import conllu import datasets logger = datasets.logging.get_logger(__name__) _CITATION = "" BY_NAME = "by_name" BY_TYPE = "by_type" TAGSET_NKJP = "nkjp" TAGSET_UD = "ud" EXTENSION_CONLL = "conll" EXTENSION_CONLLU = "conllu" EXTENSION_CONLL_SPACE_AFTER = "conll_space_after" _EXTENSIONS = [EXTENSION_CONLL, EXTENSION_CONLLU, EXTENSION_CONLL_SPACE_AFTER] _DESCRIPTION = { BY_NAME: { TAGSET_NKJP: "NLPrePL divided by document name for NKJP tagset", TAGSET_UD: "NLPrePL divided by document name for UD tagset" }, BY_TYPE: { TAGSET_NKJP: "NLPrePL divided by document type for NKJP tagset", TAGSET_UD: "NLPrePL divided by document type for UD tagset" } } _TYPES = [BY_NAME, BY_TYPE] _TAGSETS = [TAGSET_NKJP, TAGSET_UD] _URLS = { BY_NAME: { EXTENSION_CONLLU: { TAGSET_NKJP: { 'train': "nkjp_tagset/fair_by_document_name/_conllu/train_nlprepl-nkjp.conllu.gz", 'dev': "nkjp_tagset/fair_by_document_name/_conllu/dev_nlprepl-nkjp.conllu.gz", 'test': "nkjp_tagset/fair_by_document_name/_conllu/test_nlprepl-nkjp.conllu.gz" }, TAGSET_UD: { 'train': "ud_tagset/fair_by_document_name/_conllu/train_nlprepl-ud.conllu.gz", 'dev': "ud_tagset/fair_by_document_name/_conllu/dev_nlprepl-ud.conllu.gz", 'test': "ud_tagset/fair_by_document_name/_conllu/test_nlprepl-ud.conllu.gz" } }, EXTENSION_CONLL: { TAGSET_NKJP: { 'train': "nkjp_tagset/fair_by_document_name/_conll/train_nlprepl-nkjp.conll.gz", 'dev': "nkjp_tagset/fair_by_document_name/_conll/dev_nlprepl-nkjp.conll.gz", 'test': "nkjp_tagset/fair_by_document_name/_conll/test_nlprepl-nkjp.conll.gz" } }, EXTENSION_CONLL_SPACE_AFTER: { TAGSET_NKJP: { 'train': "nkjp_tagset/fair_by_document_name/_conll_space_after/multiword_space_after_train_nlprepl-nkjp.conll.gz", 'dev': "nkjp_tagset/fair_by_document_name/_conll_space_after/multiword_space_after_dev_nlprepl-nkjp.conll.gz", 'test': "nkjp_tagset/fair_by_document_name/_conll_space_after/multiword_space_after_test_nlprepl-nkjp.conll.gz" } }, }, BY_TYPE: { EXTENSION_CONLLU: { TAGSET_NKJP: { 'train': "nkjp_tagset/fair_by_document_type/_conllu/train_nlprepl-nkjp.conllu.gz", 'dev': "nkjp_tagset/fair_by_document_type/_conllu/dev_nlprepl-nkjp.conllu.gz", 'test': "nkjp_tagset/fair_by_document_type/_conllu/test_nlprepl-nkjp.conllu.gz" }, TAGSET_UD: { 'train': "ud_tagset/fair_by_document_type/_conllu/train_nlprepl-ud.conllu.gz", 'dev': "ud_tagset/fair_by_document_type/_conllu/dev_nlprepl-ud.conllu.gz", 'test': "ud_tagset/fair_by_document_type/_conllu/test_nlprepl-ud.conllu.gz" } }, EXTENSION_CONLL: { TAGSET_NKJP: { 'train': "nkjp_tagset/fair_by_document_type/_conll/train_nlprepl-nkjp.conll.gz", 'dev': "nkjp_tagset/fair_by_document_type/_conll/dev_nlprepl-nkjp.conll.gz", 'test': "nkjp_tagset/fair_by_document_type/_conll/test_nlprepl-nkjp.conll.gz" } }, EXTENSION_CONLL_SPACE_AFTER: { TAGSET_NKJP: { 'train': "nkjp_tagset/fair_by_document_type/_conllu_space_after/multiword_space_after_train_nlprepl-nkjp.conll.gz", 'dev': "nkjp_tagset/fair_by_document_type/_conllu_space_after/multiword_space_after_dev_nlprepl-nkjp.conll.gz", 'test': "nkjp_tagset/fair_by_document_type/_conllu_space_after/multiword_space_after_test_nlprepl-nkjp.conll.gz" } }, } } class NLPrePLConfig(datasets.BuilderConfig): """BuilderConfig for NKJP1M""" def __init__(self, tagset: str, extension: str, **kwargs): """BuilderConfig forNKJP1M. Args: **kwargs: keyword arguments forwarded to super. """ super(NLPrePLConfig, self).__init__(**kwargs) self.tagset = tagset self.extension = extension class NLPrePL(datasets.GeneratorBasedBuilder): """NLPrePL dataset generator.""" BUILDER_CONFIGS = [ NLPrePLConfig( name=t + "-" + tagset + "-" + extension, version=datasets.Version("1.0.0"), tagset=tagset, extension=extension, description=_DESCRIPTION[t] ) for t in _URLS.keys() for extension in _URLS[t].keys() for tagset in _URLS[t][extension].keys() ] def _info(self): """Informative function about dataset features""" dataset, tagset, extension = self.config.name.split("-") return datasets.DatasetInfo( description=_DESCRIPTION[dataset][tagset], features=datasets.Features( { "sent_id": datasets.Value("string"), "text": datasets.Value("string"), "orig_file_sentence": datasets.Value("string"), "id": datasets.Value("string"), "tokens": datasets.Sequence(datasets.Value("string")), "lemmas": datasets.Sequence(datasets.Value("string")), "upos": datasets.Sequence(datasets.Value("string")), "xpos": datasets.Sequence(datasets.Value("string")), "feats": datasets.Sequence(datasets.Value("string")), "head": datasets.Sequence(datasets.Value("string")), "deprel": datasets.Sequence(datasets.Value("string")), "deps": datasets.Sequence(datasets.Value("string")), "misc": datasets.Sequence(datasets.Value("string")), } ), supervised_keys=None, citation=_CITATION, ) def _split_generators(self, dl_manager): """Returns SplitGenerators for train, dev, and test splits.""" dataset, tagset, extension = self.config.name.split("-") urls = _URLS[dataset][extension][tagset] downloaded_files = dl_manager.download_and_extract(urls) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}), ] def _generate_examples(self, filepath: str): """Function to generate example datapoints for the dataset.""" def generate_misc_column(misc_content: dict): """Helper function that creates proper formatting for MISC column from conllu file.""" if misc_content is None: return "" else: return "|".join([k + "=" + v for k, v in misc_content.items()]) id = 0 logger.info("⏳ Generating examples from = %s", filepath) print("Cached PATHS -- copy into STEP 5:", filepath) with open(filepath, 'r', encoding="utf-8") as f: tokenlist = list(conllu.parse_incr(f)) for sent in tokenlist: if "sent_id" in sent.metadata: idx = sent.metadata["sent_id"] else: idx = id tokens = [token["form"] for token in sent] if "text" in sent.metadata: txt = sent.metadata["text"] else: txt = " ".join(tokens) yield id, { "sent_id": str(idx), "text": txt, "orig_file_sentence": sent.metadata["orig_file_sentence"], "id": [token["id"] for token in sent], "tokens": [token["form"] for token in sent], "lemmas": [token["lemma"] for token in sent], "upos": [token["upos"] for token in sent], "xpos": [token["xpos"] for token in sent], "feats": [str(token["feats"]) for token in sent], "head": [str(token["head"]) for token in sent], "deprel": [str(token["deprel"]) for token in sent], "deps": [str(token["deps"]) for token in sent], "misc": [generate_misc_column(token["misc"]) for token in sent], } id += 1