Datasets:
Update README.md
Browse files
README.md
CHANGED
@@ -54,7 +54,32 @@ To address these challenges, 'opensr-test' provides a fair approach for SR bench
|
|
54 |
|
55 |
## **Datasets**
|
56 |
|
57 |
-
The `opensr-test` package provides five datasets for benchmarking SR models. These datasets are carefully crafted to minimize spatial and spectral misalignment.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
### **NAIP (X4 scale factor)**
|
60 |
|
|
|
54 |
|
55 |
## **Datasets**
|
56 |
|
57 |
+
The `opensr-test` package provides five datasets for benchmarking SR models. These datasets are carefully crafted to minimize spatial and spectral misalignment. Each dataset consist of a dictionary with the following keys:
|
58 |
+
|
59 |
+
- **`L2A`**: Sentinel-2 L2A bands (12 bands).
|
60 |
+
- **`L1C`**: Sentinel-2 L1C bands (12 bands).
|
61 |
+
- **`HR`**: High-resolution image (RGBNIR) without harmonization.
|
62 |
+
- **`HRharm`**: Harmonized high-resolution image (RGBNIR). The HRharm image is **harmonized with respect to the Sentinel-2 L2A bands**.
|
63 |
+
- **`metadata`**: A pandas DataFrame with the images' metadata.
|
64 |
+
|
65 |
+
We provide 12 bands for Sentinel-2 L2A (see table below) and 13 for Sentinel-2 L1C (see table below).
|
66 |
+
|
67 |
+
| Band | Description | Resolution (m) | L2A Index | L1C index |
|
68 |
+
|------|-------------|----------------|-------| -------|
|
69 |
+
| B01 | Coastal aerosol | 60 | 0 | 0 |
|
70 |
+
| B02 | Blue | 10 | 1 | 1 |
|
71 |
+
| B03 | Green | 10 | 2 | 2 |
|
72 |
+
| B04 | Red | 10 | 3 | 3 |
|
73 |
+
| B05 | Vegetation red edge | 20 | 4 | 4 |
|
74 |
+
| B06 | Vegetation red edge | 20 | 5 | 5 |
|
75 |
+
| B07 | Vegetation red edge | 20 | 6 | 6 |
|
76 |
+
| B08 | NIR | 10 | 7 | 7 |
|
77 |
+
| B8A | Narrow NIR | 20 | 8 | 8 |
|
78 |
+
| B09 | Water vapor | 60 | 9 | 9 |
|
79 |
+
| B10 | Cirrus | 60 | - | 10 |
|
80 |
+
| B11 | SWIR-I | 20 | 10 | 11 |
|
81 |
+
| B12 | SWIR-II | 20 | 11 | 12 |
|
82 |
+
|
83 |
|
84 |
### **NAIP (X4 scale factor)**
|
85 |
|