activations
|
5 |
+
import random
|
6 |
+
from itertools import product, combinations
|
7 |
+
import math
|
8 |
+
import json
|
9 |
+
import argparse
|
10 |
+
from sklearn.metrics import f1_score
|
11 |
+
from sklearn.utils import shuffle
|
12 |
+
import glob
|
13 |
+
import os
|
14 |
+
import segeval
|
15 |
+
from tqdm import tqdm
|
16 |
+
|
17 |
+
TRAIN_DATA = []
|
18 |
+
DEV_DATA = []
|
19 |
+
TEST_DATA = []
|
20 |
+
PAD = '[pad]'
|
21 |
+
|
22 |
+
#------------------------model-------------------
|
23 |
+
def get_angles(pos, i, d_model):
|
24 |
+
angle_rates = 1 / np.power(10000, (2 * (i//2)) / np.float32(d_model))
|
25 |
+
return pos * angle_rates
|
26 |
+
|
27 |
+
def positional_encoding(position, d_model):
|
28 |
+
angle_rads = get_angles(np.arange(position)[:, np.newaxis],
|
29 |
+
np.arange(d_model)[np.newaxis, :],
|
30 |
+
d_model)
|
31 |
+
# apply sin to even indices in the array; 2i
|
32 |
+
angle_rads[:, 0::2] = np.sin(angle_rads[:, 0::2])
|
33 |
+
|
34 |
+
# apply cos to odd indices in the array; 2i+1
|
35 |
+
angle_rads[:, 1::2] = np.cos(angle_rads[:, 1::2])
|
36 |
+
|
37 |
+
pos_encoding = angle_rads[np.newaxis, ...]
|
38 |
+
|
39 |
+
return tf.cast(pos_encoding, dtype=tf.float32)
|
40 |
+
|
41 |
+
def scaled_dot_product_attention(q, k, v, mask):
|
42 |
+
"""Calculate the attention weights.
|
43 |
+
q, k, v must have matching leading dimensions.
|
44 |
+
k, v must have matching penultimate dimension, i.e.: seq_len_k = seq_len_v.
|
45 |
+
The mask has different shapes depending on its type(padding or look ahead)
|
46 |
+
but it must be broadcastable for addition.
|
47 |
+
|
48 |
+
Args:
|
49 |
+
q: query shape == (..., seq_len_q, depth)
|
50 |
+
k: key shape == (..., seq_len_k, depth)
|
51 |
+
v: value shape == (..., seq_len_v, depth_v)
|
52 |
+
mask: Float tensor with shape broadcastable
|
53 |
+
to (..., seq_len_q, seq_len_k). Defaults to None.
|
54 |
+
|
55 |
+
Returns:
|
56 |
+
output, attention_weights
|
57 |
+
"""
|
58 |
+
|
59 |
+
matmul_qk = tf.matmul(q, k, transpose_b=True) # (..., seq_len_q, seq_len_k)
|
60 |
+
|
61 |
+
# scale matmul_qk
|
62 |
+
dk = tf.cast(tf.shape(k)[-1], tf.float32)
|
63 |
+
scaled_attention_logits = matmul_qk / tf.math.sqrt(dk)
|
64 |
+
|
65 |
+
# add the mask to the scaled tensor.
|
66 |
+
if mask is not None:
|
67 |
+
scaled_attention_logits += (mask * -1e9)
|
68 |
+
|
69 |
+
# softmax is normalized on the last axis (seq_len_k) so that the scores
|
70 |
+
# add up to 1.
|
71 |
+
attention_weights = tf.nn.softmax(scaled_attention_logits, axis=-1) # (..., seq_len_q, seq_len_k)
|
72 |
+
|
73 |
+
output = tf.matmul(attention_weights, v) # (..., seq_len_q, depth_v)
|
74 |
+
|
75 |
+
return output, attention_weights
|
76 |
+
|
77 |
+
class MultiHeadAttention(tf.keras.layers.Layer):
|
78 |
+
def __init__(self, d_model, num_heads):
|
79 |
+
super(MultiHeadAttention, self).__init__()
|
80 |
+
self.num_heads = num_heads
|
81 |
+
self.d_model = d_model
|
82 |
+
|
83 |
+
assert d_model % self.num_heads == 0
|
84 |
+
|
85 |
+
self.depth = d_model // self.num_heads
|
86 |
+
|
87 |
+
self.wq = tf.keras.layers.Dense(d_model)
|
88 |
+
self.wk = tf.keras.layers.Dense(d_model)
|
89 |
+
self.wv = tf.keras.layers.Dense(d_model)
|
90 |
+
|
91 |
+
self.dense = tf.keras.layers.Dense(d_model)
|
92 |
+
|
93 |
+
def split_heads(self, x, batch_size):
|
94 |
+
"""Split the last dimension into (num_heads, depth).
|
95 |
+
Transpose the result such that the shape is (batch_size, num_heads, seq_len, depth)
|
96 |
+
"""
|
97 |
+
x = tf.reshape(x, (batch_size, -1, self.num_heads, self.depth))
|
98 |
+
return tf.transpose(x, perm=[0, 2, 1, 3])
|
99 |
+
|
100 |
+
def call(self, v, k, q, mask):
|
101 |
+
batch_size = tf.shape(q)[0]
|
102 |
+
|
103 |
+
q = self.wq(q) # (batch_size, seq_len, d_model)
|
104 |
+
k = self.wk(k) # (batch_size, seq_len, d_model)
|
105 |
+
v = self.wv(v) # (batch_size, seq_len, d_model)
|
106 |
+
|
107 |
+
q = self.split_heads(q, batch_size) # (batch_size, num_heads, seq_len_q, depth)
|
108 |
+
k = self.split_heads(k, batch_size) # (batch_size, num_heads, seq_len_k, depth)
|
109 |
+
v = self.split_heads(v, batch_size) # (batch_size, num_heads, seq_len_v, depth)
|
110 |
+
|
111 |
+
# scaled_attention.shape == (batch_size, num_heads, seq_len_q, depth)
|
112 |
+
# attention_weights.shape == (batch_size, num_heads, seq_len_q, seq_len_k)
|
113 |
+
scaled_attention, attention_weights = scaled_dot_product_attention(
|
114 |
+
q, k, v, mask)
|
115 |
+
|
116 |
+
scaled_attention = tf.transpose(scaled_attention, perm=[0, 2, 1, 3]) # (batch_size, seq_len_q, num_heads, depth)
|
117 |
+
|
118 |
+
concat_attention = tf.reshape(scaled_attention,
|
119 |
+
(batch_size, -1, self.d_model)) # (batch_size, seq_len_q, d_model)
|
120 |
+
|
121 |
+
output = self.dense(concat_attention) # (batch_size, seq_len_q, d_model)
|
122 |
+
|
123 |
+
return output, attention_weights
|
124 |
+
|
125 |
+
def point_wise_feed_forward_network(d_model, dff):
|
126 |
+
return tf.keras.Sequential([
|
127 |
+
tf.keras.layers.Dense(dff, activation='relu'), # (batch_size, seq_len, dff)
|
128 |
+
tf.keras.layers.Dense(d_model) # (batch_size, seq_len, d_model)
|
129 |
+
])
|
130 |
+
|
131 |
+
class EncoderLayer(tf.keras.layers.Layer):
|
132 |
+
def __init__(self, d_model, num_heads, dff, rate=0.1):
|
133 |
+
super(EncoderLayer, self).__init__()
|
134 |
+
|
135 |
+
self.mha = MultiHeadAttention(d_model, num_heads)
|
136 |
+
self.ffn = point_wise_feed_forward_network(d_model, dff)
|
137 |
+
|
138 |
+
self.layernorm1 = tf.keras.layers.LayerNormalization(epsilon=1e-6)
|
139 |
+
self.layernorm2 = tf.keras.layers.LayerNormalization(epsilon=1e-6)
|
140 |
+
|
141 |
+
self.dropout1 = tf.keras.layers.Dropout(rate)
|
142 |
+
self.dropout2 = tf.keras.layers.Dropout(rate)
|
143 |
+
|
144 |
+
def call(self, x, training, mask):
|
145 |
+
|
146 |
+
attn_output, _ = self.mha(x, x, x, mask) # (batch_size, input_seq_len, d_model)
|
147 |
+
attn_output = self.dropout1(attn_output, training=training)
|
148 |
+
out1 = self.layernorm1(x + attn_output) # (batch_size, input_seq_len, d_model)
|
149 |
+
|
150 |
+
ffn_output = self.ffn(out1) # (batch_size, input_seq_len, d_model)
|
151 |
+
ffn_output = self.dropout2(ffn_output, training=training)
|
152 |
+
out2 = self.layernorm2(out1 + ffn_output) # (batch_size, input_seq_len, d_model)
|
153 |
+
|
154 |
+
return out2
|
155 |
+
|
156 |
+
class Encoder(tf.keras.layers.Layer):
|
157 |
+
def __init__(self, num_layers, d_model, num_heads, dff,
|
158 |
+
maximum_position_encoding, rate=0.1):
|
159 |
+
super(Encoder, self).__init__()
|
160 |
+
|
161 |
+
self.d_model = d_model
|
162 |
+
self.num_layers = num_layers
|
163 |
+
|
164 |
+
self.embedding = tf.keras.layers.InputLayer(input_shape=(maximum_position_encoding,self.d_model))
|
165 |
+
self.pos_encoding = positional_encoding(maximum_position_encoding,
|
166 |
+
self.d_model)
|
167 |
+
|
168 |
+
|
169 |
+
self.enc_layers = [EncoderLayer(d_model, num_heads, dff, rate)
|
170 |
+
for _ in range(num_layers)]
|
171 |
+
|
172 |
+
self.dropout = tf.keras.layers.Dropout(rate)
|
173 |
+
|
174 |
+
def call(self, x, training, mask):
|
175 |
+
|
176 |
+
seq_len = tf.shape(x)[1]
|
177 |
+
|
178 |
+
# adding embedding and position encoding.
|
179 |
+
x = self.embedding(x) # (batch_size, input_seq_len, d_model)
|
180 |
+
x *= tf.math.sqrt(tf.cast(self.d_model, tf.float32))
|
181 |
+
x += self.pos_encoding[:, :seq_len, :]
|
182 |
+
|
183 |
+
x = self.dropout(x, training=training)
|
184 |
+
|
185 |
+
for i in range(self.num_layers):
|
186 |
+
x = self.enc_layers[i](x, training, mask)
|
187 |
+
|
188 |
+
return x # (batch_size, input_seq_len, d_model)
|
189 |
+
|
190 |
+
|
191 |
+
class Joint_Tobert_TextSeg(tf.keras.Model):
|
192 |
+
def __init__(self, seq_len=150, embed_dim=768, begin_output_dim=4, label_output_dim=4, drop_rate=0.1, attn_head=8, encoder_layers=2, encoder_dff=30):
|
193 |
+
super(Joint_Tobert_TextSeg, self).__init__()
|
194 |
+
self.encoder_block = Encoder(num_layers=encoder_layers, d_model=embed_dim*2, num_heads=attn_head,
|
195 |
+
dff=encoder_dff,
|
196 |
+
maximum_position_encoding=seq_len)
|
197 |
+
self.masking1 = tf.keras.layers.Masking()
|
198 |
+
self.masking2 = tf.keras.layers.Masking()
|
199 |
+
self.masking3 = tf.keras.layers.Masking()
|
200 |
+
self.dropout1 = tf.keras.layers.Dropout(drop_rate)
|
201 |
+
self.dense1 = tf.keras.layers.Dense(begin_output_dim, activation="softmax", name="begin_output")
|
202 |
+
self.dense2 = tf.keras.layers.Dense(label_output_dim, activation="softmax", name="label_output")
|
203 |
+
self.dense3 = tf.keras.layers.Dense(embed_dim, activation="tanh")
|
204 |
+
|
205 |
+
def call(self, inputs, training=False):
|
206 |
+
x = self.encoder_block(inputs[0], training=training, mask=inputs[1])
|
207 |
+
x1 = self.masking1(tf.math.multiply(x, inputs[2]))
|
208 |
+
x1 = self.dropout1(x1,training=training)
|
209 |
+
x2 = self.masking2(tf.math.multiply(x, inputs[3]))
|
210 |
+
x2 = self.dropout1(x2,training=training)
|
211 |
+
# x3 = self.dense3(inputs[0])
|
212 |
+
# x3_forward = x1[:,:-1,:]
|
213 |
+
# x3_backward = x1[:,1:,:]
|
214 |
+
# sim_mat = tf.matmul(x3_forward, tf.transpose(x3_backward,perm=(0,2,1)))
|
215 |
+
# sent_sim = tf.linalg.diag_part(sim_mat)
|
216 |
+
# sent_sim_score = tf.keras.activations.sigmoid(sent_sim)
|
217 |
+
# one_vector = tf.ones([tf.keras.backend.shape(sent_sim_score)[0], 1], dtype=tf.dtypes.float32)
|
218 |
+
# sent_sim_score = tf.concat([one_vector,sent_sim_score],-1)
|
219 |
+
# sent_sim_score = tf.expand_dims(sent_sim_score,-1)
|
220 |
+
# sent_sim_score = self.masking3(tf.math.multiply(sent_sim_score, inputs[3]))
|
221 |
+
return [self.dense1(x1),self.dense2(x2)]
|
222 |
+
|
223 |
+
|
224 |
+
#--------------------data--------------------------
|
225 |
+
|
226 |
+
def get_begin_dict():
|
227 |
+
begin_dict = {
|
228 |
+
PAD: 0,
|
229 |
+
0: 1,
|
230 |
+
1: 2
|
231 |
+
}
|
232 |
+
return begin_dict
|
233 |
+
|
234 |
+
def get_label_dict(model = 'BERT', corpus='en_city'):
|
235 |
+
label_dict = {}
|
236 |
+
with open(os.path.join('data', 'processed', model, 'wikisection_' + corpus + '_label_dict'), 'r+') as f:
|
237 |
+
for l in f.readlines():
|
238 |
+
key, value = l.strip().split()
|
239 |
+
label_dict[key] = int(value)
|
240 |
+
return label_dict
|
241 |
+
|
242 |
+
def load_train_data(model = 'BERT', corpus='en_city'):
|
243 |
+
print('loading train data',end='...')
|
244 |
+
with open(os.path.join('data', 'processed', model, 'wikisection_' + corpus + '_train.json'), 'r+') as f:
|
245 |
+
original = json.load(f)
|
246 |
+
with open(os.path.join('data', 'processed', model, 'wikisection_' + corpus + '_pairwise_train.json'), 'r+') as f:
|
247 |
+
pairwise = json.load(f)
|
248 |
+
|
249 |
+
assert len(original) == len(pairwise), 'data size not match'
|
250 |
+
train_data = []
|
251 |
+
for idx in tqdm(range(len(original))):
|
252 |
+
data = original[idx]
|
253 |
+
data['pairwise'] = pairwise[idx]
|
254 |
+
train_data.append(data)
|
255 |
+
TRAIN_DATA.extend(train_data)
|
256 |
+
|
257 |
+
print('Done!')
|
258 |
+
|
259 |
+
|
260 |
+
def load_dev_data(model = 'BERT', corpus='en_city'):
|
261 |
+
print('loading dev data',end='...')
|
262 |
+
with open(os.path.join('data', 'processed', model, 'wikisection_' + corpus + '_validation.json'), 'r+') as f:
|
263 |
+
original = json.load(f)
|
264 |
+
with open(os.path.join('data', 'processed', model, 'wikisection_' + corpus + '_pairwise_validation.json'), 'r+') as f:
|
265 |
+
pairwise = json.load(f)
|
266 |
+
|
267 |
+
assert len(original) == len(pairwise), 'data size not match'
|
268 |
+
dev_data = []
|
269 |
+
for idx in tqdm(range(len(original))):
|
270 |
+
data = original[idx]
|
271 |
+
data['pairwise'] = pairwise[idx]
|
272 |
+
dev_data.append(data)
|
273 |
+
|
274 |
+
DEV_DATA.extend(dev_data)
|
275 |
+
print('Done!')
|
276 |
+
|
277 |
+
def load_test_data(model = 'BERT', corpus='en_city'):
|
278 |
+
print('loading test data',end='...')
|
279 |
+
with open(os.path.join('data', 'processed', model, 'wikisection_' + corpus + '_test.json'), 'r+') as f:
|
280 |
+
original = json.load(f)
|
281 |
+
with open(os.path.join('data', 'processed', model, 'wikisection_' + corpus + '_pairwise_test.json'), 'r+') as f:
|
282 |
+
pairwise = json.load(f)
|
283 |
+
|
284 |
+
assert len(original) == len(pairwise), 'data size not match'
|
285 |
+
test_data = []
|
286 |
+
for idx in tqdm(range(len(original))):
|
287 |
+
data = original[idx]
|
288 |
+
data['pairwise'] = pairwise[idx]
|
289 |
+
test_data.append(data)
|
290 |
+
|
291 |
+
TEST_DATA.extend(test_data)
|
292 |
+
print('Done!')
|
293 |
+
|
294 |
+
def get_test_true_begin(seq_len = 150, flattened = True):
|
295 |
+
batch_output = []
|
296 |
+
begin_dict = get_begin_dict()
|
297 |
+
if flattened:
|
298 |
+
for doc in TEST_DATA:
|
299 |
+
for sent in doc['sent'][:seq_len]:
|
300 |
+
batch_output.append(begin_dict[sent['begin']])
|
301 |
+
for i in range(max(seq_len-len(doc['sent']), 0)):
|
302 |
+
batch_output.append(begin_dict[PAD])
|
303 |
+
else:
|
304 |
+
for doc in TEST_DATA:
|
305 |
+
doc_output = []
|
306 |
+
for sent in doc['sent'][:seq_len]:
|
307 |
+
doc_output.append(begin_dict[sent['begin']])
|
308 |
+
for i in range(max(seq_len-len(doc['sent']), 0)):
|
309 |
+
doc_output.append(begin_dict[PAD])
|
310 |
+
batch_output.append(doc_output)
|
311 |
+
return batch_output
|
312 |
+
|
313 |
+
def get_test_true_label(model='BERT', seq_len = 150, flattened = True, corpus = 'en_city'):
|
314 |
+
batch_output = []
|
315 |
+
label_dict = get_label_dict(model, corpus)
|
316 |
+
if flattened:
|
317 |
+
for doc in TEST_DATA:
|
318 |
+
for sent in doc['sent'][:seq_len]:
|
319 |
+
batch_output.append(label_dict[sent['label']])
|
320 |
+
for i in range(max(seq_len-len(doc['sent']), 0)):
|
321 |
+
batch_output.append(label_dict[PAD])
|
322 |
+
else:
|
323 |
+
for doc in TEST_DATA:
|
324 |
+
doc_output = []
|
325 |
+
for sent in doc['sent'][:seq_len]:
|
326 |
+
doc_output.append(label_dict[sent['label']])
|
327 |
+
for i in range(max(seq_len-len(doc['sent']), 0)):
|
328 |
+
doc_output.append(label_dict[PAD])
|
329 |
+
batch_output.append(doc_output)
|
330 |
+
return batch_output
|
331 |
+
|
332 |
+
def gen_batch_input(data, model = 'BERT', seq_len=72, embed_dim=768, mask_b_rate = 1, mask_i_rate = 0.5, corpus = 'en_city', pairwise_tok = 'cls'):
|
333 |
+
"""
|
334 |
+
:param mask_b_rate: probability of begin segment remains
|
335 |
+
:param mask_i_rate: probability of inner segment remains
|
336 |
+
"""
|
337 |
+
begin_dict = get_begin_dict()
|
338 |
+
label_dict = get_label_dict(model, corpus)
|
339 |
+
batch_input_combined = []
|
340 |
+
batch_input_eval_mask = []
|
341 |
+
batch_input_transformer_mask = []
|
342 |
+
batch_segment_output = []
|
343 |
+
batch_label_output = []
|
344 |
+
for doc in data:
|
345 |
+
doc_chunk_len = len(doc['sent'])
|
346 |
+
input_cls = [eval(sent['cls']) for sent in doc['sent']] + [[0.] * embed_dim] * max(seq_len - doc_chunk_len, 0)
|
347 |
+
input_cls = input_cls[:seq_len]
|
348 |
+
if pairwise_tok == 'cls':
|
349 |
+
input_pairwise_emb = [[0.0001] * embed_dim] + [eval(sent['cls']) for sent in doc['pairwise']] + [[0.] * embed_dim] * max(seq_len - doc_chunk_len, 0)
|
350 |
+
else:
|
351 |
+
input_pairwise_emb = [[0.0001] * embed_dim] + [eval(sent['sep']) for sent in doc['pairwise']] + [[0.] * embed_dim] * max(seq_len - doc_chunk_len, 0)
|
352 |
+
input_pairwise_emb = input_pairwise_emb[:seq_len]
|
353 |
+
input_combined = np.concatenate([np.asarray(input_cls),np.asarray(input_pairwise_emb)],axis = -1)
|
354 |
+
# print(input_combined.shape)
|
355 |
+
input_combined = input_combined.tolist()
|
356 |
+
input_eval_mask = []
|
357 |
+
input_transformer_mask = []
|
358 |
+
for sent in doc['sent']:
|
359 |
+
r = np.random.random()
|
360 |
+
if (sent['begin'] == 0 and r > mask_i_rate) or (sent['begin'] == 1 and r > mask_b_rate):
|
361 |
+
# replace output to 0
|
362 |
+
input_eval_mask.append(1.)
|
363 |
+
else:
|
364 |
+
input_eval_mask.append(0.)
|
365 |
+
input_transformer_mask.append(0.)
|
366 |
+
input_eval_mask = input_eval_mask + [1.] * max(seq_len - doc_chunk_len, 0)
|
367 |
+
input_eval_mask = input_eval_mask[:seq_len]
|
368 |
+
input_transformer_mask = input_transformer_mask + [1.] * max(seq_len - doc_chunk_len, 0)
|
369 |
+
input_transformer_mask = input_transformer_mask[:seq_len]
|
370 |
+
segment_output = [ [begin_dict[sent['begin']]] for sent in doc['sent'] ]
|
371 |
+
segment_output = segment_output + [[begin_dict[PAD]]] * max(seq_len - doc_chunk_len, 0)
|
372 |
+
segment_output = segment_output[:seq_len]
|
373 |
+
label_output = [ [label_dict[sent['label']]] for sent in doc['sent'] ]
|
374 |
+
label_output = label_output + [[label_dict[PAD]]] * max(seq_len - doc_chunk_len, 0)
|
375 |
+
label_output = label_output[:seq_len]
|
376 |
+
batch_input_combined.append(input_combined)
|
377 |
+
batch_input_eval_mask.append(input_eval_mask)
|
378 |
+
batch_input_transformer_mask.append(input_transformer_mask)
|
379 |
+
batch_segment_output.append(segment_output)
|
380 |
+
batch_label_output.append(label_output)
|
381 |
+
|
382 |
+
return [np.asarray(batch_input_combined),np.asarray(batch_input_transformer_mask)[:,np.newaxis,np.newaxis,:],np.not_equal(np.expand_dims(batch_input_eval_mask,axis=-1),1).astype(float),np.not_equal(np.expand_dims(batch_input_transformer_mask,axis=-1),1).astype(float)], [np.asarray(batch_segment_output),np.asarray(batch_label_output)]
|
383 |
+
|
384 |
+
def train_generator(batch_size, model = 'BERT', seq_len=72, embed_dim=768, mask_b_rate = 1, mask_i_rate = 0.5, corpus = 'en_city'):
|
385 |
+
_train_data = TRAIN_DATA
|
386 |
+
while True:
|
387 |
+
_train_data = shuffle(_train_data)
|
388 |
+
for i in range(0,len(_train_data),batch_size):
|
389 |
+
yield gen_batch_input(_train_data[i:i+batch_size], model=model, seq_len=seq_len,embed_dim=embed_dim, mask_b_rate = mask_b_rate, mask_i_rate = mask_i_rate, corpus = corpus)
|
390 |
+
|
391 |
+
def dev_generator(batch_size, model = 'BERT', seq_len=72, embed_dim=768, mask_b_rate = 1, mask_i_rate = 0.5, corpus = 'en_city'):
|
392 |
+
while True:
|
393 |
+
for i in range(0,len(DEV_DATA),batch_size):
|
394 |
+
yield gen_batch_input(DEV_DATA[i:i+batch_size], model=model,seq_len=seq_len,embed_dim=embed_dim, mask_b_rate = mask_b_rate, mask_i_rate = mask_i_rate, corpus = corpus)
|
395 |
+
|
396 |
+
def test_generator(batch_size, model = 'BERT', seq_len=72, embed_dim=768, corpus = 'en_city'):
|
397 |
+
while True:
|
398 |
+
for i in range(0,len(TEST_DATA),batch_size):
|
399 |
+
#taking every sentence into account
|
400 |
+
yield gen_batch_input(TEST_DATA[i:i+batch_size], model=model,seq_len=seq_len,embed_dim=embed_dim, mask_b_rate = 1, mask_i_rate = 1, corpus = corpus)
|
401 |
+
|
402 |
+
|
403 |
+
|
404 |
+
|
405 |
+
if __name__ == "__main__":
|
406 |
+
|
407 |
+
parser = argparse.ArgumentParser()
|
408 |
+
parser.add_argument('--model', help="BERT/BLUEBERT", default='BERT')
|
409 |
+
parser.add_argument('--corpus', help="corpus:en_city/en_disease/de_city/de_disease", default='en_city')
|
410 |
+
parser.add_argument('--seq_len', help="maximum number of document chunks", default='150')
|
411 |
+
parser.add_argument('--embed_dim', help="input chunk cls dimension", default='768')
|
412 |
+
parser.add_argument('--attn_head', help="number of attention heads", default='12')
|
413 |
+
parser.add_argument('--encoder_layers', help="number of encoder layers", default='10')
|
414 |
+
parser.add_argument('--encoder_dff', help="dimension of feed forward pointwise network", default='768')
|
415 |
+
parser.add_argument('--epoch', help="number of epochs in training", default='100')
|
416 |
+
parser.add_argument('--batch_size', help="batch size", default='32')
|
417 |
+
parser.add_argument('--mask_b_rate', help="probability of begin segment remains", default='1')
|
418 |
+
parser.add_argument('--mask_i_rate', help="probability of inner segment remains", default='0.5')
|
419 |
+
parser.add_argument('--train_step', help="number of training steps for each epoch", default='100')
|
420 |
+
parser.add_argument('--val_step', help="number of validation steps for each epoch", default='100')
|
421 |
+
parser.add_argument('--lr', help="learning rate", default='0.0001')
|
422 |
+
parser.add_argument('--patience', help="learning rate", default='10')
|
423 |
+
parser.add_argument('--output_model', help="output model name", default='model_test')
|
424 |
+
parser.add_argument('--output_result', help="output model name prefix", default='result_test')
|
425 |
+
|
426 |
+
args = parser.parse_args()
|
427 |
+
|
428 |
+
assert args.corpus in ['en_city','en_disease','de_city','de_disease'], "Invalid corpus"
|
429 |
+
assert args.seq_len.isdigit(),'seq_len must be integer'
|
430 |
+
assert args.embed_dim.isdigit(),'embed_dim must be integer'
|
431 |
+
assert args.attn_head.isdigit(),'attn_head must be integer'
|
432 |
+
assert args.epoch.isdigit(),'epoch must be integer'
|
433 |
+
assert args.batch_size.isdigit(),'batch_size must be integer'
|
434 |
+
assert args.train_step.isdigit(),'train_step must be integer'
|
435 |
+
assert args.val_step.isdigit(),'val_step must be integer'
|
436 |
+
assert args.encoder_layers.isdigit(),'encoder_layers must be integer'
|
437 |
+
assert args.encoder_dff.isdigit(),'encoder_dff must be integer'
|
438 |
+
assert args.patience.isdigit(),'patience must be integer'
|
439 |
+
try:
|
440 |
+
float(args.lr)
|
441 |
+
float(args.mask_b_rate)
|
442 |
+
float(args.mask_i_rate)
|
443 |
+
except ValueError:
|
444 |
+
raise "lr/mask_b_rate/mask_i_rate must be float"
|
445 |
+
|
446 |
+
print(args)
|
447 |
+
|
448 |
+
load_train_data(model = args.model, corpus=args.corpus)
|
449 |
+
load_dev_data(model = args.model, corpus=args.corpus)
|
450 |
+
optimizer = tf.keras.optimizers.Adam(learning_rate=float(args.lr))
|
451 |
+
|
452 |
+
model = Joint_Tobert_TextSeg(seq_len=int(args.seq_len), embed_dim=int(args.embed_dim), begin_output_dim=len(get_begin_dict()), label_output_dim=len(get_label_dict(model = args.model, corpus=args.corpus)), attn_head=int(args.attn_head), encoder_layers = int(args.encoder_layers),encoder_dff = int(args.encoder_dff))
|
453 |
+
|
454 |
+
loss = [tf.keras.losses.SparseCategoricalCrossentropy(),tf.keras.losses.SparseCategoricalCrossentropy()]
|
455 |
+
print('Compiling model')
|
456 |
+
model.compile(loss=tf.keras.losses.SparseCategoricalCrossentropy(), optimizer=optimizer)
|
457 |
+
|
458 |
+
print('Training model')
|
459 |
+
model.fit(train_generator(batch_size = int(args.batch_size), model=args.model, seq_len=int(args.seq_len), embed_dim=int(args.embed_dim), mask_b_rate = float(args.mask_b_rate), mask_i_rate = float(args.mask_i_rate), corpus = args.corpus),
|
460 |
+
steps_per_epoch=int(args.train_step),
|
461 |
+
epochs=int(args.epoch),
|
462 |
+
validation_data=dev_generator(batch_size = int(args.batch_size), model=args.model, seq_len=int(args.seq_len), embed_dim=int(args.embed_dim), mask_b_rate = float(args.mask_b_rate), mask_i_rate = float(args.mask_i_rate), corpus = args.corpus),
|
463 |
+
validation_steps=int(args.val_step),
|
464 |
+
callbacks=[
|
465 |
+
tf.keras.callbacks.EarlyStopping(monitor='val_loss', patience=int(args.patience))
|
466 |
+
],)
|
467 |
+
# print('Saving model')
|
468 |
+
# model.save(args.output_model)
|
469 |
+
|
470 |
+
print('Evaluating model')
|
471 |
+
|
472 |
+
del train_generator
|
473 |
+
del dev_generator
|
474 |
+
del TRAIN_DATA
|
475 |
+
del DEV_DATA
|
476 |
+
load_test_data(model = args.model, corpus=args.corpus)
|
477 |
+
true_begin = get_test_true_begin(seq_len=int(args.seq_len))
|
478 |
+
true_label = get_test_true_label(model=args.model, seq_len=int(args.seq_len), corpus = args.corpus)
|
479 |
+
predictions = model.predict(test_generator(batch_size = int(args.batch_size), model=args.model, seq_len=int(args.seq_len), embed_dim=int(args.embed_dim), corpus = args.corpus),steps=math.ceil(len(TEST_DATA)/int(args.batch_size)))
|
480 |
+
begin_predictions_prob = predictions[0]
|
481 |
+
begin_predictions = np.argmax(begin_predictions_prob,axis=-1)
|
482 |
+
label_predictions = predictions[1]
|
483 |
+
#print(begin_predictions.shape)
|
484 |
+
label_predictions
|
485 |
+
#pred_prob_flattened = []
|
486 |
+
|
487 |
+
# for j in predictions.tolist():
|
488 |
+
# for i in j:
|
489 |
+
# pred_prob_flattened.append(i)
|
490 |
+
begin_pred_flattened = []
|
491 |
+
for i in begin_predictions:
|
492 |
+
begin_pred_flattened.extend(i)
|
493 |
+
|
494 |
+
begin_pred_prob_flattened = []
|
495 |
+
for i in begin_predictions_prob:
|
496 |
+
begin_pred_prob_flattened.extend(i)
|
497 |
+
|
498 |
+
label_pred_flattened = []
|
499 |
+
for i in label_predictions:
|
500 |
+
label_pred_flattened.extend(np.argmax(i,axis=-1))
|
501 |
+
# pred = np.argmax(np.asarray(predictions),axis= -1)
|
502 |
+
|
503 |
+
true_pred_begin_pairs = list(zip(get_test_true_begin(seq_len=int(args.seq_len),flattened=False),begin_predictions))
|
504 |
+
|
505 |
+
pk_scores = []
|
506 |
+
for pair in true_pred_begin_pairs:
|
507 |
+
# document
|
508 |
+
true_seg = []
|
509 |
+
pred_seg = []
|
510 |
+
true_count = 0
|
511 |
+
pred_count = 0
|
512 |
+
for j in range(len(pair[0])):
|
513 |
+
if pair[0][j] == 0:
|
514 |
+
break
|
515 |
+
if pair[0][j] == 2:
|
516 |
+
if true_count != 0:
|
517 |
+
true_seg.append(true_count)
|
518 |
+
true_count = 1
|
519 |
+
else:
|
520 |
+
true_count += 1
|
521 |
+
if pair[1][j] == 2:
|
522 |
+
if pred_count != 0:
|
523 |
+
pred_seg.append(pred_count)
|
524 |
+
pred_count = 1
|
525 |
+
else:
|
526 |
+
pred_count += 1
|
527 |
+
true_seg.append(true_count)
|
528 |
+
pred_seg.append(pred_count)
|
529 |
+
pk_scores.append(segeval.pk(pred_seg,true_seg,window_size=10))
|
530 |
+
|
531 |
+
# print('Outputting result')
|
532 |
+
# with open('results/' + 'tobert_masked_crf_' + args.output_result + '_prob', 'w+') as f:
|
533 |
+
# for item in list(zip(true_targets,pred_prob_flattened)):
|
534 |
+
# f.write(str(item[0]) + ',' + str(item[1]) + '\n')
|
535 |
+
with open('results/'+ 'tobert_pairwise_' + args.output_result + '_begin_record', 'w+') as f:
|
536 |
+
for item in list(zip(true_begin,begin_pred_flattened)):
|
537 |
+
f.write(str(item[0]) + ',' + str(item[1]) + '\n')
|
538 |
+
|
539 |
+
with open('results/'+ 'tobert_pairwise_' + args.output_result + '_begin_prob', 'w+') as f:
|
540 |
+
for item in list(zip(true_begin,begin_pred_prob_flattened)):
|
541 |
+
f.write(str(item[0]) + ',' + str(item[1]) + '\n')
|
542 |
+
|
543 |
+
# with open('results/'+ 'tobert_masked_joint_' + args.output_result + '_label_record', 'w+') as f:
|
544 |
+
# for item in list(zip(true_label,label_pred_flattened)):
|
545 |
+
# f.write(str(item[0]) + ',' + str(item[1]) + '\n')
|
546 |
+
|
547 |
+
print('outputing metrics')
|
548 |
+
print('pk: ' + str(sum(pk_scores)/len(pk_scores)))
|
549 |
+
with open('results/' + 'tobert_masked_joint_' + args.output_result + '_metrics.txt', 'w+') as f:
|
550 |
+
# eval_metrics = model.evaluate(test_generator(batch_size = int(args.batch_size), seq_len=int(args.seq_len), embed_dim=int(args.embed_dim)),steps=math.ceil(len(TEST_DATA)/int(args.batch_size)))
|
551 |
+
# eval_metrics = list(zip(model.metrics_names,eval_metrics))
|
552 |
+
f.write(str(args) + '\n')
|
553 |
+
f.write('pk: ' + str(sum(pk_scores)/len(pk_scores)) + '\n')
|
554 |
+
# for i in eval_metrics:
|
555 |
+
# f.write(str(i[0]) + ': ' + str(i[1]) + '\n')
|
556 |
+
|