text
stringlengths
102
105k
source
stringlengths
44
152
!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Training on TPU with TensorFlow <Tip> If you don't need long explanations and just want TPU code samples to get started with, check out [our TPU example notebook!](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/tpu_training-tf.ipynb) </Tip> ### What is a TPU? A TPU is a **Tensor Processing Unit.** They are hardware designed by Google, which are used to greatly speed up the tensor computations within neural networks, much like GPUs. They can be used for both network training and inference. They are generally accessed through Google’s cloud services, but small TPUs can also be accessed directly for free through Google Colab and Kaggle Kernels. Because [all TensorFlow models in 🤗 Transformers are Keras models](https://huggingface.co/blog/tensorflow-philosophy), most of the methods in this document are generally applicable to TPU training for any Keras model! However, there are a few points that are specific to the HuggingFace ecosystem (hug-o-system?) of Transformers and Datasets, and we’ll make sure to flag them up when we get to them. ### What kinds of TPU are available? New users are often very confused by the range of TPUs, and the different ways to access them. The first key distinction to understand is the difference between **TPU Nodes** and **TPU VMs.** When you use a **TPU Node**, you are effectively indirectly accessing a remote TPU. You will need a separate VM, which will initialize your network and data pipeline and then forward them to the remote node. When you use a TPU on Google Colab, you are accessing it in the **TPU Node** style. Using TPU Nodes can have some quite unexpected behaviour for people who aren’t used to them! In particular, because the TPU is located on a physically different system to the machine you’re running your Python code on, your data cannot be local to your machine - any data pipeline that loads from your machine’s internal storage will totally fail! Instead, data must be stored in Google Cloud Storage where your data pipeline can still access it, even when the pipeline is running on the remote TPU node. <Tip> If you can fit all your data in memory as `np.ndarray` or `tf.Tensor`, then you can `fit()` on that data even when using Colab or a TPU Node, without needing to upload it to Google Cloud Storage. </Tip> <Tip> **🤗Specific Hugging Face Tip🤗:** The methods `Dataset.to_tf_dataset()` and its higher-level wrapper `model.prepare_tf_dataset()` , which you will see throughout our TF code examples, will both fail on a TPU Node. The reason for this is that even though they create a `tf.data.Dataset` it is not a “pure” `tf.data` pipeline and uses `tf.numpy_function` or `Dataset.from_generator()` to stream data from the underlying HuggingFace `Dataset`. This HuggingFace `Dataset` is backed by data that is on a local disc and which the remote TPU Node will not be able to read. </Tip> The second way to access a TPU is via a **TPU VM.** When using a TPU VM, you connect directly to the machine that the TPU is attached to, much like training on a GPU VM. TPU VMs are generally easier to work with, particularly when it comes to your data pipeline. All of the above warnings do not apply to TPU VMs! This is an opinionated document, so here’s our opinion: **Avoid using TPU Node if possible.** It is more confusing and more difficult to debug than TPU VMs. It is also likely to be unsupported in future - Google’s latest TPU, TPUv4, can only be accessed as a TPU VM, which suggests that TPU Nodes are increasingly going to become a “legacy” access method. However, we understand that the only free TPU access is on Colab and Kaggle Kernels, which uses TPU Node - so we’ll try to explain how to handle it if you have to! Check the [TPU example notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/tpu_training-tf.ipynb) for code samples that explain this in more detail. ### What sizes of TPU are available? A single TPU (a v2-8/v3-8/v4-8) runs 8 replicas. TPUs exist in **pods** that can run hundreds or thousands of replicas simultaneously. When you use more than a single TPU but less than a whole pod (for example, a v3-32), your TPU fleet is referred to as a **pod slice.** When you access a free TPU via Colab, you generally get a single v2-8 TPU. ### I keep hearing about this XLA thing. What’s XLA, and how does it relate to TPUs? XLA is an optimizing compiler, used by both TensorFlow and JAX. In JAX it is the only compiler, whereas in TensorFlow it is optional (but mandatory on TPU!). The easiest way to enable it when training a Keras model is to pass the argument `jit_compile=True` to `model.compile()`. If you don’t get any errors and performance is good, that’s a great sign that you’re ready to move to TPU! Debugging on TPU is generally a bit harder than on CPU/GPU, so we recommend getting your code running on CPU/GPU with XLA first before trying it on TPU. You don’t have to train for long, of course - just for a few steps to make sure that your model and data pipeline are working like you expect them to. <Tip> XLA compiled code is usually faster - so even if you’re not planning to run on TPU, adding `jit_compile=True` can improve your performance. Be sure to note the caveats below about XLA compatibility, though! </Tip> <Tip warning={true}> **Tip born of painful experience:** Although using `jit_compile=True` is a good way to get a speed boost and test if your CPU/GPU code is XLA-compatible, it can actually cause a lot of problems if you leave it in when actually training on TPU. XLA compilation will happen implicitly on TPU, so remember to remove that line before actually running your code on a TPU! </Tip> ### How do I make my model XLA compatible? In many cases, your code is probably XLA-compatible already! However, there are a few things that work in normal TensorFlow that don’t work in XLA. We’ve distilled them into three core rules below: <Tip> **🤗Specific HuggingFace Tip🤗:** We’ve put a lot of effort into rewriting our TensorFlow models and loss functions to be XLA-compatible. Our models and loss functions generally obey rule #1 and #2 by default, so you can skip over them if you’re using `transformers` models. Don’t forget about these rules when writing your own models and loss functions, though! </Tip> #### XLA Rule #1: Your code cannot have “data-dependent conditionals” What that means is that any `if` statement cannot depend on values inside a `tf.Tensor`. For example, this code block cannot be compiled with XLA! ```python if tf.reduce_sum(tensor) > 10: tensor = tensor / 2.0 ``` This might seem very restrictive at first, but most neural net code doesn’t need to do this. You can often get around this restriction by using `tf.cond` (see the documentation [here](https://www.tensorflow.org/api_docs/python/tf/cond)) or by removing the conditional and finding a clever math trick with indicator variables instead, like so: ```python sum_over_10 = tf.cast(tf.reduce_sum(tensor) > 10, tf.float32) tensor = tensor / (1.0 + sum_over_10) ``` This code has exactly the same effect as the code above, but by avoiding a conditional, we ensure it will compile with XLA without problems! #### XLA Rule #2: Your code cannot have “data-dependent shapes” What this means is that the shape of all of the `tf.Tensor` objects in your code cannot depend on their values. For example, the function `tf.unique` cannot be compiled with XLA, because it returns a `tensor` containing one instance of each unique value in the input. The shape of this output will obviously be different depending on how repetitive the input `Tensor` was, and so XLA refuses to handle it! In general, most neural network code obeys rule #2 by default. However, there are a few common cases where it becomes a problem. One very common one is when you use **label masking**, setting your labels to a negative value to indicate that those positions should be ignored when computing the loss. If you look at NumPy or PyTorch loss functions that support label masking, you will often see code like this that uses [boolean indexing](https://numpy.org/doc/stable/user/basics.indexing.html#boolean-array-indexing): ```python label_mask = labels >= 0 masked_outputs = outputs[label_mask] masked_labels = labels[label_mask] loss = compute_loss(masked_outputs, masked_labels) mean_loss = torch.mean(loss) ``` This code is totally fine in NumPy or PyTorch, but it breaks in XLA! Why? Because the shape of `masked_outputs` and `masked_labels` depends on how many positions are masked - that makes it a **data-dependent shape.** However, just like for rule #1, we can often rewrite this code to yield exactly the same output without any data-dependent shapes. ```python label_mask = tf.cast(labels >= 0, tf.float32) loss = compute_loss(outputs, labels) loss = loss * label_mask # Set negative label positions to 0 mean_loss = tf.reduce_sum(loss) / tf.reduce_sum(label_mask) ``` Here, we avoid data-dependent shapes by computing the loss for every position, but zeroing out the masked positions in both the numerator and denominator when we calculate the mean, which yields exactly the same result as the first block while maintaining XLA compatibility. Note that we use the same trick as in rule #1 - converting a `tf.bool` to `tf.float32` and using it as an indicator variable. This is a really useful trick, so remember it if you need to convert your own code to XLA! #### XLA Rule #3: XLA will need to recompile your model for every different input shape it sees This is the big one. What this means is that if your input shapes are very variable, XLA will have to recompile your model over and over, which will create huge performance problems. This commonly arises in NLP models, where input texts have variable lengths after tokenization. In other modalities, static shapes are more common and this rule is much less of a problem. How can you get around rule #3? The key is **padding** - if you pad all your inputs to the same length, and then use an `attention_mask`, you can get the same results as you’d get from variable shapes, but without any XLA issues. However, excessive padding can cause severe slowdown too - if you pad all your samples to the maximum length in the whole dataset, you might end up with batches consisting endless padding tokens, which will waste a lot of compute and memory! There isn’t a perfect solution to this problem. However, you can try some tricks. One very useful trick is to **pad batches of samples up to a multiple of a number like 32 or 64 tokens.** This often only increases the number of tokens by a small amount, but it hugely reduces the number of unique input shapes, because every input shape now has to be a multiple of 32 or 64. Fewer unique input shapes means fewer XLA compilations! <Tip> **🤗Specific HuggingFace Tip🤗:** Our tokenizers and data collators have methods that can help you here. You can use `padding="max_length"` or `padding="longest"` when calling tokenizers to get them to output padded data. Our tokenizers and data collators also have a `pad_to_multiple_of` argument that you can use to reduce the number of unique input shapes you see! </Tip> ### How do I actually train my model on TPU? Once your training is XLA-compatible and (if you’re using TPU Node / Colab) your dataset has been prepared appropriately, running on TPU is surprisingly easy! All you really need to change in your code is to add a few lines to initialize your TPU, and to ensure that your model and dataset are created inside a `TPUStrategy` scope. Take a look at [our TPU example notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/tpu_training-tf.ipynb) to see this in action! ### Summary There was a lot in here, so let’s summarize with a quick checklist you can follow when you want to get your model ready for TPU training: - Make sure your code follows the three rules of XLA - Compile your model with `jit_compile=True` on CPU/GPU and confirm that you can train it with XLA - Either load your dataset into memory or use a TPU-compatible dataset loading approach (see [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/tpu_training-tf.ipynb)) - Migrate your code either to Colab (with accelerator set to “TPU”) or a TPU VM on Google Cloud - Add TPU initializer code (see [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/tpu_training-tf.ipynb)) - Create your `TPUStrategy` and make sure dataset loading and model creation are inside the `strategy.scope()` (see [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/tpu_training-tf.ipynb)) - Don’t forget to take `jit_compile=True` out again when you move to TPU! - 🙏🙏🙏🥺🥺🥺 - Call model.fit() - You did it!
huggingface/transformers/blob/main/docs/source/en/perf_train_tpu_tf.md
!--- Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> # Token classification with LayoutLMv3 (PyTorch version) This directory contains a script, `run_funsd_cord.py`, that can be used to fine-tune (or evaluate) LayoutLMv3 on form understanding datasets, such as [FUNSD](https://guillaumejaume.github.io/FUNSD/) and [CORD](https://github.com/clovaai/cord). The script `run_funsd_cord.py` leverages the 🤗 Datasets library and the Trainer API. You can easily customize it to your needs. ## Fine-tuning on FUNSD Fine-tuning LayoutLMv3 for token classification on [FUNSD](https://guillaumejaume.github.io/FUNSD/) can be done as follows: ```bash python run_funsd_cord.py \ --model_name_or_path microsoft/layoutlmv3-base \ --dataset_name funsd \ --output_dir layoutlmv3-test \ --do_train \ --do_eval \ --max_steps 1000 \ --evaluation_strategy steps \ --eval_steps 100 \ --learning_rate 1e-5 \ --load_best_model_at_end \ --metric_for_best_model "eval_f1" \ --push_to_hub \ --push_to_hub°model_id layoutlmv3-finetuned-funsd ``` 👀 The resulting model can be found here: https://huggingface.co/nielsr/layoutlmv3-finetuned-funsd. By specifying the `push_to_hub` flag, the model gets uploaded automatically to the hub (regularly), together with a model card, which includes metrics such as precision, recall and F1. Note that you can easily update the model card, as it's just a README file of the respective repo on the hub. There's also the "Training metrics" [tab](https://huggingface.co/nielsr/layoutlmv3-finetuned-funsd/tensorboard), which shows Tensorboard logs over the course of training. Pretty neat, huh? ## Fine-tuning on CORD Fine-tuning LayoutLMv3 for token classification on [CORD](https://github.com/clovaai/cord) can be done as follows: ```bash python run_funsd_cord.py \ --model_name_or_path microsoft/layoutlmv3-base \ --dataset_name cord \ --output_dir layoutlmv3-test \ --do_train \ --do_eval \ --max_steps 1000 \ --evaluation_strategy steps \ --eval_steps 100 \ --learning_rate 5e-5 \ --load_best_model_at_end \ --metric_for_best_model "eval_f1" \ --push_to_hub \ --push_to_hub°model_id layoutlmv3-finetuned-cord ``` 👀 The resulting model can be found here: https://huggingface.co/nielsr/layoutlmv3-finetuned-cord. Note that a model card gets generated automatically in case you specify the `push_to_hub` flag.
huggingface/transformers/blob/main/examples/research_projects/layoutlmv3/README.md
!--Copyright 2021 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # VisionTextDualEncoder ## Overview The [`VisionTextDualEncoderModel`] can be used to initialize a vision-text dual encoder model with any pretrained vision autoencoding model as the vision encoder (*e.g.* [ViT](vit), [BEiT](beit), [DeiT](deit)) and any pretrained text autoencoding model as the text encoder (*e.g.* [RoBERTa](roberta), [BERT](bert)). Two projection layers are added on top of both the vision and text encoder to project the output embeddings to a shared latent space. The projection layers are randomly initialized so the model should be fine-tuned on a downstream task. This model can be used to align the vision-text embeddings using CLIP like contrastive image-text training and then can be used for zero-shot vision tasks such image-classification or retrieval. In [LiT: Zero-Shot Transfer with Locked-image Text Tuning](https://arxiv.org/abs/2111.07991) it is shown how leveraging pre-trained (locked/frozen) image and text model for contrastive learning yields significant improvement on new zero-shot vision tasks such as image classification or retrieval. ## VisionTextDualEncoderConfig [[autodoc]] VisionTextDualEncoderConfig ## VisionTextDualEncoderProcessor [[autodoc]] VisionTextDualEncoderProcessor <frameworkcontent> <pt> ## VisionTextDualEncoderModel [[autodoc]] VisionTextDualEncoderModel - forward </pt> <tf> ## FlaxVisionTextDualEncoderModel [[autodoc]] FlaxVisionTextDualEncoderModel - __call__ </tf> <jax> ## TFVisionTextDualEncoderModel [[autodoc]] TFVisionTextDualEncoderModel - call </jax> </frameworkcontent>
huggingface/transformers/blob/main/docs/source/en/model_doc/vision-text-dual-encoder.md
!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Zero-shot object detection [[open-in-colab]] Traditionally, models used for [object detection](object_detection) require labeled image datasets for training, and are limited to detecting the set of classes from the training data. Zero-shot object detection is supported by the [OWL-ViT](../model_doc/owlvit) model which uses a different approach. OWL-ViT is an open-vocabulary object detector. It means that it can detect objects in images based on free-text queries without the need to fine-tune the model on labeled datasets. OWL-ViT leverages multi-modal representations to perform open-vocabulary detection. It combines [CLIP](../model_doc/clip) with lightweight object classification and localization heads. Open-vocabulary detection is achieved by embedding free-text queries with the text encoder of CLIP and using them as input to the object classification and localization heads. associate images and their corresponding textual descriptions, and ViT processes image patches as inputs. The authors of OWL-ViT first trained CLIP from scratch and then fine-tuned OWL-ViT end to end on standard object detection datasets using a bipartite matching loss. With this approach, the model can detect objects based on textual descriptions without prior training on labeled datasets. In this guide, you will learn how to use OWL-ViT: - to detect objects based on text prompts - for batch object detection - for image-guided object detection Before you begin, make sure you have all the necessary libraries installed: ```bash pip install -q transformers ``` ## Zero-shot object detection pipeline The simplest way to try out inference with OWL-ViT is to use it in a [`pipeline`]. Instantiate a pipeline for zero-shot object detection from a [checkpoint on the Hugging Face Hub](https://huggingface.co/models?other=owlvit): ```python >>> from transformers import pipeline >>> checkpoint = "google/owlvit-base-patch32" >>> detector = pipeline(model=checkpoint, task="zero-shot-object-detection") ``` Next, choose an image you'd like to detect objects in. Here we'll use the image of astronaut Eileen Collins that is a part of the [NASA](https://www.nasa.gov/multimedia/imagegallery/index.html) Great Images dataset. ```py >>> import skimage >>> import numpy as np >>> from PIL import Image >>> image = skimage.data.astronaut() >>> image = Image.fromarray(np.uint8(image)).convert("RGB") >>> image ``` <div class="flex justify-center"> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/zero-sh-obj-detection_1.png" alt="Astronaut Eileen Collins"/> </div> Pass the image and the candidate object labels to look for to the pipeline. Here we pass the image directly; other suitable options include a local path to an image or an image url. We also pass text descriptions for all items we want to query the image for. ```py >>> predictions = detector( ... image, ... candidate_labels=["human face", "rocket", "nasa badge", "star-spangled banner"], ... ) >>> predictions [{'score': 0.3571370542049408, 'label': 'human face', 'box': {'xmin': 180, 'ymin': 71, 'xmax': 271, 'ymax': 178}}, {'score': 0.28099656105041504, 'label': 'nasa badge', 'box': {'xmin': 129, 'ymin': 348, 'xmax': 206, 'ymax': 427}}, {'score': 0.2110239565372467, 'label': 'rocket', 'box': {'xmin': 350, 'ymin': -1, 'xmax': 468, 'ymax': 288}}, {'score': 0.13790413737297058, 'label': 'star-spangled banner', 'box': {'xmin': 1, 'ymin': 1, 'xmax': 105, 'ymax': 509}}, {'score': 0.11950037628412247, 'label': 'nasa badge', 'box': {'xmin': 277, 'ymin': 338, 'xmax': 327, 'ymax': 380}}, {'score': 0.10649408400058746, 'label': 'rocket', 'box': {'xmin': 358, 'ymin': 64, 'xmax': 424, 'ymax': 280}}] ``` Let's visualize the predictions: ```py >>> from PIL import ImageDraw >>> draw = ImageDraw.Draw(image) >>> for prediction in predictions: ... box = prediction["box"] ... label = prediction["label"] ... score = prediction["score"] ... xmin, ymin, xmax, ymax = box.values() ... draw.rectangle((xmin, ymin, xmax, ymax), outline="red", width=1) ... draw.text((xmin, ymin), f"{label}: {round(score,2)}", fill="white") >>> image ``` <div class="flex justify-center"> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/zero-sh-obj-detection_2.png" alt="Visualized predictions on NASA image"/> </div> ## Text-prompted zero-shot object detection by hand Now that you've seen how to use the zero-shot object detection pipeline, let's replicate the same result manually. Start by loading the model and associated processor from a [checkpoint on the Hugging Face Hub](https://huggingface.co/models?other=owlvit). Here we'll use the same checkpoint as before: ```py >>> from transformers import AutoProcessor, AutoModelForZeroShotObjectDetection >>> model = AutoModelForZeroShotObjectDetection.from_pretrained(checkpoint) >>> processor = AutoProcessor.from_pretrained(checkpoint) ``` Let's take a different image to switch things up. ```py >>> import requests >>> url = "https://unsplash.com/photos/oj0zeY2Ltk4/download?ixid=MnwxMjA3fDB8MXxzZWFyY2h8MTR8fHBpY25pY3xlbnwwfHx8fDE2Nzc0OTE1NDk&force=true&w=640" >>> im = Image.open(requests.get(url, stream=True).raw) >>> im ``` <div class="flex justify-center"> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/zero-sh-obj-detection_3.png" alt="Beach photo"/> </div> Use the processor to prepare the inputs for the model. The processor combines an image processor that prepares the image for the model by resizing and normalizing it, and a [`CLIPTokenizer`] that takes care of the text inputs. ```py >>> text_queries = ["hat", "book", "sunglasses", "camera"] >>> inputs = processor(text=text_queries, images=im, return_tensors="pt") ``` Pass the inputs through the model, post-process, and visualize the results. Since the image processor resized images before feeding them to the model, you need to use the [`~OwlViTImageProcessor.post_process_object_detection`] method to make sure the predicted bounding boxes have the correct coordinates relative to the original image: ```py >>> import torch >>> with torch.no_grad(): ... outputs = model(**inputs) ... target_sizes = torch.tensor([im.size[::-1]]) ... results = processor.post_process_object_detection(outputs, threshold=0.1, target_sizes=target_sizes)[0] >>> draw = ImageDraw.Draw(im) >>> scores = results["scores"].tolist() >>> labels = results["labels"].tolist() >>> boxes = results["boxes"].tolist() >>> for box, score, label in zip(boxes, scores, labels): ... xmin, ymin, xmax, ymax = box ... draw.rectangle((xmin, ymin, xmax, ymax), outline="red", width=1) ... draw.text((xmin, ymin), f"{text_queries[label]}: {round(score,2)}", fill="white") >>> im ``` <div class="flex justify-center"> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/zero-sh-obj-detection_4.png" alt="Beach photo with detected objects"/> </div> ## Batch processing You can pass multiple sets of images and text queries to search for different (or same) objects in several images. Let's use both an astronaut image and the beach image together. For batch processing, you should pass text queries as a nested list to the processor and images as lists of PIL images, PyTorch tensors, or NumPy arrays. ```py >>> images = [image, im] >>> text_queries = [ ... ["human face", "rocket", "nasa badge", "star-spangled banner"], ... ["hat", "book", "sunglasses", "camera"], ... ] >>> inputs = processor(text=text_queries, images=images, return_tensors="pt") ``` Previously for post-processing you passed the single image's size as a tensor, but you can also pass a tuple, or, in case of several images, a list of tuples. Let's create predictions for the two examples, and visualize the second one (`image_idx = 1`). ```py >>> with torch.no_grad(): ... outputs = model(**inputs) ... target_sizes = [x.size[::-1] for x in images] ... results = processor.post_process_object_detection(outputs, threshold=0.1, target_sizes=target_sizes) >>> image_idx = 1 >>> draw = ImageDraw.Draw(images[image_idx]) >>> scores = results[image_idx]["scores"].tolist() >>> labels = results[image_idx]["labels"].tolist() >>> boxes = results[image_idx]["boxes"].tolist() >>> for box, score, label in zip(boxes, scores, labels): ... xmin, ymin, xmax, ymax = box ... draw.rectangle((xmin, ymin, xmax, ymax), outline="red", width=1) ... draw.text((xmin, ymin), f"{text_queries[image_idx][label]}: {round(score,2)}", fill="white") >>> images[image_idx] ``` <div class="flex justify-center"> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/zero-sh-obj-detection_4.png" alt="Beach photo with detected objects"/> </div> ## Image-guided object detection In addition to zero-shot object detection with text queries, OWL-ViT offers image-guided object detection. This means you can use an image query to find similar objects in the target image. Unlike text queries, only a single example image is allowed. Let's take an image with two cats on a couch as a target image, and an image of a single cat as a query: ```py >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image_target = Image.open(requests.get(url, stream=True).raw) >>> query_url = "http://images.cocodataset.org/val2017/000000524280.jpg" >>> query_image = Image.open(requests.get(query_url, stream=True).raw) ``` Let's take a quick look at the images: ```py >>> import matplotlib.pyplot as plt >>> fig, ax = plt.subplots(1, 2) >>> ax[0].imshow(image_target) >>> ax[1].imshow(query_image) ``` <div class="flex justify-center"> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/zero-sh-obj-detection_5.png" alt="Cats"/> </div> In the preprocessing step, instead of text queries, you now need to use `query_images`: ```py >>> inputs = processor(images=image_target, query_images=query_image, return_tensors="pt") ``` For predictions, instead of passing the inputs to the model, pass them to [`~OwlViTForObjectDetection.image_guided_detection`]. Draw the predictions as before except now there are no labels. ```py >>> with torch.no_grad(): ... outputs = model.image_guided_detection(**inputs) ... target_sizes = torch.tensor([image_target.size[::-1]]) ... results = processor.post_process_image_guided_detection(outputs=outputs, target_sizes=target_sizes)[0] >>> draw = ImageDraw.Draw(image_target) >>> scores = results["scores"].tolist() >>> boxes = results["boxes"].tolist() >>> for box, score, label in zip(boxes, scores, labels): ... xmin, ymin, xmax, ymax = box ... draw.rectangle((xmin, ymin, xmax, ymax), outline="white", width=4) >>> image_target ``` <div class="flex justify-center"> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/zero-sh-obj-detection_6.png" alt="Cats with bounding boxes"/> </div> If you'd like to interactively try out inference with OWL-ViT, check out this demo: <iframe src="https://adirik-owl-vit.hf.space" frameborder="0" width="850" height="450" ></iframe>
huggingface/transformers/blob/main/docs/source/en/tasks/zero_shot_object_detection.md
!--- Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> <p align="center"> <picture> <source media="(prefers-color-scheme: dark)" srcset="https://huggingface.co/datasets/huggingface/documentation-images/raw/main/transformers-logo-dark.svg"> <source media="(prefers-color-scheme: light)" srcset="https://huggingface.co/datasets/huggingface/documentation-images/raw/main/transformers-logo-light.svg"> <img alt="Hugging Face Transformers Library" src="https://huggingface.co/datasets/huggingface/documentation-images/raw/main/transformers-logo-light.svg" width="352" height="59" style="max-width: 100%;"> </picture> <br/> <br/> </p> <p align="center"> <a href="https://circleci.com/gh/huggingface/transformers"> <img alt="Build" src="https://img.shields.io/circleci/build/github/huggingface/transformers/main"> </a> <a href="https://github.com/huggingface/transformers/blob/main/LICENSE"> <img alt="GitHub" src="https://img.shields.io/github/license/huggingface/transformers.svg?color=blue"> </a> <a href="https://huggingface.co/docs/transformers/index"> <img alt="Documentation" src="https://img.shields.io/website/http/huggingface.co/docs/transformers/index.svg?down_color=red&down_message=offline&up_message=online"> </a> <a href="https://github.com/huggingface/transformers/releases"> <img alt="GitHub release" src="https://img.shields.io/github/release/huggingface/transformers.svg"> </a> <a href="https://github.com/huggingface/transformers/blob/main/CODE_OF_CONDUCT.md"> <img alt="Contributor Covenant" src="https://img.shields.io/badge/Contributor%20Covenant-v2.0%20adopted-ff69b4.svg"> </a> <a href="https://zenodo.org/badge/latestdoi/155220641"><img src="https://zenodo.org/badge/155220641.svg" alt="DOI"></a> </p> <h4 align="center"> <p> <a href="https://github.com/huggingface/transformers/blob/main/README.md">English</a> | <a href="https://github.com/huggingface/transformers/blob/main/README_zh-hans.md">简体中文</a> | <a href="https://github.com/huggingface/transformers/blob/main/README_zh-hant.md">繁體中文</a> | <a href="https://github.com/huggingface/transformers/blob/main/README_ko.md">한국어</a> | <a href="https://github.com/huggingface/transformers/blob/main/README_es.md">Español</a> | <a href="https://github.com/huggingface/transformers/blob/main/README_ja.md">日本語</a> | <a href="https://github.com/huggingface/transformers/blob/main/README_hd.md">हिन्दी</a> | <b>Русский</b> <a href="https://github.com/huggingface/transformers//blob/main/README_te.md">తెలుగు</a> | <p> </h4> <h3 align="center"> <p>Современное машинное обучение для JAX, PyTorch и TensorFlow</p> </h3> <h3 align="center"> <a href="https://hf.co/course"><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/course_banner.png"></a> </h3> 🤗 Transformers предоставляет тысячи предварительно обученных моделей для выполнения различных задач, таких как текст, зрение и аудио. Эти модели могут быть применены к: * 📝 Тексту для таких задач, как классификация текстов, извлечение информации, ответы на вопросы, обобщение, перевод, генерация текстов на более чем 100 языках. * 🖼️ Изображениям для задач классификации изображений, обнаружения объектов и сегментации. * 🗣️ Аудио для задач распознавания речи и классификации аудио. Модели transformers также могут выполнять несколько задач, такие как ответы на табличные вопросы, распознавание оптических символов, извлечение информации из отсканированных документов, классификация видео и ответы на визуальные вопросы. 🤗 Transformers предоставляет API для быстрой загрузки и использования предварительно обученных моделей, их тонкой настройки на собственных датасетах и последующего взаимодействия ими с сообществом на нашем [сайте](https://huggingface.co/models). В то же время каждый python модуль, определяющий архитектуру, полностью автономен и может быть модифицирован для проведения быстрых исследовательских экспериментов. 🤗 Transformers опирается на три самые популярные библиотеки глубокого обучения - [Jax](https://jax.readthedocs.io/en/latest/), [PyTorch](https://pytorch.org/) и [TensorFlow](https://www.tensorflow.org/) - и легко интегрируется между ними. Это позволяет легко обучать модели с помощью одной из них, а затем загружать их для выводов с помощью другой. ## Онлайн демонстрация Большинство наших моделей можно протестировать непосредственно на их страницах с [сайта](https://huggingface.co/models). Мы также предлагаем [привтаный хостинг моделей, контроль версий и API для выводов](https://huggingface.co/pricing) для публичных и частных моделей. Вот несколько примеров: В области NLP ( Обработка текстов на естественном языке ): - [Маскированное заполнение слов с помощью BERT](https://huggingface.co/bert-base-uncased?text=Paris+is+the+%5BMASK%5D+of+France) - [Распознавание сущностей с помощью Electra](https://huggingface.co/dbmdz/electra-large-discriminator-finetuned-conll03-english?text=My+name+is+Sarah+and+I+live+in+London+city) - [Генерация текста с помощью GPT-2](https://huggingface.co/gpt2?text=A+long+time+ago%2C+) - [Выводы на естественном языке с помощью RoBERTa](https://huggingface.co/roberta-large-mnli?text=The+dog+was+lost.+Nobody+lost+any+animal) - [Обобщение с помощью BART](https://huggingface.co/facebook/bart-large-cnn?text=The+tower+is+324+metres+%281%2C063+ft%29+tall%2C+about+the+same+height+as+an+81-storey+building%2C+and+the+tallest+structure+in+Paris.+Its+base+is+square%2C+measuring+125+metres+%28410+ft%29+on+each+side.+During+its+construction%2C+the+Eiffel+Tower+surpassed+the+Washington+Monument+to+become+the+tallest+man-made+structure+in+the+world%2C+a+title+it+held+for+41+years+until+the+Chrysler+Building+in+New+York+City+was+finished+in+1930.+It+was+the+first+structure+to+reach+a+height+of+300+metres.+Due+to+the+addition+of+a+broadcasting+aerial+at+the+top+of+the+tower+in+1957%2C+it+is+now+taller+than+the+Chrysler+Building+by+5.2+metres+%2817+ft%29.+Excluding+transmitters%2C+the+Eiffel+Tower+is+the+second+tallest+free-standing+structure+in+France+after+the+Millau+Viaduct) - [Ответы на вопросы с помощью DistilBERT](https://huggingface.co/distilbert-base-uncased-distilled-squad?text=Which+name+is+also+used+to+describe+the+Amazon+rainforest+in+English%3F&context=The+Amazon+rainforest+%28Portuguese%3A+Floresta+Amaz%C3%B4nica+or+Amaz%C3%B4nia%3B+Spanish%3A+Selva+Amaz%C3%B3nica%2C+Amazon%C3%ADa+or+usually+Amazonia%3B+French%3A+For%C3%AAt+amazonienne%3B+Dutch%3A+Amazoneregenwoud%29%2C+also+known+in+English+as+Amazonia+or+the+Amazon+Jungle%2C+is+a+moist+broadleaf+forest+that+covers+most+of+the+Amazon+basin+of+South+America.+This+basin+encompasses+7%2C000%2C000+square+kilometres+%282%2C700%2C000+sq+mi%29%2C+of+which+5%2C500%2C000+square+kilometres+%282%2C100%2C000+sq+mi%29+are+covered+by+the+rainforest.+This+region+includes+territory+belonging+to+nine+nations.+The+majority+of+the+forest+is+contained+within+Brazil%2C+with+60%25+of+the+rainforest%2C+followed+by+Peru+with+13%25%2C+Colombia+with+10%25%2C+and+with+minor+amounts+in+Venezuela%2C+Ecuador%2C+Bolivia%2C+Guyana%2C+Suriname+and+French+Guiana.+States+or+departments+in+four+nations+contain+%22Amazonas%22+in+their+names.+The+Amazon+represents+over+half+of+the+planet%27s+remaining+rainforests%2C+and+comprises+the+largest+and+most+biodiverse+tract+of+tropical+rainforest+in+the+world%2C+with+an+estimated+390+billion+individual+trees+divided+into+16%2C000+species) - [Перевод с помощью T5](https://huggingface.co/t5-base?text=My+name+is+Wolfgang+and+I+live+in+Berlin) В области компьютерного зрения: - [Классификация изображений с помощью ViT](https://huggingface.co/google/vit-base-patch16-224) - [Обнаружение объектов с помощью DETR](https://huggingface.co/facebook/detr-resnet-50) - [Семантическая сегментация с помощью SegFormer](https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512) - [Сегментация паноптикума с помощью MaskFormer](https://huggingface.co/facebook/maskformer-swin-small-coco) - [Оценка глубины с помощью DPT](https://huggingface.co/docs/transformers/model_doc/dpt) - [Классификация видео с помощью VideoMAE](https://huggingface.co/docs/transformers/model_doc/videomae) - [Универсальная сегментация с помощью OneFormer](https://huggingface.co/shi-labs/oneformer_ade20k_dinat_large) В области звука: - [Автоматическое распознавание речи с помощью Wav2Vec2](https://huggingface.co/facebook/wav2vec2-base-960h) - [Поиск ключевых слов с помощью Wav2Vec2](https://huggingface.co/superb/wav2vec2-base-superb-ks) - [Классификация аудиоданных с помощью траснформера аудиоспектрограмм](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593) В мультимодальных задачах: - [Ответы на вопросы по таблице с помощью TAPAS](https://huggingface.co/google/tapas-base-finetuned-wtq) - [Визуальные ответы на вопросы с помощью ViLT](https://huggingface.co/dandelin/vilt-b32-finetuned-vqa) - [Zero-shot классификация изображений с помощью CLIP](https://huggingface.co/openai/clip-vit-large-patch14) - [Ответы на вопросы по документам с помощью LayoutLM](https://huggingface.co/impira/layoutlm-document-qa) - [Zero-shot классификация видео с помощью X-CLIP](https://huggingface.co/docs/transformers/model_doc/xclip) ## 100 проектов, использующих Transformers Transformers - это не просто набор инструментов для использования предварительно обученных моделей: это сообщество проектов, созданное на его основе, и Hugging Face Hub. Мы хотим, чтобы Transformers позволил разработчикам, исследователям, студентам, профессорам, инженерам и всем желающим создавать проекты своей мечты. Чтобы отпраздновать 100 тысяч звезд Transformers, мы решили сделать акцент на сообществе, и создали страницу [awesome-transformers](./awesome-transformers.md), на которой перечислены 100 невероятных проектов, созданных с помощью transformers. Если вы являетесь владельцем или пользователем проекта, который, по вашему мнению, должен быть включен в этот список, пожалуйста, откройте PR для его добавления! ## Если вы хотите получить индивидуальную поддержку от команды Hugging Face <a target="_blank" href="https://huggingface.co/support"> <img alt="HuggingFace Expert Acceleration Program" src="https://cdn-media.huggingface.co/marketing/transformers/new-support-improved.png" style="max-width: 600px; border: 1px solid #eee; border-radius: 4px; box-shadow: 0 1px 2px 0 rgba(0, 0, 0, 0.05);"> </a><br> ## Быстрый гайд Для использования модели на заданном входе (текст, изображение, звук, ...) мы предоставляем API `pipeline`. Конвейеры объединяют предварительно обученную модель с препроцессингом, который использовался при ее обучении. Вот как можно быстро использовать конвейер для классификации положительных и отрицательных текстов: ```python >>> from transformers import pipeline # Выделение конвейера для анализа настроений >>> classifier = pipeline('sentiment-analysis') >>> classifier('Мы очень рады представить конвейер в transformers.') [{'label': 'POSITIVE', 'score': 0.9996980428695679}] ``` Вторая строка кода загружает и кэширует предварительно обученную модель, используемую конвейером, а третья оценивает ее на заданном тексте. Здесь ответ "POSITIVE" с уверенностью 99,97%. Во многих задачах, как в НЛП, так и в компьютерном зрении и речи, уже есть готовый `pipeline`. Например, мы можем легко извлечь обнаруженные объекты на изображении: ``` python >>> import requests >>> from PIL import Image >>> from transformers import pipeline # Скачиваем изображение с милыми котиками >>> url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/coco_sample.png" >>> image_data = requests.get(url, stream=True).raw >>> image = Image.open(image_data) # Выделение конвейера для обнаружения объектов >>> object_detector = pipeline('object-detection') >>> object_detector(image) [{'score': 0.9982201457023621, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9960021376609802, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9954745173454285, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9988006353378296, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9986783862113953, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}] ``` Здесь мы получаем список объектов, обнаруженных на изображении, с рамкой вокруг объекта и оценкой достоверности. Слева - исходное изображение, справа прогнозы: <h3 align="center"> <a><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/coco_sample.png" width="400"></a> <a><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/coco_sample_post_processed.png" width="400"></a> </h3> Подробнее о задачах, поддерживаемых API `pipeline`, можно узнать в [этом учебном пособии](https://huggingface.co/docs/transformers/task_sum) В дополнение к `pipeline`, для загрузки и использования любой из предварительно обученных моделей в заданной задаче достаточно трех строк кода. Вот версия для PyTorch: ```python >>> from transformers import AutoTokenizer, AutoModel >>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") >>> model = AutoModel.from_pretrained("bert-base-uncased") >>> inputs = tokenizer("Привет мир!", return_tensors="pt") >>> outputs = model(**inputs) ``` А вот эквивалентный код для TensorFlow: ```python >>> from transformers import AutoTokenizer, TFAutoModel >>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") >>> model = TFAutoModel.from_pretrained("bert-base-uncased") >>> inputs = tokenizer("Привет мир!", return_tensors="tf") >>> outputs = model(**inputs) ``` Токенизатор отвечает за всю предварительную обработку, которую ожидает предварительно обученная модель, и может быть вызван непосредственно с помощью одной строки (как в приведенных выше примерах) или на списке. В результате будет получен словарь, который можно использовать в последующем коде или просто напрямую передать в модель с помощью оператора распаковки аргументов **. Сама модель представляет собой обычный [Pytorch `nn.Module`](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) или [TensorFlow `tf.keras.Model`](https://www.tensorflow.org/api_docs/python/tf/keras/Model) (в зависимости от используемого бэкенда), который можно использовать как обычно. [В этом руководстве](https://huggingface.co/docs/transformers/training) рассказывается, как интегрировать такую модель в классический цикл обучения PyTorch или TensorFlow, или как использовать наш API `Trainer` для быстрой тонкой настройки на новом датасете. ## Почему необходимо использовать transformers? 1. Простые в использовании современные модели: - Высокая производительность в задачах понимания и генерации естественного языка, компьютерного зрения и аудио. - Низкий входной барьер для преподавателей и практиков. - Небольшое количество абстракций для пользователя и всего три класса для изучения. - Единый API для использования всех наших предварительно обученных моделей. 1. Более низкие вычислительные затраты, меньший "углеродный след": - Исследователи могут обмениваться обученными моделями вместо того, чтобы постоянно их переобучать. - Практики могут сократить время вычислений и производственные затраты. - Десятки архитектур с более чем 60 000 предварительно обученных моделей для всех модальностей. 1. Выбор подходящего фреймворка для каждого этапа жизни модели: - Обучение самых современных моделей за 3 строки кода. - Перемещайте одну модель между фреймворками TF2.0/PyTorch/JAX по своему усмотрению. - Беспрепятственный выбор подходящего фреймворка для обучения, оценки и производства. 1. Легко настроить модель или пример под свои нужды: - Мы предоставляем примеры для каждой архитектуры, чтобы воспроизвести результаты, опубликованные их авторами. - Внутренние компоненты модели раскрываются максимально последовательно. - Файлы моделей можно использовать независимо от библиотеки для проведения быстрых экспериментов. ## Почему я не должен использовать transformers? - Данная библиотека не является модульным набором строительных блоков для нейронных сетей. Код в файлах моделей специально не рефакторится дополнительными абстракциями, чтобы исследователи могли быстро итеративно работать с каждой из моделей, не погружаясь в дополнительные абстракции/файлы. - API обучения не предназначен для работы с любой моделью, а оптимизирован для работы с моделями, предоставляемыми библиотекой. Для работы с общими циклами машинного обучения следует использовать другую библиотеку (возможно, [Accelerate](https://huggingface.co/docs/accelerate)). - Несмотря на то, что мы стремимся представить как можно больше примеров использования, скрипты в нашей папке [примеров](https://github.com/huggingface/transformers/tree/main/examples) являются именно примерами. Предполагается, что они не будут работать "из коробки" для решения вашей конкретной задачи, и вам придется изменить несколько строк кода, чтобы адаптировать их под свои нужды. ## Установка ### С помощью pip Данный репозиторий протестирован на Python 3.8+, Flax 0.4.1+, PyTorch 1.10+ и TensorFlow 2.6+. Устанавливать 🤗 Transformers следует в [виртуальной среде](https://docs.python.org/3/library/venv.html). Если вы не знакомы с виртуальными средами Python, ознакомьтесь с [руководством пользователя](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/). Сначала создайте виртуальную среду с той версией Python, которую вы собираетесь использовать, и активируйте ее. Затем необходимо установить хотя бы один бекенд из Flax, PyTorch или TensorFlow. Пожалуйста, обратитесь к страницам [TensorFlow установочная страница](https://www.tensorflow.org/install/), [PyTorch установочная страница](https://pytorch.org/get-started/locally/#start-locally) и/или [Flax](https://github.com/google/flax#quick-install) и [Jax](https://github.com/google/jax#installation), где описаны команды установки для вашей платформы. После установки одного из этих бэкендов 🤗 Transformers может быть установлен с помощью pip следующим образом: ```bash pip install transformers ``` Если вы хотите поиграть с примерами или вам нужен самый современный код и вы не можете ждать нового релиза, вы должны [установить библиотеку из исходного кода](https://huggingface.co/docs/transformers/installation#installing-from-source). ### С помощью conda Начиная с версии Transformers v4.0.0, у нас появилсась поддержка conda: `huggingface`. Установить Transformers с помощью conda можно следующим образом: ```bash conda install -c huggingface transformers ``` О том, как установить Flax, PyTorch или TensorFlow с помощью conda, читайте на страницах, посвященных их установке. > **_ЗАМЕТКА:_** В операционной системе Windows вам может быть предложено активировать режим разработчика, чтобы воспользоваться преимуществами кэширования. Если для вас это невозможно, сообщите нам об этом [здесь](https://github.com/huggingface/huggingface_hub/issues/1062). ## Модельные архитектуры **[Все контрольные точки моделей](https://huggingface.co/models)**, предоставляемые 🤗 Transformers, беспрепятственно интегрируются с huggingface.co [model hub](https://huggingface.co/models), куда они загружаются непосредственно [пользователями](https://huggingface.co/users) и [организациями](https://huggingface.co/organizations). Текущее количество контрольных точек: ![](https://img.shields.io/endpoint?url=https://huggingface.co/api/shields/models&color=brightgreen) 🤗 В настоящее время Transformers предоставляет следующие архитектуры (подробное описание каждой из них см. [здесь](https://huggingface.co/docs/transformers/model_summary)): 1. **[ALBERT](https://huggingface.co/docs/transformers/model_doc/albert)** (from Google Research and the Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut. 1. **[ALIGN](https://huggingface.co/docs/transformers/model_doc/align)** (from Google Research) released with the paper [Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision](https://arxiv.org/abs/2102.05918) by Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc V. Le, Yunhsuan Sung, Zhen Li, Tom Duerig. 1. **[AltCLIP](https://huggingface.co/docs/transformers/model_doc/altclip)** (from BAAI) released with the paper [AltCLIP: Altering the Language Encoder in CLIP for Extended Language Capabilities](https://arxiv.org/abs/2211.06679) by Chen, Zhongzhi and Liu, Guang and Zhang, Bo-Wen and Ye, Fulong and Yang, Qinghong and Wu, Ledell. 1. **[Audio Spectrogram Transformer](https://huggingface.co/docs/transformers/model_doc/audio-spectrogram-transformer)** (from MIT) released with the paper [AST: Audio Spectrogram Transformer](https://arxiv.org/abs/2104.01778) by Yuan Gong, Yu-An Chung, James Glass. 1. **[Autoformer](https://huggingface.co/docs/transformers/model_doc/autoformer)** (from Tsinghua University) released with the paper [Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting](https://arxiv.org/abs/2106.13008) by Haixu Wu, Jiehui Xu, Jianmin Wang, Mingsheng Long. 1. **[Bark](https://huggingface.co/docs/transformers/model_doc/bark)** (from Suno) released in the repository [suno-ai/bark](https://github.com/suno-ai/bark) by Suno AI team. 1. **[BART](https://huggingface.co/docs/transformers/model_doc/bart)** (from Facebook) released with the paper [BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension](https://arxiv.org/abs/1910.13461) by Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov and Luke Zettlemoyer. 1. **[BARThez](https://huggingface.co/docs/transformers/model_doc/barthez)** (from École polytechnique) released with the paper [BARThez: a Skilled Pretrained French Sequence-to-Sequence Model](https://arxiv.org/abs/2010.12321) by Moussa Kamal Eddine, Antoine J.-P. Tixier, Michalis Vazirgiannis. 1. **[BARTpho](https://huggingface.co/docs/transformers/model_doc/bartpho)** (from VinAI Research) released with the paper [BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnamese](https://arxiv.org/abs/2109.09701) by Nguyen Luong Tran, Duong Minh Le and Dat Quoc Nguyen. 1. **[BEiT](https://huggingface.co/docs/transformers/model_doc/beit)** (from Microsoft) released with the paper [BEiT: BERT Pre-Training of Image Transformers](https://arxiv.org/abs/2106.08254) by Hangbo Bao, Li Dong, Furu Wei. 1. **[BERT](https://huggingface.co/docs/transformers/model_doc/bert)** (from Google) released with the paper [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805) by Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova. 1. **[BERT For Sequence Generation](https://huggingface.co/docs/transformers/model_doc/bert-generation)** (from Google) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn. 1. **[BERTweet](https://huggingface.co/docs/transformers/model_doc/bertweet)** (from VinAI Research) released with the paper [BERTweet: A pre-trained language model for English Tweets](https://aclanthology.org/2020.emnlp-demos.2/) by Dat Quoc Nguyen, Thanh Vu and Anh Tuan Nguyen. 1. **[BigBird-Pegasus](https://huggingface.co/docs/transformers/model_doc/bigbird_pegasus)** (from Google Research) released with the paper [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed. 1. **[BigBird-RoBERTa](https://huggingface.co/docs/transformers/model_doc/big_bird)** (from Google Research) released with the paper [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed. 1. **[BioGpt](https://huggingface.co/docs/transformers/model_doc/biogpt)** (from Microsoft Research AI4Science) released with the paper [BioGPT: generative pre-trained transformer for biomedical text generation and mining](https://academic.oup.com/bib/advance-article/doi/10.1093/bib/bbac409/6713511?guestAccessKey=a66d9b5d-4f83-4017-bb52-405815c907b9) by Renqian Luo, Liai Sun, Yingce Xia, Tao Qin, Sheng Zhang, Hoifung Poon and Tie-Yan Liu. 1. **[BiT](https://huggingface.co/docs/transformers/model_doc/bit)** (from Google AI) released with the paper [Big Transfer (BiT): General Visual Representation Learning](https://arxiv.org/abs/1912.11370) by Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica Yung, Sylvain Gelly, Neil Houlsby. 1. **[Blenderbot](https://huggingface.co/docs/transformers/model_doc/blenderbot)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston. 1. **[BlenderbotSmall](https://huggingface.co/docs/transformers/model_doc/blenderbot-small)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston. 1. **[BLIP](https://huggingface.co/docs/transformers/model_doc/blip)** (from Salesforce) released with the paper [BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation](https://arxiv.org/abs/2201.12086) by Junnan Li, Dongxu Li, Caiming Xiong, Steven Hoi. 1. **[BLIP-2](https://huggingface.co/docs/transformers/model_doc/blip-2)** (from Salesforce) released with the paper [BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models](https://arxiv.org/abs/2301.12597) by Junnan Li, Dongxu Li, Silvio Savarese, Steven Hoi. 1. **[BLOOM](https://huggingface.co/docs/transformers/model_doc/bloom)** (from BigScience workshop) released by the [BigScience Workshop](https://bigscience.huggingface.co/). 1. **[BORT](https://huggingface.co/docs/transformers/model_doc/bort)** (from Alexa) released with the paper [Optimal Subarchitecture Extraction For BERT](https://arxiv.org/abs/2010.10499) by Adrian de Wynter and Daniel J. Perry. 1. **[BridgeTower](https://huggingface.co/docs/transformers/model_doc/bridgetower)** (from Harbin Institute of Technology/Microsoft Research Asia/Intel Labs) released with the paper [BridgeTower: Building Bridges Between Encoders in Vision-Language Representation Learning](https://arxiv.org/abs/2206.08657) by Xiao Xu, Chenfei Wu, Shachar Rosenman, Vasudev Lal, Wanxiang Che, Nan Duan. 1. **[BROS](https://huggingface.co/docs/transformers/model_doc/bros)** (from NAVER CLOVA) released with the paper [BROS: A Pre-trained Language Model Focusing on Text and Layout for Better Key Information Extraction from Documents](https://arxiv.org/abs/2108.04539) by Teakgyu Hong, Donghyun Kim, Mingi Ji, Wonseok Hwang, Daehyun Nam, Sungrae Park. 1. **[ByT5](https://huggingface.co/docs/transformers/model_doc/byt5)** (from Google Research) released with the paper [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://arxiv.org/abs/2105.13626) by Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel. 1. **[CamemBERT](https://huggingface.co/docs/transformers/model_doc/camembert)** (from Inria/Facebook/Sorbonne) released with the paper [CamemBERT: a Tasty French Language Model](https://arxiv.org/abs/1911.03894) by Louis Martin*, Benjamin Muller*, Pedro Javier Ortiz Suárez*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot. 1. **[CANINE](https://huggingface.co/docs/transformers/model_doc/canine)** (from Google Research) released with the paper [CANINE: Pre-training an Efficient Tokenization-Free Encoder for Language Representation](https://arxiv.org/abs/2103.06874) by Jonathan H. Clark, Dan Garrette, Iulia Turc, John Wieting. 1. **[Chinese-CLIP](https://huggingface.co/docs/transformers/model_doc/chinese_clip)** (from OFA-Sys) released with the paper [Chinese CLIP: Contrastive Vision-Language Pretraining in Chinese](https://arxiv.org/abs/2211.01335) by An Yang, Junshu Pan, Junyang Lin, Rui Men, Yichang Zhang, Jingren Zhou, Chang Zhou. 1. **[CLAP](https://huggingface.co/docs/transformers/model_doc/clap)** (from LAION-AI) released with the paper [Large-scale Contrastive Language-Audio Pretraining with Feature Fusion and Keyword-to-Caption Augmentation](https://arxiv.org/abs/2211.06687) by Yusong Wu, Ke Chen, Tianyu Zhang, Yuchen Hui, Taylor Berg-Kirkpatrick, Shlomo Dubnov. 1. **[CLIP](https://huggingface.co/docs/transformers/model_doc/clip)** (from OpenAI) released with the paper [Learning Transferable Visual Models From Natural Language Supervision](https://arxiv.org/abs/2103.00020) by Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever. 1. **[CLIPSeg](https://huggingface.co/docs/transformers/model_doc/clipseg)** (from University of Göttingen) released with the paper [Image Segmentation Using Text and Image Prompts](https://arxiv.org/abs/2112.10003) by Timo Lüddecke and Alexander Ecker. 1. **[CodeGen](https://huggingface.co/docs/transformers/model_doc/codegen)** (from Salesforce) released with the paper [A Conversational Paradigm for Program Synthesis](https://arxiv.org/abs/2203.13474) by Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, Caiming Xiong. 1. **[CodeLlama](https://huggingface.co/docs/transformers/model_doc/llama_code)** (from MetaAI) released with the paper [Code Llama: Open Foundation Models for Code](https://ai.meta.com/research/publications/code-llama-open-foundation-models-for-code/) by Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas Scialom, Gabriel Synnaeve. 1. **[Conditional DETR](https://huggingface.co/docs/transformers/model_doc/conditional_detr)** (from Microsoft Research Asia) released with the paper [Conditional DETR for Fast Training Convergence](https://arxiv.org/abs/2108.06152) by Depu Meng, Xiaokang Chen, Zejia Fan, Gang Zeng, Houqiang Li, Yuhui Yuan, Lei Sun, Jingdong Wang. 1. **[ConvBERT](https://huggingface.co/docs/transformers/model_doc/convbert)** (from YituTech) released with the paper [ConvBERT: Improving BERT with Span-based Dynamic Convolution](https://arxiv.org/abs/2008.02496) by Zihang Jiang, Weihao Yu, Daquan Zhou, Yunpeng Chen, Jiashi Feng, Shuicheng Yan. 1. **[ConvNeXT](https://huggingface.co/docs/transformers/model_doc/convnext)** (from Facebook AI) released with the paper [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545) by Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, Saining Xie. 1. **[ConvNeXTV2](https://huggingface.co/docs/transformers/model_doc/convnextv2)** (from Facebook AI) released with the paper [ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders](https://arxiv.org/abs/2301.00808) by Sanghyun Woo, Shoubhik Debnath, Ronghang Hu, Xinlei Chen, Zhuang Liu, In So Kweon, Saining Xie. 1. **[CPM](https://huggingface.co/docs/transformers/model_doc/cpm)** (from Tsinghua University) released with the paper [CPM: A Large-scale Generative Chinese Pre-trained Language Model](https://arxiv.org/abs/2012.00413) by Zhengyan Zhang, Xu Han, Hao Zhou, Pei Ke, Yuxian Gu, Deming Ye, Yujia Qin, Yusheng Su, Haozhe Ji, Jian Guan, Fanchao Qi, Xiaozhi Wang, Yanan Zheng, Guoyang Zeng, Huanqi Cao, Shengqi Chen, Daixuan Li, Zhenbo Sun, Zhiyuan Liu, Minlie Huang, Wentao Han, Jie Tang, Juanzi Li, Xiaoyan Zhu, Maosong Sun. 1. **[CPM-Ant](https://huggingface.co/docs/transformers/model_doc/cpmant)** (from OpenBMB) released by the [OpenBMB](https://www.openbmb.org/). 1. **[CTRL](https://huggingface.co/docs/transformers/model_doc/ctrl)** (from Salesforce) released with the paper [CTRL: A Conditional Transformer Language Model for Controllable Generation](https://arxiv.org/abs/1909.05858) by Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher. 1. **[CvT](https://huggingface.co/docs/transformers/model_doc/cvt)** (from Microsoft) released with the paper [CvT: Introducing Convolutions to Vision Transformers](https://arxiv.org/abs/2103.15808) by Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, Lei Zhang. 1. **[Data2Vec](https://huggingface.co/docs/transformers/model_doc/data2vec)** (from Facebook) released with the paper [Data2Vec: A General Framework for Self-supervised Learning in Speech, Vision and Language](https://arxiv.org/abs/2202.03555) by Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, Michael Auli. 1. **[DeBERTa](https://huggingface.co/docs/transformers/model_doc/deberta)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen. 1. **[DeBERTa-v2](https://huggingface.co/docs/transformers/model_doc/deberta-v2)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen. 1. **[Decision Transformer](https://huggingface.co/docs/transformers/model_doc/decision_transformer)** (from Berkeley/Facebook/Google) released with the paper [Decision Transformer: Reinforcement Learning via Sequence Modeling](https://arxiv.org/abs/2106.01345) by Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas, Igor Mordatch. 1. **[Deformable DETR](https://huggingface.co/docs/transformers/model_doc/deformable_detr)** (from SenseTime Research) released with the paper [Deformable DETR: Deformable Transformers for End-to-End Object Detection](https://arxiv.org/abs/2010.04159) by Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, Jifeng Dai. 1. **[DeiT](https://huggingface.co/docs/transformers/model_doc/deit)** (from Facebook) released with the paper [Training data-efficient image transformers & distillation through attention](https://arxiv.org/abs/2012.12877) by Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, Hervé Jégou. 1. **[DePlot](https://huggingface.co/docs/transformers/model_doc/deplot)** (from Google AI) released with the paper [DePlot: One-shot visual language reasoning by plot-to-table translation](https://arxiv.org/abs/2212.10505) by Fangyu Liu, Julian Martin Eisenschlos, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Wenhu Chen, Nigel Collier, Yasemin Altun. 1. **[DETA](https://huggingface.co/docs/transformers/model_doc/deta)** (from The University of Texas at Austin) released with the paper [NMS Strikes Back](https://arxiv.org/abs/2212.06137) by Jeffrey Ouyang-Zhang, Jang Hyun Cho, Xingyi Zhou, Philipp Krähenbühl. 1. **[DETR](https://huggingface.co/docs/transformers/model_doc/detr)** (from Facebook) released with the paper [End-to-End Object Detection with Transformers](https://arxiv.org/abs/2005.12872) by Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, Sergey Zagoruyko. 1. **[DialoGPT](https://huggingface.co/docs/transformers/model_doc/dialogpt)** (from Microsoft Research) released with the paper [DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation](https://arxiv.org/abs/1911.00536) by Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing Liu, Bill Dolan. 1. **[DiNAT](https://huggingface.co/docs/transformers/model_doc/dinat)** (from SHI Labs) released with the paper [Dilated Neighborhood Attention Transformer](https://arxiv.org/abs/2209.15001) by Ali Hassani and Humphrey Shi. 1. **[DINOv2](https://huggingface.co/docs/transformers/model_doc/dinov2)** (from Meta AI) released with the paper [DINOv2: Learning Robust Visual Features without Supervision](https://arxiv.org/abs/2304.07193) by Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Mahmoud Assran, Nicolas Ballas, Wojciech Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra, Michael Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Hervé Jegou, Julien Mairal, Patrick Labatut, Armand Joulin, Piotr Bojanowski. 1. **[DistilBERT](https://huggingface.co/docs/transformers/model_doc/distilbert)** (from HuggingFace), released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same method has been applied to compress GPT2 into [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation), RoBERTa into [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation), Multilingual BERT into [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation) and a German version of DistilBERT. 1. **[DiT](https://huggingface.co/docs/transformers/model_doc/dit)** (from Microsoft Research) released with the paper [DiT: Self-supervised Pre-training for Document Image Transformer](https://arxiv.org/abs/2203.02378) by Junlong Li, Yiheng Xu, Tengchao Lv, Lei Cui, Cha Zhang, Furu Wei. 1. **[Donut](https://huggingface.co/docs/transformers/model_doc/donut)** (from NAVER), released together with the paper [OCR-free Document Understanding Transformer](https://arxiv.org/abs/2111.15664) by Geewook Kim, Teakgyu Hong, Moonbin Yim, Jeongyeon Nam, Jinyoung Park, Jinyeong Yim, Wonseok Hwang, Sangdoo Yun, Dongyoon Han, Seunghyun Park. 1. **[DPR](https://huggingface.co/docs/transformers/model_doc/dpr)** (from Facebook) released with the paper [Dense Passage Retrieval for Open-Domain Question Answering](https://arxiv.org/abs/2004.04906) by Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih. 1. **[DPT](https://huggingface.co/docs/transformers/master/model_doc/dpt)** (from Intel Labs) released with the paper [Vision Transformers for Dense Prediction](https://arxiv.org/abs/2103.13413) by René Ranftl, Alexey Bochkovskiy, Vladlen Koltun. 1. **[EfficientFormer](https://huggingface.co/docs/transformers/model_doc/efficientformer)** (from Snap Research) released with the paper [EfficientFormer: Vision Transformers at MobileNetSpeed](https://arxiv.org/abs/2206.01191) by Yanyu Li, Geng Yuan, Yang Wen, Ju Hu, Georgios Evangelidis, Sergey Tulyakov, Yanzhi Wang, Jian Ren. 1. **[EfficientNet](https://huggingface.co/docs/transformers/model_doc/efficientnet)** (from Google Brain) released with the paper [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks](https://arxiv.org/abs/1905.11946) by Mingxing Tan, Quoc V. Le. 1. **[ELECTRA](https://huggingface.co/docs/transformers/model_doc/electra)** (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang Luong, Quoc V. Le, Christopher D. Manning. 1. **[EnCodec](https://huggingface.co/docs/transformers/model_doc/encodec)** (from Meta AI) released with the paper [High Fidelity Neural Audio Compression](https://arxiv.org/abs/2210.13438) by Alexandre Défossez, Jade Copet, Gabriel Synnaeve, Yossi Adi. 1. **[EncoderDecoder](https://huggingface.co/docs/transformers/model_doc/encoder-decoder)** (from Google Research) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn. 1. **[ERNIE](https://huggingface.co/docs/transformers/model_doc/ernie)** (from Baidu) released with the paper [ERNIE: Enhanced Representation through Knowledge Integration](https://arxiv.org/abs/1904.09223) by Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Xuyi Chen, Han Zhang, Xin Tian, Danxiang Zhu, Hao Tian, Hua Wu. 1. **[ErnieM](https://huggingface.co/docs/transformers/model_doc/ernie_m)** (from Baidu) released with the paper [ERNIE-M: Enhanced Multilingual Representation by Aligning Cross-lingual Semantics with Monolingual Corpora](https://arxiv.org/abs/2012.15674) by Xuan Ouyang, Shuohuan Wang, Chao Pang, Yu Sun, Hao Tian, Hua Wu, Haifeng Wang. 1. **[ESM](https://huggingface.co/docs/transformers/model_doc/esm)** (from Meta AI) are transformer protein language models. **ESM-1b** was released with the paper [Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences](https://www.pnas.org/content/118/15/e2016239118) by Alexander Rives, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin, Jason Liu, Demi Guo, Myle Ott, C. Lawrence Zitnick, Jerry Ma, and Rob Fergus. **ESM-1v** was released with the paper [Language models enable zero-shot prediction of the effects of mutations on protein function](https://doi.org/10.1101/2021.07.09.450648) by Joshua Meier, Roshan Rao, Robert Verkuil, Jason Liu, Tom Sercu and Alexander Rives. **ESM-2 and ESMFold** were released with the paper [Language models of protein sequences at the scale of evolution enable accurate structure prediction](https://doi.org/10.1101/2022.07.20.500902) by Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Allan dos Santos Costa, Maryam Fazel-Zarandi, Tom Sercu, Sal Candido, Alexander Rives. 1. **[Falcon](https://huggingface.co/docs/transformers/model_doc/falcon)** (from Technology Innovation Institute) by Almazrouei, Ebtesam and Alobeidli, Hamza and Alshamsi, Abdulaziz and Cappelli, Alessandro and Cojocaru, Ruxandra and Debbah, Merouane and Goffinet, Etienne and Heslow, Daniel and Launay, Julien and Malartic, Quentin and Noune, Badreddine and Pannier, Baptiste and Penedo, Guilherme. 1. **[FLAN-T5](https://huggingface.co/docs/transformers/model_doc/flan-t5)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-t5-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei 1. **[FLAN-UL2](https://huggingface.co/docs/transformers/model_doc/flan-ul2)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-ul2-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei 1. **[FlauBERT](https://huggingface.co/docs/transformers/model_doc/flaubert)** (from CNRS) released with the paper [FlauBERT: Unsupervised Language Model Pre-training for French](https://arxiv.org/abs/1912.05372) by Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoît Crabbé, Laurent Besacier, Didier Schwab. 1. **[FLAVA](https://huggingface.co/docs/transformers/model_doc/flava)** (from Facebook AI) released with the paper [FLAVA: A Foundational Language And Vision Alignment Model](https://arxiv.org/abs/2112.04482) by Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guillaume Couairon, Wojciech Galuba, Marcus Rohrbach, and Douwe Kiela. 1. **[FNet](https://huggingface.co/docs/transformers/model_doc/fnet)** (from Google Research) released with the paper [FNet: Mixing Tokens with Fourier Transforms](https://arxiv.org/abs/2105.03824) by James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon. 1. **[FocalNet](https://huggingface.co/docs/transformers/model_doc/focalnet)** (from Microsoft Research) released with the paper [Focal Modulation Networks](https://arxiv.org/abs/2203.11926) by Jianwei Yang, Chunyuan Li, Xiyang Dai, Lu Yuan, Jianfeng Gao. 1. **[Funnel Transformer](https://huggingface.co/docs/transformers/model_doc/funnel)** (from CMU/Google Brain) released with the paper [Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing](https://arxiv.org/abs/2006.03236) by Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le. 1. **[Fuyu](https://huggingface.co/docs/transformers/model_doc/fuyu)** (from ADEPT) Rohan Bavishi, Erich Elsen, Curtis Hawthorne, Maxwell Nye, Augustus Odena, Arushi Somani, Sağnak Taşırlar. Released with the paper [blog post](https://www.adept.ai/blog/fuyu-8b) 1. **[GIT](https://huggingface.co/docs/transformers/model_doc/git)** (from Microsoft Research) released with the paper [GIT: A Generative Image-to-text Transformer for Vision and Language](https://arxiv.org/abs/2205.14100) by Jianfeng Wang, Zhengyuan Yang, Xiaowei Hu, Linjie Li, Kevin Lin, Zhe Gan, Zicheng Liu, Ce Liu, Lijuan Wang. 1. **[GLPN](https://huggingface.co/docs/transformers/model_doc/glpn)** (from KAIST) released with the paper [Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth](https://arxiv.org/abs/2201.07436) by Doyeon Kim, Woonghyun Ga, Pyungwhan Ahn, Donggyu Joo, Sehwan Chun, Junmo Kim. 1. **[GPT](https://huggingface.co/docs/transformers/model_doc/openai-gpt)** (from OpenAI) released with the paper [Improving Language Understanding by Generative Pre-Training](https://blog.openai.com/language-unsupervised/) by Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever. 1. **[GPT Neo](https://huggingface.co/docs/transformers/model_doc/gpt_neo)** (from EleutherAI) released in the repository [EleutherAI/gpt-neo](https://github.com/EleutherAI/gpt-neo) by Sid Black, Stella Biderman, Leo Gao, Phil Wang and Connor Leahy. 1. **[GPT NeoX](https://huggingface.co/docs/transformers/model_doc/gpt_neox)** (from EleutherAI) released with the paper [GPT-NeoX-20B: An Open-Source Autoregressive Language Model](https://arxiv.org/abs/2204.06745) by Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Horace He, Connor Leahy, Kyle McDonell, Jason Phang, Michael Pieler, USVSN Sai Prashanth, Shivanshu Purohit, Laria Reynolds, Jonathan Tow, Ben Wang, Samuel Weinbach 1. **[GPT NeoX Japanese](https://huggingface.co/docs/transformers/model_doc/gpt_neox_japanese)** (from ABEJA) released by Shinya Otani, Takayoshi Makabe, Anuj Arora, and Kyo Hattori. 1. **[GPT-2](https://huggingface.co/docs/transformers/model_doc/gpt2)** (from OpenAI) released with the paper [Language Models are Unsupervised Multitask Learners](https://blog.openai.com/better-language-models/) by Alec Radford*, Jeffrey Wu*, Rewon Child, David Luan, Dario Amodei** and Ilya Sutskever**. 1. **[GPT-J](https://huggingface.co/docs/transformers/model_doc/gptj)** (from EleutherAI) released in the repository [kingoflolz/mesh-transformer-jax](https://github.com/kingoflolz/mesh-transformer-jax/) by Ben Wang and Aran Komatsuzaki. 1. **[GPT-Sw3](https://huggingface.co/docs/transformers/model_doc/gpt-sw3)** (from AI-Sweden) released with the paper [Lessons Learned from GPT-SW3: Building the First Large-Scale Generative Language Model for Swedish](http://www.lrec-conf.org/proceedings/lrec2022/pdf/2022.lrec-1.376.pdf) by Ariel Ekgren, Amaru Cuba Gyllensten, Evangelia Gogoulou, Alice Heiman, Severine Verlinden, Joey Öhman, Fredrik Carlsson, Magnus Sahlgren. 1. **[GPTBigCode](https://huggingface.co/docs/transformers/model_doc/gpt_bigcode)** (from BigCode) released with the paper [SantaCoder: don't reach for the stars!](https://arxiv.org/abs/2301.03988) by Loubna Ben Allal, Raymond Li, Denis Kocetkov, Chenghao Mou, Christopher Akiki, Carlos Munoz Ferrandis, Niklas Muennighoff, Mayank Mishra, Alex Gu, Manan Dey, Logesh Kumar Umapathi, Carolyn Jane Anderson, Yangtian Zi, Joel Lamy Poirier, Hailey Schoelkopf, Sergey Troshin, Dmitry Abulkhanov, Manuel Romero, Michael Lappert, Francesco De Toni, Bernardo García del Río, Qian Liu, Shamik Bose, Urvashi Bhattacharyya, Terry Yue Zhuo, Ian Yu, Paulo Villegas, Marco Zocca, Sourab Mangrulkar, David Lansky, Huu Nguyen, Danish Contractor, Luis Villa, Jia Li, Dzmitry Bahdanau, Yacine Jernite, Sean Hughes, Daniel Fried, Arjun Guha, Harm de Vries, Leandro von Werra. 1. **[GPTSAN-japanese](https://huggingface.co/docs/transformers/model_doc/gptsan-japanese)** released in the repository [tanreinama/GPTSAN](https://github.com/tanreinama/GPTSAN/blob/main/report/model.md) by Toshiyuki Sakamoto(tanreinama). 1. **[Graphormer](https://huggingface.co/docs/transformers/model_doc/graphormer)** (from Microsoft) released with the paper [Do Transformers Really Perform Bad for Graph Representation?](https://arxiv.org/abs/2106.05234) by Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, Tie-Yan Liu. 1. **[GroupViT](https://huggingface.co/docs/transformers/model_doc/groupvit)** (from UCSD, NVIDIA) released with the paper [GroupViT: Semantic Segmentation Emerges from Text Supervision](https://arxiv.org/abs/2202.11094) by Jiarui Xu, Shalini De Mello, Sifei Liu, Wonmin Byeon, Thomas Breuel, Jan Kautz, Xiaolong Wang. 1. **[HerBERT](https://huggingface.co/docs/transformers/model_doc/herbert)** (from Allegro.pl, AGH University of Science and Technology) released with the paper [KLEJ: Comprehensive Benchmark for Polish Language Understanding](https://www.aclweb.org/anthology/2020.acl-main.111.pdf) by Piotr Rybak, Robert Mroczkowski, Janusz Tracz, Ireneusz Gawlik. 1. **[Hubert](https://huggingface.co/docs/transformers/model_doc/hubert)** (from Facebook) released with the paper [HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units](https://arxiv.org/abs/2106.07447) by Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, Abdelrahman Mohamed. 1. **[I-BERT](https://huggingface.co/docs/transformers/model_doc/ibert)** (from Berkeley) released with the paper [I-BERT: Integer-only BERT Quantization](https://arxiv.org/abs/2101.01321) by Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W. Mahoney, Kurt Keutzer. 1. **[IDEFICS](https://huggingface.co/docs/transformers/model_doc/idefics)** (from HuggingFace) released with the paper [OBELICS: An Open Web-Scale Filtered Dataset of Interleaved Image-Text Documents](https://huggingface.co/papers/2306.16527) by Hugo Laurençon, Lucile Saulnier, Léo Tronchon, Stas Bekman, Amanpreet Singh, Anton Lozhkov, Thomas Wang, Siddharth Karamcheti, Alexander M. Rush, Douwe Kiela, Matthieu Cord, Victor Sanh. 1. **[ImageGPT](https://huggingface.co/docs/transformers/model_doc/imagegpt)** (from OpenAI) released with the paper [Generative Pretraining from Pixels](https://openai.com/blog/image-gpt/) by Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, Ilya Sutskever. 1. **[Informer](https://huggingface.co/docs/transformers/model_doc/informer)** (from Beihang University, UC Berkeley, Rutgers University, SEDD Company) released with the paper [Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting](https://arxiv.org/abs/2012.07436) by Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang. 1. **[InstructBLIP](https://huggingface.co/docs/transformers/model_doc/instructblip)** (from Salesforce) released with the paper [InstructBLIP: Towards General-purpose Vision-Language Models with Instruction Tuning](https://arxiv.org/abs/2305.06500) by Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao, Weisheng Wang, Boyang Li, Pascale Fung, Steven Hoi. 1. **[Jukebox](https://huggingface.co/docs/transformers/model_doc/jukebox)** (from OpenAI) released with the paper [Jukebox: A Generative Model for Music](https://arxiv.org/pdf/2005.00341.pdf) by Prafulla Dhariwal, Heewoo Jun, Christine Payne, Jong Wook Kim, Alec Radford, Ilya Sutskever. 1. **[LayoutLM](https://huggingface.co/docs/transformers/model_doc/layoutlm)** (from Microsoft Research Asia) released with the paper [LayoutLM: Pre-training of Text and Layout for Document Image Understanding](https://arxiv.org/abs/1912.13318) by Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou. 1. **[LayoutLMv2](https://huggingface.co/docs/transformers/model_doc/layoutlmv2)** (from Microsoft Research Asia) released with the paper [LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding](https://arxiv.org/abs/2012.14740) by Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Wanxiang Che, Min Zhang, Lidong Zhou. 1. **[LayoutLMv3](https://huggingface.co/docs/transformers/model_doc/layoutlmv3)** (from Microsoft Research Asia) released with the paper [LayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking](https://arxiv.org/abs/2204.08387) by Yupan Huang, Tengchao Lv, Lei Cui, Yutong Lu, Furu Wei. 1. **[LayoutXLM](https://huggingface.co/docs/transformers/model_doc/layoutxlm)** (from Microsoft Research Asia) released with the paper [LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding](https://arxiv.org/abs/2104.08836) by Yiheng Xu, Tengchao Lv, Lei Cui, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Furu Wei. 1. **[LED](https://huggingface.co/docs/transformers/model_doc/led)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan. 1. **[LeViT](https://huggingface.co/docs/transformers/model_doc/levit)** (from Meta AI) released with the paper [LeViT: A Vision Transformer in ConvNet's Clothing for Faster Inference](https://arxiv.org/abs/2104.01136) by Ben Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand Joulin, Hervé Jégou, Matthijs Douze. 1. **[LiLT](https://huggingface.co/docs/transformers/model_doc/lilt)** (from South China University of Technology) released with the paper [LiLT: A Simple yet Effective Language-Independent Layout Transformer for Structured Document Understanding](https://arxiv.org/abs/2202.13669) by Jiapeng Wang, Lianwen Jin, Kai Ding. 1. **[LLaMA](https://huggingface.co/docs/transformers/model_doc/llama)** (from The FAIR team of Meta AI) released with the paper [LLaMA: Open and Efficient Foundation Language Models](https://arxiv.org/abs/2302.13971) by Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, Guillaume Lample. 1. **[Llama2](https://huggingface.co/docs/transformers/model_doc/llama2)** (from The FAIR team of Meta AI) released with the paper [Llama2: Open Foundation and Fine-Tuned Chat Models](https://ai.meta.com/research/publications/llama-2-open-foundation-and-fine-tuned-chat-models/XXX) by Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushka rMishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing EllenTan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, Sergey Edunov, Thomas Scialom. 1. **[Longformer](https://huggingface.co/docs/transformers/model_doc/longformer)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan. 1. **[LongT5](https://huggingface.co/docs/transformers/model_doc/longt5)** (from Google AI) released with the paper [LongT5: Efficient Text-To-Text Transformer for Long Sequences](https://arxiv.org/abs/2112.07916) by Mandy Guo, Joshua Ainslie, David Uthus, Santiago Ontanon, Jianmo Ni, Yun-Hsuan Sung, Yinfei Yang. 1. **[LUKE](https://huggingface.co/docs/transformers/model_doc/luke)** (from Studio Ousia) released with the paper [LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention](https://arxiv.org/abs/2010.01057) by Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, Yuji Matsumoto. 1. **[LXMERT](https://huggingface.co/docs/transformers/model_doc/lxmert)** (from UNC Chapel Hill) released with the paper [LXMERT: Learning Cross-Modality Encoder Representations from Transformers for Open-Domain Question Answering](https://arxiv.org/abs/1908.07490) by Hao Tan and Mohit Bansal. 1. **[M-CTC-T](https://huggingface.co/docs/transformers/model_doc/mctct)** (from Facebook) released with the paper [Pseudo-Labeling For Massively Multilingual Speech Recognition](https://arxiv.org/abs/2111.00161) by Loren Lugosch, Tatiana Likhomanenko, Gabriel Synnaeve, and Ronan Collobert. 1. **[M2M100](https://huggingface.co/docs/transformers/model_doc/m2m_100)** (from Facebook) released with the paper [Beyond English-Centric Multilingual Machine Translation](https://arxiv.org/abs/2010.11125) by Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi Ma, Ahmed El-Kishky, Siddharth Goyal, Mandeep Baines, Onur Celebi, Guillaume Wenzek, Vishrav Chaudhary, Naman Goyal, Tom Birch, Vitaliy Liptchinsky, Sergey Edunov, Edouard Grave, Michael Auli, Armand Joulin. 1. **[MADLAD-400](https://huggingface.co/docs/transformers/model_doc/madlad-400)** (from Google) released with the paper [MADLAD-400: A Multilingual And Document-Level Large Audited Dataset](https://arxiv.org/abs/2309.04662) by Sneha Kudugunta, Isaac Caswell, Biao Zhang, Xavier Garcia, Christopher A. Choquette-Choo, Katherine Lee, Derrick Xin, Aditya Kusupati, Romi Stella, Ankur Bapna, Orhan Firat. 1. **[MarianMT](https://huggingface.co/docs/transformers/model_doc/marian)** Machine translation models trained using [OPUS](http://opus.nlpl.eu/) data by Jörg Tiedemann. The [Marian Framework](https://marian-nmt.github.io/) is being developed by the Microsoft Translator Team. 1. **[MarkupLM](https://huggingface.co/docs/transformers/model_doc/markuplm)** (from Microsoft Research Asia) released with the paper [MarkupLM: Pre-training of Text and Markup Language for Visually-rich Document Understanding](https://arxiv.org/abs/2110.08518) by Junlong Li, Yiheng Xu, Lei Cui, Furu Wei. 1. **[Mask2Former](https://huggingface.co/docs/transformers/model_doc/mask2former)** (from FAIR and UIUC) released with the paper [Masked-attention Mask Transformer for Universal Image Segmentation](https://arxiv.org/abs/2112.01527) by Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexander Kirillov, Rohit Girdhar. 1. **[MaskFormer](https://huggingface.co/docs/transformers/model_doc/maskformer)** (from Meta and UIUC) released with the paper [Per-Pixel Classification is Not All You Need for Semantic Segmentation](https://arxiv.org/abs/2107.06278) by Bowen Cheng, Alexander G. Schwing, Alexander Kirillov. 1. **[MatCha](https://huggingface.co/docs/transformers/model_doc/matcha)** (from Google AI) released with the paper [MatCha: Enhancing Visual Language Pretraining with Math Reasoning and Chart Derendering](https://arxiv.org/abs/2212.09662) by Fangyu Liu, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Yasemin Altun, Nigel Collier, Julian Martin Eisenschlos. 1. **[mBART](https://huggingface.co/docs/transformers/model_doc/mbart)** (from Facebook) released with the paper [Multilingual Denoising Pre-training for Neural Machine Translation](https://arxiv.org/abs/2001.08210) by Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad, Mike Lewis, Luke Zettlemoyer. 1. **[mBART-50](https://huggingface.co/docs/transformers/model_doc/mbart)** (from Facebook) released with the paper [Multilingual Translation with Extensible Multilingual Pretraining and Finetuning](https://arxiv.org/abs/2008.00401) by Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Naman Goyal, Vishrav Chaudhary, Jiatao Gu, Angela Fan. 1. **[MEGA](https://huggingface.co/docs/transformers/model_doc/mega)** (from Meta/USC/CMU/SJTU) released with the paper [Mega: Moving Average Equipped Gated Attention](https://arxiv.org/abs/2209.10655) by Xuezhe Ma, Chunting Zhou, Xiang Kong, Junxian He, Liangke Gui, Graham Neubig, Jonathan May, and Luke Zettlemoyer. 1. **[Megatron-BERT](https://huggingface.co/docs/transformers/model_doc/megatron-bert)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro. 1. **[Megatron-GPT2](https://huggingface.co/docs/transformers/model_doc/megatron_gpt2)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro. 1. **[MGP-STR](https://huggingface.co/docs/transformers/model_doc/mgp-str)** (from Alibaba Research) released with the paper [Multi-Granularity Prediction for Scene Text Recognition](https://arxiv.org/abs/2209.03592) by Peng Wang, Cheng Da, and Cong Yao. 1. **[mLUKE](https://huggingface.co/docs/transformers/model_doc/mluke)** (from Studio Ousia) released with the paper [mLUKE: The Power of Entity Representations in Multilingual Pretrained Language Models](https://arxiv.org/abs/2110.08151) by Ryokan Ri, Ikuya Yamada, and Yoshimasa Tsuruoka. 1. **[MMS](https://huggingface.co/docs/transformers/model_doc/mms)** (from Facebook) released with the paper [Scaling Speech Technology to 1,000+ Languages](https://arxiv.org/abs/2305.13516) by Vineel Pratap, Andros Tjandra, Bowen Shi, Paden Tomasello, Arun Babu, Sayani Kundu, Ali Elkahky, Zhaoheng Ni, Apoorv Vyas, Maryam Fazel-Zarandi, Alexei Baevski, Yossi Adi, Xiaohui Zhang, Wei-Ning Hsu, Alexis Conneau, Michael Auli. 1. **[MobileBERT](https://huggingface.co/docs/transformers/model_doc/mobilebert)** (from CMU/Google Brain) released with the paper [MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices](https://arxiv.org/abs/2004.02984) by Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou. 1. **[MobileNetV1](https://huggingface.co/docs/transformers/model_doc/mobilenet_v1)** (from Google Inc.) released with the paper [MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications](https://arxiv.org/abs/1704.04861) by Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam. 1. **[MobileNetV2](https://huggingface.co/docs/transformers/model_doc/mobilenet_v2)** (from Google Inc.) released with the paper [MobileNetV2: Inverted Residuals and Linear Bottlenecks](https://arxiv.org/abs/1801.04381) by Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen. 1. **[MobileViT](https://huggingface.co/docs/transformers/model_doc/mobilevit)** (from Apple) released with the paper [MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer](https://arxiv.org/abs/2110.02178) by Sachin Mehta and Mohammad Rastegari. 1. **[MobileViTV2](https://huggingface.co/docs/transformers/model_doc/mobilevitv2)** (from Apple) released with the paper [Separable Self-attention for Mobile Vision Transformers](https://arxiv.org/abs/2206.02680) by Sachin Mehta and Mohammad Rastegari. 1. **[MPNet](https://huggingface.co/docs/transformers/model_doc/mpnet)** (from Microsoft Research) released with the paper [MPNet: Masked and Permuted Pre-training for Language Understanding](https://arxiv.org/abs/2004.09297) by Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu. 1. **[MPT](https://huggingface.co/docs/transformers/model_doc/mpt)** (from MosaiML) released with the repository [llm-foundry](https://github.com/mosaicml/llm-foundry/) by the MosaicML NLP Team. 1. **[MRA](https://huggingface.co/docs/transformers/model_doc/mra)** (from the University of Wisconsin - Madison) released with the paper [Multi Resolution Analysis (MRA) for Approximate Self-Attention](https://arxiv.org/abs/2207.10284) by Zhanpeng Zeng, Sourav Pal, Jeffery Kline, Glenn M Fung, Vikas Singh. 1. **[MT5](https://huggingface.co/docs/transformers/model_doc/mt5)** (from Google AI) released with the paper [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934) by Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel. 1. **[MusicGen](https://huggingface.co/docs/transformers/model_doc/musicgen)** (from Meta) released with the paper [Simple and Controllable Music Generation](https://arxiv.org/abs/2306.05284) by Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi and Alexandre Défossez. 1. **[MVP](https://huggingface.co/docs/transformers/model_doc/mvp)** (from RUC AI Box) released with the paper [MVP: Multi-task Supervised Pre-training for Natural Language Generation](https://arxiv.org/abs/2206.12131) by Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen. 1. **[NAT](https://huggingface.co/docs/transformers/model_doc/nat)** (from SHI Labs) released with the paper [Neighborhood Attention Transformer](https://arxiv.org/abs/2204.07143) by Ali Hassani, Steven Walton, Jiachen Li, Shen Li, and Humphrey Shi. 1. **[Nezha](https://huggingface.co/docs/transformers/model_doc/nezha)** (from Huawei Noah’s Ark Lab) released with the paper [NEZHA: Neural Contextualized Representation for Chinese Language Understanding](https://arxiv.org/abs/1909.00204) by Junqiu Wei, Xiaozhe Ren, Xiaoguang Li, Wenyong Huang, Yi Liao, Yasheng Wang, Jiashu Lin, Xin Jiang, Xiao Chen and Qun Liu. 1. **[NLLB](https://huggingface.co/docs/transformers/model_doc/nllb)** (from Meta) released with the paper [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) by the NLLB team. 1. **[NLLB-MOE](https://huggingface.co/docs/transformers/model_doc/nllb-moe)** (from Meta) released with the paper [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) by the NLLB team. 1. **[Nyströmformer](https://huggingface.co/docs/transformers/model_doc/nystromformer)** (from the University of Wisconsin - Madison) released with the paper [Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention](https://arxiv.org/abs/2102.03902) by Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, Vikas Singh. 1. **[OneFormer](https://huggingface.co/docs/transformers/model_doc/oneformer)** (from SHI Labs) released with the paper [OneFormer: One Transformer to Rule Universal Image Segmentation](https://arxiv.org/abs/2211.06220) by Jitesh Jain, Jiachen Li, MangTik Chiu, Ali Hassani, Nikita Orlov, Humphrey Shi. 1. **[OpenLlama](https://huggingface.co/docs/transformers/model_doc/open-llama)** (from [s-JoL](https://huggingface.co/s-JoL)) released on GitHub (now removed). 1. **[OPT](https://huggingface.co/docs/transformers/master/model_doc/opt)** (from Meta AI) released with the paper [OPT: Open Pre-trained Transformer Language Models](https://arxiv.org/abs/2205.01068) by Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen et al. 1. **[OWL-ViT](https://huggingface.co/docs/transformers/model_doc/owlvit)** (from Google AI) released with the paper [Simple Open-Vocabulary Object Detection with Vision Transformers](https://arxiv.org/abs/2205.06230) by Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, Xiao Wang, Xiaohua Zhai, Thomas Kipf, and Neil Houlsby. 1. **[Pegasus](https://huggingface.co/docs/transformers/model_doc/pegasus)** (from Google) released with the paper [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777) by Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu. 1. **[PEGASUS-X](https://huggingface.co/docs/transformers/model_doc/pegasus_x)** (from Google) released with the paper [Investigating Efficiently Extending Transformers for Long Input Summarization](https://arxiv.org/abs/2208.04347) by Jason Phang, Yao Zhao, and Peter J. Liu. 1. **[Perceiver IO](https://huggingface.co/docs/transformers/model_doc/perceiver)** (from Deepmind) released with the paper [Perceiver IO: A General Architecture for Structured Inputs & Outputs](https://arxiv.org/abs/2107.14795) by Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu, David Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, Olivier Hénaff, Matthew M. Botvinick, Andrew Zisserman, Oriol Vinyals, João Carreira. 1. **[Persimmon](https://huggingface.co/docs/transformers/main/model_doc/persimmon)** (from ADEPT) released in a [blog post](https://www.adept.ai/blog/persimmon-8b) by Erich Elsen, Augustus Odena, Maxwell Nye, Sağnak Taşırlar, Tri Dao, Curtis Hawthorne, Deepak Moparthi, Arushi Somani. 1. **[Phi](https://huggingface.co/docs/main/transformers/model_doc/phi)** (from Microsoft Research) released with the papers - [Textbooks Are All You Need](https://arxiv.org/abs/2306.11644) by Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio César Teodoro Mendes, Allie Del Giorno, Sivakanth Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo de Rosa, Olli Saarikivi, Adil Salim, Shital Shah, Harkirat Singh Behl, Xin Wang, Sébastien Bubeck, Ronen Eldan, Adam Tauman Kalai, Yin Tat Lee and Yuanzhi Li, [Textbooks Are All You Need II: phi-1.5 technical report](https://arxiv.org/abs/2309.05463) by Yuanzhi Li, Sébastien Bubeck, Ronen Eldan, Allie Del Giorno, Suriya Gunasekar and Yin Tat Lee. 1. **[PhoBERT](https://huggingface.co/docs/transformers/model_doc/phobert)** (from VinAI Research) released with the paper [PhoBERT: Pre-trained language models for Vietnamese](https://www.aclweb.org/anthology/2020.findings-emnlp.92/) by Dat Quoc Nguyen and Anh Tuan Nguyen. 1. **[Pix2Struct](https://huggingface.co/docs/transformers/model_doc/pix2struct)** (from Google) released with the paper [Pix2Struct: Screenshot Parsing as Pretraining for Visual Language Understanding](https://arxiv.org/abs/2210.03347) by Kenton Lee, Mandar Joshi, Iulia Turc, Hexiang Hu, Fangyu Liu, Julian Eisenschlos, Urvashi Khandelwal, Peter Shaw, Ming-Wei Chang, Kristina Toutanova. 1. **[PLBart](https://huggingface.co/docs/transformers/model_doc/plbart)** (from UCLA NLP) released with the paper [Unified Pre-training for Program Understanding and Generation](https://arxiv.org/abs/2103.06333) by Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, Kai-Wei Chang. 1. **[PoolFormer](https://huggingface.co/docs/transformers/model_doc/poolformer)** (from Sea AI Labs) released with the paper [MetaFormer is Actually What You Need for Vision](https://arxiv.org/abs/2111.11418) by Yu, Weihao and Luo, Mi and Zhou, Pan and Si, Chenyang and Zhou, Yichen and Wang, Xinchao and Feng, Jiashi and Yan, Shuicheng. 1. **[Pop2Piano](https://huggingface.co/docs/transformers/model_doc/pop2piano)** released with the paper [Pop2Piano : Pop Audio-based Piano Cover Generation](https://arxiv.org/abs/2211.00895) by Jongho Choi and Kyogu Lee. 1. **[ProphetNet](https://huggingface.co/docs/transformers/model_doc/prophetnet)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou. 1. **[PVT](https://huggingface.co/docs/transformers/model_doc/pvt)** (from Nanjing University, The University of Hong Kong etc.) released with the paper [Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions](https://arxiv.org/pdf/2102.12122.pdf) by Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao. 1. **[QDQBert](https://huggingface.co/docs/transformers/model_doc/qdqbert)** (from NVIDIA) released with the paper [Integer Quantization for Deep Learning Inference: Principles and Empirical Evaluation](https://arxiv.org/abs/2004.09602) by Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev and Paulius Micikevicius. 1. **[RAG](https://huggingface.co/docs/transformers/model_doc/rag)** (from Facebook) released with the paper [Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks](https://arxiv.org/abs/2005.11401) by Patrick Lewis, Ethan Perez, Aleksandara Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, Douwe Kiela. 1. **[REALM](https://huggingface.co/docs/transformers/model_doc/realm.html)** (from Google Research) released with the paper [REALM: Retrieval-Augmented Language Model Pre-Training](https://arxiv.org/abs/2002.08909) by Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat and Ming-Wei Chang. 1. **[Reformer](https://huggingface.co/docs/transformers/model_doc/reformer)** (from Google Research) released with the paper [Reformer: The Efficient Transformer](https://arxiv.org/abs/2001.04451) by Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya. 1. **[RegNet](https://huggingface.co/docs/transformers/model_doc/regnet)** (from META Platforms) released with the paper [Designing Network Design Space](https://arxiv.org/abs/2003.13678) by Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, Piotr Dollár. 1. **[RemBERT](https://huggingface.co/docs/transformers/model_doc/rembert)** (from Google Research) released with the paper [Rethinking embedding coupling in pre-trained language models](https://arxiv.org/abs/2010.12821) by Hyung Won Chung, Thibault Févry, Henry Tsai, M. Johnson, Sebastian Ruder. 1. **[ResNet](https://huggingface.co/docs/transformers/model_doc/resnet)** (from Microsoft Research) released with the paper [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) by Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun. 1. **[RoBERTa](https://huggingface.co/docs/transformers/model_doc/roberta)** (from Facebook), released together with the paper [RoBERTa: A Robustly Optimized BERT Pretraining Approach](https://arxiv.org/abs/1907.11692) by Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov. 1. **[RoBERTa-PreLayerNorm](https://huggingface.co/docs/transformers/model_doc/roberta-prelayernorm)** (from Facebook) released with the paper [fairseq: A Fast, Extensible Toolkit for Sequence Modeling](https://arxiv.org/abs/1904.01038) by Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier, Michael Auli. 1. **[RoCBert](https://huggingface.co/docs/transformers/model_doc/roc_bert)** (from WeChatAI) released with the paper [RoCBert: Robust Chinese Bert with Multimodal Contrastive Pretraining](https://aclanthology.org/2022.acl-long.65.pdf) by HuiSu, WeiweiShi, XiaoyuShen, XiaoZhou, TuoJi, JiaruiFang, JieZhou. 1. **[RoFormer](https://huggingface.co/docs/transformers/model_doc/roformer)** (from ZhuiyiTechnology), released together with the paper [RoFormer: Enhanced Transformer with Rotary Position Embedding](https://arxiv.org/abs/2104.09864) by Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu. 1. **[RWKV](https://huggingface.co/docs/transformers/model_doc/rwkv)** (from Bo Peng), released on [this repo](https://github.com/BlinkDL/RWKV-LM) by Bo Peng. 1. **[SegFormer](https://huggingface.co/docs/transformers/model_doc/segformer)** (from NVIDIA) released with the paper [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203) by Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M. Alvarez, Ping Luo. 1. **[Segment Anything](https://huggingface.co/docs/transformers/model_doc/sam)** (from Meta AI) released with the paper [Segment Anything](https://arxiv.org/pdf/2304.02643v1.pdf) by Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer Whitehead, Alex Berg, Wan-Yen Lo, Piotr Dollar, Ross Girshick. 1. **[SEW](https://huggingface.co/docs/transformers/model_doc/sew)** (from ASAPP) released with the paper [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi. 1. **[SEW-D](https://huggingface.co/docs/transformers/model_doc/sew_d)** (from ASAPP) released with the paper [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi. 1. **[SpeechT5](https://huggingface.co/docs/transformers/model_doc/speecht5)** (from Microsoft Research) released with the paper [SpeechT5: Unified-Modal Encoder-Decoder Pre-Training for Spoken Language Processing](https://arxiv.org/abs/2110.07205) by Junyi Ao, Rui Wang, Long Zhou, Chengyi Wang, Shuo Ren, Yu Wu, Shujie Liu, Tom Ko, Qing Li, Yu Zhang, Zhihua Wei, Yao Qian, Jinyu Li, Furu Wei. 1. **[SpeechToTextTransformer](https://huggingface.co/docs/transformers/model_doc/speech_to_text)** (from Facebook), released together with the paper [fairseq S2T: Fast Speech-to-Text Modeling with fairseq](https://arxiv.org/abs/2010.05171) by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Dmytro Okhonko, Juan Pino. 1. **[SpeechToTextTransformer2](https://huggingface.co/docs/transformers/model_doc/speech_to_text_2)** (from Facebook), released together with the paper [Large-Scale Self- and Semi-Supervised Learning for Speech Translation](https://arxiv.org/abs/2104.06678) by Changhan Wang, Anne Wu, Juan Pino, Alexei Baevski, Michael Auli, Alexis Conneau. 1. **[Splinter](https://huggingface.co/docs/transformers/model_doc/splinter)** (from Tel Aviv University), released together with the paper [Few-Shot Question Answering by Pretraining Span Selection](https://arxiv.org/abs/2101.00438) by Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Globerson, Omer Levy. 1. **[SqueezeBERT](https://huggingface.co/docs/transformers/model_doc/squeezebert)** (from Berkeley) released with the paper [SqueezeBERT: What can computer vision teach NLP about efficient neural networks?](https://arxiv.org/abs/2006.11316) by Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer. 1. **[SwiftFormer](https://huggingface.co/docs/transformers/model_doc/swiftformer)** (from MBZUAI) released with the paper [SwiftFormer: Efficient Additive Attention for Transformer-based Real-time Mobile Vision Applications](https://arxiv.org/abs/2303.15446) by Abdelrahman Shaker, Muhammad Maaz, Hanoona Rasheed, Salman Khan, Ming-Hsuan Yang, Fahad Shahbaz Khan. 1. **[Swin Transformer](https://huggingface.co/docs/transformers/model_doc/swin)** (from Microsoft) released with the paper [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030) by Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo. 1. **[Swin Transformer V2](https://huggingface.co/docs/transformers/model_doc/swinv2)** (from Microsoft) released with the paper [Swin Transformer V2: Scaling Up Capacity and Resolution](https://arxiv.org/abs/2111.09883) by Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong, Furu Wei, Baining Guo. 1. **[Swin2SR](https://huggingface.co/docs/transformers/model_doc/swin2sr)** (from University of Würzburg) released with the paper [Swin2SR: SwinV2 Transformer for Compressed Image Super-Resolution and Restoration](https://arxiv.org/abs/2209.11345) by Marcos V. Conde, Ui-Jin Choi, Maxime Burchi, Radu Timofte. 1. **[SwitchTransformers](https://huggingface.co/docs/transformers/model_doc/switch_transformers)** (from Google) released with the paper [Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity](https://arxiv.org/abs/2101.03961) by William Fedus, Barret Zoph, Noam Shazeer. 1. **[T5](https://huggingface.co/docs/transformers/model_doc/t5)** (from Google AI) released with the paper [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/abs/1910.10683) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu. 1. **[T5v1.1](https://huggingface.co/docs/transformers/model_doc/t5v1.1)** (from Google AI) released in the repository [google-research/text-to-text-transfer-transformer](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#t511) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu. 1. **[Table Transformer](https://huggingface.co/docs/transformers/model_doc/table-transformer)** (from Microsoft Research) released with the paper [PubTables-1M: Towards Comprehensive Table Extraction From Unstructured Documents](https://arxiv.org/abs/2110.00061) by Brandon Smock, Rohith Pesala, Robin Abraham. 1. **[TAPAS](https://huggingface.co/docs/transformers/model_doc/tapas)** (from Google AI) released with the paper [TAPAS: Weakly Supervised Table Parsing via Pre-training](https://arxiv.org/abs/2004.02349) by Jonathan Herzig, Paweł Krzysztof Nowak, Thomas Müller, Francesco Piccinno and Julian Martin Eisenschlos. 1. **[TAPEX](https://huggingface.co/docs/transformers/model_doc/tapex)** (from Microsoft Research) released with the paper [TAPEX: Table Pre-training via Learning a Neural SQL Executor](https://arxiv.org/abs/2107.07653) by Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi Lin, Weizhu Chen, Jian-Guang Lou. 1. **[Time Series Transformer](https://huggingface.co/docs/transformers/model_doc/time_series_transformer)** (from HuggingFace). 1. **[TimeSformer](https://huggingface.co/docs/transformers/model_doc/timesformer)** (from Facebook) released with the paper [Is Space-Time Attention All You Need for Video Understanding?](https://arxiv.org/abs/2102.05095) by Gedas Bertasius, Heng Wang, Lorenzo Torresani. 1. **[Trajectory Transformer](https://huggingface.co/docs/transformers/model_doc/trajectory_transformers)** (from the University of California at Berkeley) released with the paper [Offline Reinforcement Learning as One Big Sequence Modeling Problem](https://arxiv.org/abs/2106.02039) by Michael Janner, Qiyang Li, Sergey Levine 1. **[Transformer-XL](https://huggingface.co/docs/transformers/model_doc/transfo-xl)** (from Google/CMU) released with the paper [Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context](https://arxiv.org/abs/1901.02860) by Zihang Dai*, Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov. 1. **[TrOCR](https://huggingface.co/docs/transformers/model_doc/trocr)** (from Microsoft), released together with the paper [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282) by Minghao Li, Tengchao Lv, Lei Cui, Yijuan Lu, Dinei Florencio, Cha Zhang, Zhoujun Li, Furu Wei. 1. **[TVLT](https://huggingface.co/docs/transformers/model_doc/tvlt)** (from UNC Chapel Hill) released with the paper [TVLT: Textless Vision-Language Transformer](https://arxiv.org/abs/2209.14156) by Zineng Tang, Jaemin Cho, Yixin Nie, Mohit Bansal. 1. **[UL2](https://huggingface.co/docs/transformers/model_doc/ul2)** (from Google Research) released with the paper [Unifying Language Learning Paradigms](https://arxiv.org/abs/2205.05131v1) by Yi Tay, Mostafa Dehghani, Vinh Q. Tran, Xavier Garcia, Dara Bahri, Tal Schuster, Huaixiu Steven Zheng, Neil Houlsby, Donald Metzler 1. **[UMT5](https://huggingface.co/docs/transformers/model_doc/umt5)** (from Google Research) released with the paper [UniMax: Fairer and More Effective Language Sampling for Large-Scale Multilingual Pretraining](https://openreview.net/forum?id=kXwdL1cWOAi) by Hyung Won Chung, Xavier Garcia, Adam Roberts, Yi Tay, Orhan Firat, Sharan Narang, Noah Constant. 1. **[UniSpeech](https://huggingface.co/docs/transformers/model_doc/unispeech)** (from Microsoft Research) released with the paper [UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data](https://arxiv.org/abs/2101.07597) by Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang. 1. **[UniSpeechSat](https://huggingface.co/docs/transformers/model_doc/unispeech-sat)** (from Microsoft Research) released with the paper [UNISPEECH-SAT: UNIVERSAL SPEECH REPRESENTATION LEARNING WITH SPEAKER AWARE PRE-TRAINING](https://arxiv.org/abs/2110.05752) by Sanyuan Chen, Yu Wu, Chengyi Wang, Zhengyang Chen, Zhuo Chen, Shujie Liu, Jian Wu, Yao Qian, Furu Wei, Jinyu Li, Xiangzhan Yu. 1. **[UPerNet](https://huggingface.co/docs/transformers/model_doc/upernet)** (from Peking University) released with the paper [Unified Perceptual Parsing for Scene Understanding](https://arxiv.org/abs/1807.10221) by Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, Jian Sun. 1. **[VAN](https://huggingface.co/docs/transformers/model_doc/van)** (from Tsinghua University and Nankai University) released with the paper [Visual Attention Network](https://arxiv.org/abs/2202.09741) by Meng-Hao Guo, Cheng-Ze Lu, Zheng-Ning Liu, Ming-Ming Cheng, Shi-Min Hu. 1. **[VideoMAE](https://huggingface.co/docs/transformers/model_doc/videomae)** (from Multimedia Computing Group, Nanjing University) released with the paper [VideoMAE: Masked Autoencoders are Data-Efficient Learners for Self-Supervised Video Pre-Training](https://arxiv.org/abs/2203.12602) by Zhan Tong, Yibing Song, Jue Wang, Limin Wang. 1. **[ViLT](https://huggingface.co/docs/transformers/model_doc/vilt)** (from NAVER AI Lab/Kakao Enterprise/Kakao Brain) released with the paper [ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision](https://arxiv.org/abs/2102.03334) by Wonjae Kim, Bokyung Son, Ildoo Kim. 1. **[Vision Transformer (ViT)](https://huggingface.co/docs/transformers/model_doc/vit)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby. 1. **[VisualBERT](https://huggingface.co/docs/transformers/model_doc/visual_bert)** (from UCLA NLP) released with the paper [VisualBERT: A Simple and Performant Baseline for Vision and Language](https://arxiv.org/pdf/1908.03557) by Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang. 1. **[ViT Hybrid](https://huggingface.co/docs/transformers/model_doc/vit_hybrid)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby. 1. **[VitDet](https://huggingface.co/docs/transformers/model_doc/vitdet)** (from Meta AI) released with the paper [Exploring Plain Vision Transformer Backbones for Object Detection](https://arxiv.org/abs/2203.16527) by Yanghao Li, Hanzi Mao, Ross Girshick, Kaiming He. 1. **[ViTMAE](https://huggingface.co/docs/transformers/model_doc/vit_mae)** (from Meta AI) released with the paper [Masked Autoencoders Are Scalable Vision Learners](https://arxiv.org/abs/2111.06377) by Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick. 1. **[ViTMatte](https://huggingface.co/docs/transformers/main/model_doc/vitmatte)** (from HUST-VL) rreleased with the paper [ViTMatte: Boosting Image Matting with Pretrained Plain Vision Transformers](https://arxiv.org/abs/2305.15272) by Jingfeng Yao, Xinggang Wang, Shusheng Yang, Baoyuan Wang. 1. **[ViTMSN](https://huggingface.co/docs/transformers/model_doc/vit_msn)** (from Meta AI) released with the paper [Masked Siamese Networks for Label-Efficient Learning](https://arxiv.org/abs/2204.07141) by Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bojanowski, Florian Bordes, Pascal Vincent, Armand Joulin, Michael Rabbat, Nicolas Ballas. 1. **[VITS](https://huggingface.co/docs/transformers/model_doc/vits)** (from Kakao Enterprise) released with the paper [Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech](https://arxiv.org/abs/2106.06103) by Jaehyeon Kim, Jungil Kong, Juhee Son. 1. **[ViViT](https://huggingface.co/docs/transformers/model_doc/vivit)** (from Google Research) released with the paper [ViViT: A Video Vision Transformer](https://arxiv.org/abs/2103.15691) by Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lučić, Cordelia Schmid. 1. **[Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/wav2vec2)** (from Facebook AI) released with the paper [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations](https://arxiv.org/abs/2006.11477) by Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli. 1. **[Wav2Vec2-Conformer](https://huggingface.co/docs/transformers/model_doc/wav2vec2-conformer)** (from Facebook AI) released with the paper [FAIRSEQ S2T: Fast Speech-to-Text Modeling with FAIRSEQ](https://arxiv.org/abs/2010.05171) by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Sravya Popuri, Dmytro Okhonko, Juan Pino. 1. **[Wav2Vec2Phoneme](https://huggingface.co/docs/transformers/model_doc/wav2vec2_phoneme)** (from Facebook AI) released with the paper [Simple and Effective Zero-shot Cross-lingual Phoneme Recognition](https://arxiv.org/abs/2109.11680) by Qiantong Xu, Alexei Baevski, Michael Auli. 1. **[WavLM](https://huggingface.co/docs/transformers/model_doc/wavlm)** (from Microsoft Research) released with the paper [WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing](https://arxiv.org/abs/2110.13900) by Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki Kanda, Takuya Yoshioka, Xiong Xiao, Jian Wu, Long Zhou, Shuo Ren, Yanmin Qian, Yao Qian, Jian Wu, Michael Zeng, Furu Wei. 1. **[Whisper](https://huggingface.co/docs/transformers/model_doc/whisper)** (from OpenAI) released with the paper [Robust Speech Recognition via Large-Scale Weak Supervision](https://cdn.openai.com/papers/whisper.pdf) by Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, Ilya Sutskever. 1. **[X-CLIP](https://huggingface.co/docs/transformers/model_doc/xclip)** (from Microsoft Research) released with the paper [Expanding Language-Image Pretrained Models for General Video Recognition](https://arxiv.org/abs/2208.02816) by Bolin Ni, Houwen Peng, Minghao Chen, Songyang Zhang, Gaofeng Meng, Jianlong Fu, Shiming Xiang, Haibin Ling. 1. **[X-MOD](https://huggingface.co/docs/transformers/model_doc/xmod)** (from Meta AI) released with the paper [Lifting the Curse of Multilinguality by Pre-training Modular Transformers](http://dx.doi.org/10.18653/v1/2022.naacl-main.255) by Jonas Pfeiffer, Naman Goyal, Xi Lin, Xian Li, James Cross, Sebastian Riedel, Mikel Artetxe. 1. **[XGLM](https://huggingface.co/docs/transformers/model_doc/xglm)** (From Facebook AI) released with the paper [Few-shot Learning with Multilingual Language Models](https://arxiv.org/abs/2112.10668) by Xi Victoria Lin, Todor Mihaylov, Mikel Artetxe, Tianlu Wang, Shuohui Chen, Daniel Simig, Myle Ott, Naman Goyal, Shruti Bhosale, Jingfei Du, Ramakanth Pasunuru, Sam Shleifer, Punit Singh Koura, Vishrav Chaudhary, Brian O'Horo, Jeff Wang, Luke Zettlemoyer, Zornitsa Kozareva, Mona Diab, Veselin Stoyanov, Xian Li. 1. **[XLM](https://huggingface.co/docs/transformers/model_doc/xlm)** (from Facebook) released together with the paper [Cross-lingual Language Model Pretraining](https://arxiv.org/abs/1901.07291) by Guillaume Lample and Alexis Conneau. 1. **[XLM-ProphetNet](https://huggingface.co/docs/transformers/model_doc/xlm-prophetnet)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou. 1. **[XLM-RoBERTa](https://huggingface.co/docs/transformers/model_doc/xlm-roberta)** (from Facebook AI), released together with the paper [Unsupervised Cross-lingual Representation Learning at Scale](https://arxiv.org/abs/1911.02116) by Alexis Conneau*, Kartikay Khandelwal*, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer and Veselin Stoyanov. 1. **[XLM-RoBERTa-XL](https://huggingface.co/docs/transformers/model_doc/xlm-roberta-xl)** (from Facebook AI), released together with the paper [Larger-Scale Transformers for Multilingual Masked Language Modeling](https://arxiv.org/abs/2105.00572) by Naman Goyal, Jingfei Du, Myle Ott, Giri Anantharaman, Alexis Conneau. 1. **[XLM-V](https://huggingface.co/docs/transformers/model_doc/xlm-v)** (from Meta AI) released with the paper [XLM-V: Overcoming the Vocabulary Bottleneck in Multilingual Masked Language Models](https://arxiv.org/abs/2301.10472) by Davis Liang, Hila Gonen, Yuning Mao, Rui Hou, Naman Goyal, Marjan Ghazvininejad, Luke Zettlemoyer, Madian Khabsa. 1. **[XLNet](https://huggingface.co/docs/transformers/model_doc/xlnet)** (from Google/CMU) released with the paper [​XLNet: Generalized Autoregressive Pretraining for Language Understanding](https://arxiv.org/abs/1906.08237) by Zhilin Yang*, Zihang Dai*, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le. 1. **[XLS-R](https://huggingface.co/docs/transformers/model_doc/xls_r)** (from Facebook AI) released with the paper [XLS-R: Self-supervised Cross-lingual Speech Representation Learning at Scale](https://arxiv.org/abs/2111.09296) by Arun Babu, Changhan Wang, Andros Tjandra, Kushal Lakhotia, Qiantong Xu, Naman Goyal, Kritika Singh, Patrick von Platen, Yatharth Saraf, Juan Pino, Alexei Baevski, Alexis Conneau, Michael Auli. 1. **[XLSR-Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/xlsr_wav2vec2)** (from Facebook AI) released with the paper [Unsupervised Cross-Lingual Representation Learning For Speech Recognition](https://arxiv.org/abs/2006.13979) by Alexis Conneau, Alexei Baevski, Ronan Collobert, Abdelrahman Mohamed, Michael Auli. 1. **[YOLOS](https://huggingface.co/docs/transformers/model_doc/yolos)** (from Huazhong University of Science & Technology) released with the paper [You Only Look at One Sequence: Rethinking Transformer in Vision through Object Detection](https://arxiv.org/abs/2106.00666) by Yuxin Fang, Bencheng Liao, Xinggang Wang, Jiemin Fang, Jiyang Qi, Rui Wu, Jianwei Niu, Wenyu Liu. 1. **[YOSO](https://huggingface.co/docs/transformers/model_doc/yoso)** (from the University of Wisconsin - Madison) released with the paper [You Only Sample (Almost) Once: Linear Cost Self-Attention Via Bernoulli Sampling](https://arxiv.org/abs/2111.09714) by Zhanpeng Zeng, Yunyang Xiong, Sathya N. Ravi, Shailesh Acharya, Glenn Fung, Vikas Singh. 1. Want to contribute a new model? We have added a **detailed guide and templates** to guide you in the process of adding a new model. You can find them in the [`templates`](./templates) folder of the repository. Be sure to check the [contributing guidelines](./CONTRIBUTING.md) and contact the maintainers or open an issue to collect feedbacks before starting your PR. Чтобы проверить, есть ли у каждой модели реализация на Flax, PyTorch или TensorFlow, или связанный с ней токенизатор, поддерживаемый библиотекой 🤗 Tokenizers, обратитесь к [этой таблице](https://huggingface.co/docs/transformers/index#supported-frameworks). Эти реализации были протестированы на нескольких наборах данных (см. примеры скриптов) и должны соответствовать производительности оригинальных реализаций. Более подробную информацию о производительности можно найти в разделе "Примеры" [документации](https://github.com/huggingface/transformers/tree/main/examples). ## Изучи больше | Секция | Описание | |-|-| | [Документация](https://huggingface.co/docs/transformers/) | Полная документация по API и гайды | | [Краткие описания задач](https://huggingface.co/docs/transformers/task_summary) | Задачи поддерживаются 🤗 Transformers | | [Пособие по предварительной обработке](https://huggingface.co/docs/transformers/preprocessing) | Использование класса `Tokenizer` для подготовки данных для моделей | | [Обучение и доработка](https://huggingface.co/docs/transformers/training) | Использование моделей, предоставляемых 🤗 Transformers, в цикле обучения PyTorch/TensorFlow и API `Trainer`. | | [Быстрый тур: Тонкая настройка/скрипты использования](https://github.com/huggingface/transformers/tree/main/examples) | Примеры скриптов для тонкой настройки моделей на широком спектре задач | | [Совместное использование и загрузка моделей](https://huggingface.co/docs/transformers/model_sharing) | Загружайте и делитесь с сообществом своими доработанными моделями | ## Цитирование Теперь у нас есть [статья](https://www.aclweb.org/anthology/2020.emnlp-demos.6/), которую можно цитировать для библиотеки 🤗 Transformers: ```bibtex @inproceedings{wolf-etal-2020-transformers, title = "Transformers: State-of-the-Art Natural Language Processing", author = "Thomas Wolf and Lysandre Debut and Victor Sanh and Julien Chaumond and Clement Delangue and Anthony Moi and Pierric Cistac and Tim Rault and Rémi Louf and Morgan Funtowicz and Joe Davison and Sam Shleifer and Patrick von Platen and Clara Ma and Yacine Jernite and Julien Plu and Canwen Xu and Teven Le Scao and Sylvain Gugger and Mariama Drame and Quentin Lhoest and Alexander M. Rush", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations", month = oct, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.emnlp-demos.6", pages = "38--45" } ```
huggingface/transformers/blob/main/README_ru.md
!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Share a model The last two tutorials showed how you can fine-tune a model with PyTorch, Keras, and 🤗 Accelerate for distributed setups. The next step is to share your model with the community! At Hugging Face, we believe in openly sharing knowledge and resources to democratize artificial intelligence for everyone. We encourage you to consider sharing your model with the community to help others save time and resources. In this tutorial, you will learn two methods for sharing a trained or fine-tuned model on the [Model Hub](https://huggingface.co/models): - Programmatically push your files to the Hub. - Drag-and-drop your files to the Hub with the web interface. <iframe width="560" height="315" src="https://www.youtube.com/embed/XvSGPZFEjDY" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe> <Tip> To share a model with the community, you need an account on [huggingface.co](https://huggingface.co/join). You can also join an existing organization or create a new one. </Tip> ## Repository features Each repository on the Model Hub behaves like a typical GitHub repository. Our repositories offer versioning, commit history, and the ability to visualize differences. The Model Hub's built-in versioning is based on git and [git-lfs](https://git-lfs.github.com/). In other words, you can treat one model as one repository, enabling greater access control and scalability. Version control allows *revisions*, a method for pinning a specific version of a model with a commit hash, tag or branch. As a result, you can load a specific model version with the `revision` parameter: ```py >>> model = AutoModel.from_pretrained( ... "julien-c/EsperBERTo-small", revision="v2.0.1" # tag name, or branch name, or commit hash ... ) ``` Files are also easily edited in a repository, and you can view the commit history as well as the difference: ![vis_diff](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/vis_diff.png) ## Setup Before sharing a model to the Hub, you will need your Hugging Face credentials. If you have access to a terminal, run the following command in the virtual environment where 🤗 Transformers is installed. This will store your access token in your Hugging Face cache folder (`~/.cache/` by default): ```bash huggingface-cli login ``` If you are using a notebook like Jupyter or Colaboratory, make sure you have the [`huggingface_hub`](https://huggingface.co/docs/hub/adding-a-library) library installed. This library allows you to programmatically interact with the Hub. ```bash pip install huggingface_hub ``` Then use `notebook_login` to sign-in to the Hub, and follow the link [here](https://huggingface.co/settings/token) to generate a token to login with: ```py >>> from huggingface_hub import notebook_login >>> notebook_login() ``` ## Convert a model for all frameworks To ensure your model can be used by someone working with a different framework, we recommend you convert and upload your model with both PyTorch and TensorFlow checkpoints. While users are still able to load your model from a different framework if you skip this step, it will be slower because 🤗 Transformers will need to convert the checkpoint on-the-fly. Converting a checkpoint for another framework is easy. Make sure you have PyTorch and TensorFlow installed (see [here](installation) for installation instructions), and then find the specific model for your task in the other framework. <frameworkcontent> <pt> Specify `from_tf=True` to convert a checkpoint from TensorFlow to PyTorch: ```py >>> pt_model = DistilBertForSequenceClassification.from_pretrained("path/to/awesome-name-you-picked", from_tf=True) >>> pt_model.save_pretrained("path/to/awesome-name-you-picked") ``` </pt> <tf> Specify `from_pt=True` to convert a checkpoint from PyTorch to TensorFlow: ```py >>> tf_model = TFDistilBertForSequenceClassification.from_pretrained("path/to/awesome-name-you-picked", from_pt=True) ``` Then you can save your new TensorFlow model with its new checkpoint: ```py >>> tf_model.save_pretrained("path/to/awesome-name-you-picked") ``` </tf> <jax> If a model is available in Flax, you can also convert a checkpoint from PyTorch to Flax: ```py >>> flax_model = FlaxDistilBertForSequenceClassification.from_pretrained( ... "path/to/awesome-name-you-picked", from_pt=True ... ) ``` </jax> </frameworkcontent> ## Push a model during training <frameworkcontent> <pt> <Youtube id="Z1-XMy-GNLQ"/> Sharing a model to the Hub is as simple as adding an extra parameter or callback. Remember from the [fine-tuning tutorial](training), the [`TrainingArguments`] class is where you specify hyperparameters and additional training options. One of these training options includes the ability to push a model directly to the Hub. Set `push_to_hub=True` in your [`TrainingArguments`]: ```py >>> training_args = TrainingArguments(output_dir="my-awesome-model", push_to_hub=True) ``` Pass your training arguments as usual to [`Trainer`]: ```py >>> trainer = Trainer( ... model=model, ... args=training_args, ... train_dataset=small_train_dataset, ... eval_dataset=small_eval_dataset, ... compute_metrics=compute_metrics, ... ) ``` After you fine-tune your model, call [`~transformers.Trainer.push_to_hub`] on [`Trainer`] to push the trained model to the Hub. 🤗 Transformers will even automatically add training hyperparameters, training results and framework versions to your model card! ```py >>> trainer.push_to_hub() ``` </pt> <tf> Share a model to the Hub with [`PushToHubCallback`]. In the [`PushToHubCallback`] function, add: - An output directory for your model. - A tokenizer. - The `hub_model_id`, which is your Hub username and model name. ```py >>> from transformers import PushToHubCallback >>> push_to_hub_callback = PushToHubCallback( ... output_dir="./your_model_save_path", tokenizer=tokenizer, hub_model_id="your-username/my-awesome-model" ... ) ``` Add the callback to [`fit`](https://keras.io/api/models/model_training_apis/), and 🤗 Transformers will push the trained model to the Hub: ```py >>> model.fit(tf_train_dataset, validation_data=tf_validation_dataset, epochs=3, callbacks=push_to_hub_callback) ``` </tf> </frameworkcontent> ## Use the `push_to_hub` function You can also call `push_to_hub` directly on your model to upload it to the Hub. Specify your model name in `push_to_hub`: ```py >>> pt_model.push_to_hub("my-awesome-model") ``` This creates a repository under your username with the model name `my-awesome-model`. Users can now load your model with the `from_pretrained` function: ```py >>> from transformers import AutoModel >>> model = AutoModel.from_pretrained("your_username/my-awesome-model") ``` If you belong to an organization and want to push your model under the organization name instead, just add it to the `repo_id`: ```py >>> pt_model.push_to_hub("my-awesome-org/my-awesome-model") ``` The `push_to_hub` function can also be used to add other files to a model repository. For example, add a tokenizer to a model repository: ```py >>> tokenizer.push_to_hub("my-awesome-model") ``` Or perhaps you'd like to add the TensorFlow version of your fine-tuned PyTorch model: ```py >>> tf_model.push_to_hub("my-awesome-model") ``` Now when you navigate to your Hugging Face profile, you should see your newly created model repository. Clicking on the **Files** tab will display all the files you've uploaded to the repository. For more details on how to create and upload files to a repository, refer to the Hub documentation [here](https://huggingface.co/docs/hub/how-to-upstream). ## Upload with the web interface Users who prefer a no-code approach are able to upload a model through the Hub's web interface. Visit [huggingface.co/new](https://huggingface.co/new) to create a new repository: ![new_model_repo](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/new_model_repo.png) From here, add some information about your model: - Select the **owner** of the repository. This can be yourself or any of the organizations you belong to. - Pick a name for your model, which will also be the repository name. - Choose whether your model is public or private. - Specify the license usage for your model. Now click on the **Files** tab and click on the **Add file** button to upload a new file to your repository. Then drag-and-drop a file to upload and add a commit message. ![upload_file](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/upload_file.png) ## Add a model card To make sure users understand your model's capabilities, limitations, potential biases and ethical considerations, please add a model card to your repository. The model card is defined in the `README.md` file. You can add a model card by: * Manually creating and uploading a `README.md` file. * Clicking on the **Edit model card** button in your model repository. Take a look at the DistilBert [model card](https://huggingface.co/distilbert-base-uncased) for a good example of the type of information a model card should include. For more details about other options you can control in the `README.md` file such as a model's carbon footprint or widget examples, refer to the documentation [here](https://huggingface.co/docs/hub/models-cards).
huggingface/transformers/blob/main/docs/source/en/model_sharing.md
!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # TimeSformer ## Overview The TimeSformer model was proposed in [TimeSformer: Is Space-Time Attention All You Need for Video Understanding?](https://arxiv.org/abs/2102.05095) by Facebook Research. This work is a milestone in action-recognition field being the first video transformer. It inspired many transformer based video understanding and classification papers. The abstract from the paper is the following: *We present a convolution-free approach to video classification built exclusively on self-attention over space and time. Our method, named "TimeSformer," adapts the standard Transformer architecture to video by enabling spatiotemporal feature learning directly from a sequence of frame-level patches. Our experimental study compares different self-attention schemes and suggests that "divided attention," where temporal attention and spatial attention are separately applied within each block, leads to the best video classification accuracy among the design choices considered. Despite the radically new design, TimeSformer achieves state-of-the-art results on several action recognition benchmarks, including the best reported accuracy on Kinetics-400 and Kinetics-600. Finally, compared to 3D convolutional networks, our model is faster to train, it can achieve dramatically higher test efficiency (at a small drop in accuracy), and it can also be applied to much longer video clips (over one minute long). Code and models are available at: [this https URL](https://github.com/facebookresearch/TimeSformer).* This model was contributed by [fcakyon](https://huggingface.co/fcakyon). The original code can be found [here](https://github.com/facebookresearch/TimeSformer). ## Usage tips There are many pretrained variants. Select your pretrained model based on the dataset it is trained on. Moreover, the number of input frames per clip changes based on the model size so you should consider this parameter while selecting your pretrained model. ## Resources - [Video classification task guide](../tasks/video_classification) ## TimesformerConfig [[autodoc]] TimesformerConfig ## TimesformerModel [[autodoc]] TimesformerModel - forward ## TimesformerForVideoClassification [[autodoc]] TimesformerForVideoClassification - forward
huggingface/transformers/blob/main/docs/source/en/model_doc/timesformer.md
!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Swin Transformer V2 ## Overview The Swin Transformer V2 model was proposed in [Swin Transformer V2: Scaling Up Capacity and Resolution](https://arxiv.org/abs/2111.09883) by Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong, Furu Wei, Baining Guo. The abstract from the paper is the following: *Large-scale NLP models have been shown to significantly improve the performance on language tasks with no signs of saturation. They also demonstrate amazing few-shot capabilities like that of human beings. This paper aims to explore large-scale models in computer vision. We tackle three major issues in training and application of large vision models, including training instability, resolution gaps between pre-training and fine-tuning, and hunger on labelled data. Three main techniques are proposed: 1) a residual-post-norm method combined with cosine attention to improve training stability; 2) A log-spaced continuous position bias method to effectively transfer models pre-trained using low-resolution images to downstream tasks with high-resolution inputs; 3) A self-supervised pre-training method, SimMIM, to reduce the needs of vast labeled images. Through these techniques, this paper successfully trained a 3 billion-parameter Swin Transformer V2 model, which is the largest dense vision model to date, and makes it capable of training with images of up to 1,536×1,536 resolution. It set new performance records on 4 representative vision tasks, including ImageNet-V2 image classification, COCO object detection, ADE20K semantic segmentation, and Kinetics-400 video action classification. Also note our training is much more efficient than that in Google's billion-level visual models, which consumes 40 times less labelled data and 40 times less training time.* This model was contributed by [nandwalritik](https://huggingface.co/nandwalritik). The original code can be found [here](https://github.com/microsoft/Swin-Transformer). ## Resources A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with Swin Transformer v2. <PipelineTag pipeline="image-classification"/> - [`Swinv2ForImageClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/image-classification) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/image_classification.ipynb). - See also: [Image classification task guide](../tasks/image_classification) Besides that: - [`Swinv2ForMaskedImageModeling`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/image-pretraining). If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource. ## Swinv2Config [[autodoc]] Swinv2Config ## Swinv2Model [[autodoc]] Swinv2Model - forward ## Swinv2ForMaskedImageModeling [[autodoc]] Swinv2ForMaskedImageModeling - forward ## Swinv2ForImageClassification [[autodoc]] transformers.Swinv2ForImageClassification - forward
huggingface/transformers/blob/main/docs/source/en/model_doc/swinv2.md
!--Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # RemBERT ## Overview The RemBERT model was proposed in [Rethinking Embedding Coupling in Pre-trained Language Models](https://arxiv.org/abs/2010.12821) by Hyung Won Chung, Thibault Févry, Henry Tsai, Melvin Johnson, Sebastian Ruder. The abstract from the paper is the following: *We re-evaluate the standard practice of sharing weights between input and output embeddings in state-of-the-art pre-trained language models. We show that decoupled embeddings provide increased modeling flexibility, allowing us to significantly improve the efficiency of parameter allocation in the input embedding of multilingual models. By reallocating the input embedding parameters in the Transformer layers, we achieve dramatically better performance on standard natural language understanding tasks with the same number of parameters during fine-tuning. We also show that allocating additional capacity to the output embedding provides benefits to the model that persist through the fine-tuning stage even though the output embedding is discarded after pre-training. Our analysis shows that larger output embeddings prevent the model's last layers from overspecializing to the pre-training task and encourage Transformer representations to be more general and more transferable to other tasks and languages. Harnessing these findings, we are able to train models that achieve strong performance on the XTREME benchmark without increasing the number of parameters at the fine-tuning stage.* ## Usage tips For fine-tuning, RemBERT can be thought of as a bigger version of mBERT with an ALBERT-like factorization of the embedding layer. The embeddings are not tied in pre-training, in contrast with BERT, which enables smaller input embeddings (preserved during fine-tuning) and bigger output embeddings (discarded at fine-tuning). The tokenizer is also similar to the Albert one rather than the BERT one. ## Resources - [Text classification task guide](../tasks/sequence_classification) - [Token classification task guide](../tasks/token_classification) - [Question answering task guide](../tasks/question_answering) - [Causal language modeling task guide](../tasks/language_modeling) - [Masked language modeling task guide](../tasks/masked_language_modeling) - [Multiple choice task guide](../tasks/multiple_choice) ## RemBertConfig [[autodoc]] RemBertConfig ## RemBertTokenizer [[autodoc]] RemBertTokenizer - build_inputs_with_special_tokens - get_special_tokens_mask - create_token_type_ids_from_sequences - save_vocabulary ## RemBertTokenizerFast [[autodoc]] RemBertTokenizerFast - build_inputs_with_special_tokens - get_special_tokens_mask - create_token_type_ids_from_sequences - save_vocabulary <frameworkcontent> <pt> ## RemBertModel [[autodoc]] RemBertModel - forward ## RemBertForCausalLM [[autodoc]] RemBertForCausalLM - forward ## RemBertForMaskedLM [[autodoc]] RemBertForMaskedLM - forward ## RemBertForSequenceClassification [[autodoc]] RemBertForSequenceClassification - forward ## RemBertForMultipleChoice [[autodoc]] RemBertForMultipleChoice - forward ## RemBertForTokenClassification [[autodoc]] RemBertForTokenClassification - forward ## RemBertForQuestionAnswering [[autodoc]] RemBertForQuestionAnswering - forward </pt> <tf> ## TFRemBertModel [[autodoc]] TFRemBertModel - call ## TFRemBertForMaskedLM [[autodoc]] TFRemBertForMaskedLM - call ## TFRemBertForCausalLM [[autodoc]] TFRemBertForCausalLM - call ## TFRemBertForSequenceClassification [[autodoc]] TFRemBertForSequenceClassification - call ## TFRemBertForMultipleChoice [[autodoc]] TFRemBertForMultipleChoice - call ## TFRemBertForTokenClassification [[autodoc]] TFRemBertForTokenClassification - call ## TFRemBertForQuestionAnswering [[autodoc]] TFRemBertForQuestionAnswering - call </tf> </frameworkcontent>
huggingface/transformers/blob/main/docs/source/en/model_doc/rembert.md
!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Autoformer ## Overview The Autoformer model was proposed in [Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting](https://arxiv.org/abs/2106.13008) by Haixu Wu, Jiehui Xu, Jianmin Wang, Mingsheng Long. This model augments the Transformer as a deep decomposition architecture, which can progressively decompose the trend and seasonal components during the forecasting process. The abstract from the paper is the following: *Extending the forecasting time is a critical demand for real applications, such as extreme weather early warning and long-term energy consumption planning. This paper studies the long-term forecasting problem of time series. Prior Transformer-based models adopt various self-attention mechanisms to discover the long-range dependencies. However, intricate temporal patterns of the long-term future prohibit the model from finding reliable dependencies. Also, Transformers have to adopt the sparse versions of point-wise self-attentions for long series efficiency, resulting in the information utilization bottleneck. Going beyond Transformers, we design Autoformer as a novel decomposition architecture with an Auto-Correlation mechanism. We break with the pre-processing convention of series decomposition and renovate it as a basic inner block of deep models. This design empowers Autoformer with progressive decomposition capacities for complex time series. Further, inspired by the stochastic process theory, we design the Auto-Correlation mechanism based on the series periodicity, which conducts the dependencies discovery and representation aggregation at the sub-series level. Auto-Correlation outperforms self-attention in both efficiency and accuracy. In long-term forecasting, Autoformer yields state-of-the-art accuracy, with a 38% relative improvement on six benchmarks, covering five practical applications: energy, traffic, economics, weather and disease.* This model was contributed by [elisim](https://huggingface.co/elisim) and [kashif](https://huggingface.co/kashif). The original code can be found [here](https://github.com/thuml/Autoformer). ## Resources A list of official Hugging Face and community (indicated by 🌎) resources to help you get started. If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource. - Check out the Autoformer blog-post in HuggingFace blog: [Yes, Transformers are Effective for Time Series Forecasting (+ Autoformer)](https://huggingface.co/blog/autoformer) ## AutoformerConfig [[autodoc]] AutoformerConfig ## AutoformerModel [[autodoc]] AutoformerModel - forward ## AutoformerForPrediction [[autodoc]] AutoformerForPrediction - forward
huggingface/transformers/blob/main/docs/source/en/model_doc/autoformer.md
!--Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # LXMERT ## Overview The LXMERT model was proposed in [LXMERT: Learning Cross-Modality Encoder Representations from Transformers](https://arxiv.org/abs/1908.07490) by Hao Tan & Mohit Bansal. It is a series of bidirectional transformer encoders (one for the vision modality, one for the language modality, and then one to fuse both modalities) pretrained using a combination of masked language modeling, visual-language text alignment, ROI-feature regression, masked visual-attribute modeling, masked visual-object modeling, and visual-question answering objectives. The pretraining consists of multiple multi-modal datasets: MSCOCO, Visual-Genome + Visual-Genome Question Answering, VQA 2.0, and GQA. The abstract from the paper is the following: *Vision-and-language reasoning requires an understanding of visual concepts, language semantics, and, most importantly, the alignment and relationships between these two modalities. We thus propose the LXMERT (Learning Cross-Modality Encoder Representations from Transformers) framework to learn these vision-and-language connections. In LXMERT, we build a large-scale Transformer model that consists of three encoders: an object relationship encoder, a language encoder, and a cross-modality encoder. Next, to endow our model with the capability of connecting vision and language semantics, we pre-train the model with large amounts of image-and-sentence pairs, via five diverse representative pretraining tasks: masked language modeling, masked object prediction (feature regression and label classification), cross-modality matching, and image question answering. These tasks help in learning both intra-modality and cross-modality relationships. After fine-tuning from our pretrained parameters, our model achieves the state-of-the-art results on two visual question answering datasets (i.e., VQA and GQA). We also show the generalizability of our pretrained cross-modality model by adapting it to a challenging visual-reasoning task, NLVR, and improve the previous best result by 22% absolute (54% to 76%). Lastly, we demonstrate detailed ablation studies to prove that both our novel model components and pretraining strategies significantly contribute to our strong results; and also present several attention visualizations for the different encoders* This model was contributed by [eltoto1219](https://huggingface.co/eltoto1219). The original code can be found [here](https://github.com/airsplay/lxmert). ## Usage tips - Bounding boxes are not necessary to be used in the visual feature embeddings, any kind of visual-spacial features will work. - Both the language hidden states and the visual hidden states that LXMERT outputs are passed through the cross-modality layer, so they contain information from both modalities. To access a modality that only attends to itself, select the vision/language hidden states from the first input in the tuple. - The bidirectional cross-modality encoder attention only returns attention values when the language modality is used as the input and the vision modality is used as the context vector. Further, while the cross-modality encoder contains self-attention for each respective modality and cross-attention, only the cross attention is returned and both self attention outputs are disregarded. ## Resources - [Question answering task guide](../tasks/question_answering) ## LxmertConfig [[autodoc]] LxmertConfig ## LxmertTokenizer [[autodoc]] LxmertTokenizer ## LxmertTokenizerFast [[autodoc]] LxmertTokenizerFast ## Lxmert specific outputs [[autodoc]] models.lxmert.modeling_lxmert.LxmertModelOutput [[autodoc]] models.lxmert.modeling_lxmert.LxmertForPreTrainingOutput [[autodoc]] models.lxmert.modeling_lxmert.LxmertForQuestionAnsweringOutput [[autodoc]] models.lxmert.modeling_tf_lxmert.TFLxmertModelOutput [[autodoc]] models.lxmert.modeling_tf_lxmert.TFLxmertForPreTrainingOutput <frameworkcontent> <pt> ## LxmertModel [[autodoc]] LxmertModel - forward ## LxmertForPreTraining [[autodoc]] LxmertForPreTraining - forward ## LxmertForQuestionAnswering [[autodoc]] LxmertForQuestionAnswering - forward </pt> <tf> ## TFLxmertModel [[autodoc]] TFLxmertModel - call ## TFLxmertForPreTraining [[autodoc]] TFLxmertForPreTraining - call </tf> </frameworkcontent>
huggingface/transformers/blob/main/docs/source/en/model_doc/lxmert.md
Author: [@vasudevgupta7](https://github.com/thevasudevgupta/) ## Intro In this project, we fine-tuned [**BigBird**](https://arxiv.org/abs/2007.14062) on [**natural-questions**](https://huggingface.co/datasets/natural_questions) dataset for **question-answering** task on long documents. **BigBird**, is a **sparse-attention based transformer** which extends Transformer based models, such as BERT to much **longer sequences**. Read more about BigBird at https://huggingface.co/blog/big-bird ## Fine-tuning **Setup** You need to install jax yourself by following the official docs ([refer this](https://github.com/google/jax#installation)). Other requirements for this project can be installed by running following command: ```shell pip3 install -qr requirements.txt ``` **Download & prepare dataset** The Natural Questions corpus contains questions from real users, and it requires QA systems to read and comprehend an entire Wikipedia article that may or may not contain the answer to the question. This corpus takes ~100 GB on disk. We have used HuggingFace datasets to download & process the dataset. ```shell # just run following CMD python3 prepare_natural_questions.py # this will download the whole dataset from HuggingFace Hub & will make it ready for training # this script takes ~3 hours to process the dataset ``` **Launch Training** We have trained on Cloud's TPU v3-8. Each epoch took around 4.5 hours and the model got converged in just 2 epochs. You can see complete training args in [this script](bigbird_flax.py). ```shell # just run following CMD python3 train.py # In case, you want to try hparams tuning, you can run wandb sweep wandb sweep --project=bigbird sweep_flax.yaml wandb agent <agent-id-obtained-by-above-CMD> ``` ## Evaluation Our evaluation script is different from the original script and we are evaluating sequences with length up to 4096 for simplicity. We managed to get the **EM score of ~55.2** using our evaluation script. ```shell # download validation-dataset first mkdir natural-questions-validation wget https://huggingface.co/datasets/vasudevgupta/natural-questions-validation/resolve/main/natural_questions-validation.arrow -P natural-questions-validation wget https://huggingface.co/datasets/vasudevgupta/natural-questions-validation/resolve/main/dataset_info.json -P natural-questions-validation wget https://huggingface.co/datasets/vasudevgupta/natural-questions-validation/resolve/main/state.json -P natural-questions-validation # simply run following command python3 evaluate.py ``` You can find our checkpoint on HuggingFace Hub ([see this](https://huggingface.co/vasudevgupta/flax-bigbird-natural-questions)). In case you are interested in PyTorch BigBird fine-tuning, you can refer to [this repositary](https://github.com/thevasudevgupta/bigbird).
huggingface/transformers/blob/main/examples/research_projects/jax-projects/big_bird/README.md
!--- Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> # 🤗 Transformers Notebooks You can find here a list of the official notebooks provided by Hugging Face. Also, we would like to list here interesting content created by the community. If you wrote some notebook(s) leveraging 🤗 Transformers and would like to be listed here, please open a Pull Request so it can be included under the Community notebooks. ## Hugging Face's notebooks 🤗 ### Documentation notebooks You can open any page of the documentation as a notebook in Colab (there is a button directly on said pages) but they are also listed here if you need them: | Notebook | Description | | | |:----------|:-------------|:-------------|------:| | [Quicktour of the library](https://github.com/huggingface/notebooks/blob/main/transformers_doc/en/quicktour.ipynb) | A presentation of the various APIs in Transformers |[![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/transformers_doc/en/quicktour.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/en/transformers_doc/quicktour.ipynb)| | [Summary of the tasks](https://github.com/huggingface/notebooks/blob/main/transformers_doc/en/task_summary.ipynb) | How to run the models of the Transformers library task by task |[![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/transformers_doc/en/task_summary.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/transformers_doc/en/task_summary.ipynb)| | [Preprocessing data](https://github.com/huggingface/notebooks/blob/main/transformers_doc/en/preprocessing.ipynb) | How to use a tokenizer to preprocess your data |[![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/transformers_doc/en/preprocessing.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/transformers_doc/en/preprocessing.ipynb)| | [Fine-tuning a pretrained model](https://github.com/huggingface/notebooks/blob/main/transformers_doc/en/training.ipynb) | How to use the Trainer to fine-tune a pretrained model |[![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/transformers_doc/en/training.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/transformers_doc/en/training.ipynb)| | [Summary of the tokenizers](https://github.com/huggingface/notebooks/blob/main/transformers_doc/en/tokenizer_summary.ipynb) | The differences between the tokenizers algorithm |[![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/transformers_doc/en/tokenizer_summary.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/transformers_doc/en/tokenizer_summary.ipynb)| | [Multilingual models](https://github.com/huggingface/notebooks/blob/main/transformers_doc/en/multilingual.ipynb) | How to use the multilingual models of the library |[![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/transformers_doc/en/multilingual.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/transformers_doc/en/multilingual.ipynb)| ### PyTorch Examples #### Natural Language Processing[[pytorch-nlp]] | Notebook | Description | | | |:----------|:-------------|:-------------|------:| | [Train your tokenizer](https://github.com/huggingface/notebooks/blob/main/examples/tokenizer_training.ipynb) | How to train and use your very own tokenizer |[![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/tokenizer_training.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/tokenizer_training.ipynb)| | [Train your language model](https://github.com/huggingface/notebooks/blob/main/examples/language_modeling_from_scratch.ipynb) | How to easily start using transformers |[![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling_from_scratch.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/language_modeling_from_scratch.ipynb)| | [How to fine-tune a model on text classification](https://github.com/huggingface/notebooks/blob/main/examples/text_classification.ipynb)| Show how to preprocess the data and fine-tune a pretrained model on any GLUE task. | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/text_classification.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/text_classification.ipynb)| | [How to fine-tune a model on language modeling](https://github.com/huggingface/notebooks/blob/main/examples/language_modeling.ipynb)| Show how to preprocess the data and fine-tune a pretrained model on a causal or masked LM task. | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/language_modeling.ipynb)| | [How to fine-tune a model on token classification](https://github.com/huggingface/notebooks/blob/main/examples/token_classification.ipynb)| Show how to preprocess the data and fine-tune a pretrained model on a token classification task (NER, PoS). | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/token_classification.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/token_classification.ipynb)| | [How to fine-tune a model on question answering](https://github.com/huggingface/notebooks/blob/main/examples/question_answering.ipynb)| Show how to preprocess the data and fine-tune a pretrained model on SQUAD. | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/question_answering.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/question_answering.ipynb)| | [How to fine-tune a model on multiple choice](https://github.com/huggingface/notebooks/blob/main/examples/multiple_choice.ipynb)| Show how to preprocess the data and fine-tune a pretrained model on SWAG. | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/multiple_choice.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/multiple_choice.ipynb)| | [How to fine-tune a model on translation](https://github.com/huggingface/notebooks/blob/main/examples/translation.ipynb)| Show how to preprocess the data and fine-tune a pretrained model on WMT. | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/translation.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/translation.ipynb)| | [How to fine-tune a model on summarization](https://github.com/huggingface/notebooks/blob/main/examples/summarization.ipynb)| Show how to preprocess the data and fine-tune a pretrained model on XSUM. | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/summarization.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/summarization.ipynb)| | [How to train a language model from scratch](https://github.com/huggingface/blog/blob/main/notebooks/01_how_to_train.ipynb)| Highlight all the steps to effectively train Transformer model on custom data | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/blog/blob/main/notebooks/01_how_to_train.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/blog/blob/main/notebooks/01_how_to_train.ipynb)| | [How to generate text](https://github.com/huggingface/blog/blob/main/notebooks/02_how_to_generate.ipynb)| How to use different decoding methods for language generation with transformers | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/blog/blob/main/notebooks/02_how_to_generate.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/blog/blob/main/notebooks/02_how_to_generate.ipynb)| | [How to generate text (with constraints)](https://github.com/huggingface/blog/blob/main/notebooks/53_constrained_beam_search.ipynb)| How to guide language generation with user-provided constraints | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/blog/blob/main/notebooks/53_constrained_beam_search.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/blog/blob/main/notebooks/53_constrained_beam_search.ipynb)| | [Reformer](https://github.com/huggingface/blog/blob/main/notebooks/03_reformer.ipynb)| How Reformer pushes the limits of language modeling | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/patrickvonplaten/blog/blob/main/notebooks/03_reformer.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/patrickvonplaten/blog/blob/main/notebooks/03_reformer.ipynb)| #### Computer Vision[[pytorch-cv]] | Notebook | Description | | | |:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------:| | [How to fine-tune a model on image classification (Torchvision)](https://github.com/huggingface/notebooks/blob/main/examples/image_classification.ipynb) | Show how to preprocess the data using Torchvision and fine-tune any pretrained Vision model on Image Classification | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/image_classification.ipynb) | [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/image_classification.ipynb)| | [How to fine-tune a model on image classification (Albumentations)](https://github.com/huggingface/notebooks/blob/main/examples/image_classification_albumentations.ipynb) | Show how to preprocess the data using Albumentations and fine-tune any pretrained Vision model on Image Classification | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/image_classification_albumentations.ipynb) | [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/image_classification_albumentations.ipynb)| | [How to fine-tune a model on image classification (Kornia)](https://github.com/huggingface/notebooks/blob/main/examples/image_classification_kornia.ipynb) | Show how to preprocess the data using Kornia and fine-tune any pretrained Vision model on Image Classification | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/image_classification_kornia.ipynb) | [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/image_classification_kornia.ipynb)| | [How to perform zero-shot object detection with OWL-ViT](https://github.com/huggingface/notebooks/blob/main/examples/zeroshot_object_detection_with_owlvit.ipynb) | Show how to perform zero-shot object detection on images with text queries | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/zeroshot_object_detection_with_owlvit.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/zeroshot_object_detection_with_owlvit.ipynb)| | [How to fine-tune an image captioning model](https://github.com/huggingface/notebooks/blob/main/examples/image_captioning_blip.ipynb) | Show how to fine-tune BLIP for image captioning on a custom dataset | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/image_captioning_blip.ipynb) | [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/image_captioning_blip.ipynb)| | [How to build an image similarity system with Transformers](https://github.com/huggingface/notebooks/blob/main/examples/image_similarity.ipynb) | Show how to build an image similarity system | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/image_similarity.ipynb) | [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/image_similarity.ipynb)| | [How to fine-tune a SegFormer model on semantic segmentation](https://github.com/huggingface/notebooks/blob/main/examples/semantic_segmentation.ipynb) | Show how to preprocess the data and fine-tune a pretrained SegFormer model on Semantic Segmentation | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/semantic_segmentation.ipynb) | [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/semantic_segmentation.ipynb)| | [How to fine-tune a VideoMAE model on video classification](https://github.com/huggingface/notebooks/blob/main/examples/video_classification.ipynb) | Show how to preprocess the data and fine-tune a pretrained VideoMAE model on Video Classification | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/video_classification.ipynb) | [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/video_classification.ipynb)| #### Audio[[pytorch-audio]] | Notebook | Description | | | |:----------|:-------------|:-------------|------:| | [How to fine-tune a speech recognition model in English](https://github.com/huggingface/notebooks/blob/main/examples/speech_recognition.ipynb)| Show how to preprocess the data and fine-tune a pretrained Speech model on TIMIT | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/speech_recognition.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/speech_recognition.ipynb)| | [How to fine-tune a speech recognition model in any language](https://github.com/huggingface/notebooks/blob/main/examples/multi_lingual_speech_recognition.ipynb)| Show how to preprocess the data and fine-tune a multi-lingually pretrained speech model on Common Voice | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/multi_lingual_speech_recognition.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/multi_lingual_speech_recognition.ipynb)| | [How to fine-tune a model on audio classification](https://github.com/huggingface/notebooks/blob/main/examples/audio_classification.ipynb)| Show how to preprocess the data and fine-tune a pretrained Speech model on Keyword Spotting | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/audio_classification.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/audio_classification.ipynb)| #### Biological Sequences[[pytorch-bio]] | Notebook | Description | | | |:----------|:----------------------------------------------------------------------------------------|:-------------|------:| | [How to fine-tune a pre-trained protein model](https://github.com/huggingface/notebooks/blob/main/examples/protein_language_modeling.ipynb) | See how to tokenize proteins and fine-tune a large pre-trained protein "language" model | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/protein_language_modeling.ipynb) | [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/protein_language_modeling.ipynb) | | [How to generate protein folds](https://github.com/huggingface/notebooks/blob/main/examples/protein_folding.ipynb) | See how to go from protein sequence to a full protein model and PDB file | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/protein_folding.ipynb) | [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/protein_folding.ipynb) | | [How to fine-tune a Nucleotide Transformer model](https://github.com/huggingface/notebooks/blob/main/examples/nucleotide_transformer_dna_sequence_modelling.ipynb) | See how to tokenize DNA and fine-tune a large pre-trained DNA "language" model | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/nucleotide_transformer_dna_sequence_modelling.ipynb) | [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/nucleotide_transformer_dna_sequence_modelling.ipynb) | | [Fine-tune a Nucleotide Transformer model with LoRA](https://github.com/huggingface/notebooks/blob/main/examples/nucleotide_transformer_dna_sequence_modelling_with_peft.ipynb) | Train even larger DNA models in a memory-efficient way | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/nucleotide_transformer_dna_sequence_modelling_with_peft.ipynb) | [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/nucleotide_transformer_dna_sequence_modelling_with_peft.ipynb) | #### Other modalities[[pytorch-other]] | Notebook | Description | | | |:----------|:----------------------------------------------------------------------------------------|:-------------|------:| | [Probabilistic Time Series Forecasting](https://github.com/huggingface/notebooks/blob/main/examples/time-series-transformers.ipynb) | See how to train Time Series Transformer on a custom dataset | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/time-series-transformers.ipynb) | [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/time-series-transformers.ipynb) | #### Utility notebooks[[pytorch-utility]] | Notebook | Description | | | |:----------|:-------------|:-------------|------:| | [How to export model to ONNX](https://github.com/huggingface/notebooks/blob/main/examples/onnx-export.ipynb)| Highlight how to export and run inference workloads through ONNX | | [How to use Benchmarks](https://github.com/huggingface/notebooks/blob/main/examples/benchmark.ipynb)| How to benchmark models with transformers | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/benchmark.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/benchmark.ipynb)| ### TensorFlow Examples #### Natural Language Processing[[tensorflow-nlp]] | Notebook | Description | | | |:----------|:-------------|:-------------|------:| | [Train your tokenizer](https://github.com/huggingface/notebooks/blob/main/examples/tokenizer_training.ipynb) | How to train and use your very own tokenizer |[![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/tokenizer_training.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/tokenizer_training.ipynb)| | [Train your language model](https://github.com/huggingface/notebooks/blob/main/examples/language_modeling_from_scratch-tf.ipynb) | How to easily start using transformers |[![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling_from_scratch-tf.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/language_modeling_from_scratch-tf.ipynb)| | [How to fine-tune a model on text classification](https://github.com/huggingface/notebooks/blob/main/examples/text_classification-tf.ipynb)| Show how to preprocess the data and fine-tune a pretrained model on any GLUE task. | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/text_classification-tf.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/text_classification-tf.ipynb)| | [How to fine-tune a model on language modeling](https://github.com/huggingface/notebooks/blob/main/examples/language_modeling-tf.ipynb)| Show how to preprocess the data and fine-tune a pretrained model on a causal or masked LM task. | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling-tf.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/language_modeling-tf.ipynb)| | [How to fine-tune a model on token classification](https://github.com/huggingface/notebooks/blob/main/examples/token_classification-tf.ipynb)| Show how to preprocess the data and fine-tune a pretrained model on a token classification task (NER, PoS). | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/token_classification-tf.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/token_classification-tf.ipynb)| | [How to fine-tune a model on question answering](https://github.com/huggingface/notebooks/blob/main/examples/question_answering-tf.ipynb)| Show how to preprocess the data and fine-tune a pretrained model on SQUAD. | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/question_answering-tf.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/question_answering-tf.ipynb)| | [How to fine-tune a model on multiple choice](https://github.com/huggingface/notebooks/blob/main/examples/multiple_choice-tf.ipynb)| Show how to preprocess the data and fine-tune a pretrained model on SWAG. | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/multiple_choice-tf.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/multiple_choice-tf.ipynb)| | [How to fine-tune a model on translation](https://github.com/huggingface/notebooks/blob/main/examples/translation-tf.ipynb)| Show how to preprocess the data and fine-tune a pretrained model on WMT. | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/translation-tf.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/translation-tf.ipynb)| | [How to fine-tune a model on summarization](https://github.com/huggingface/notebooks/blob/main/examples/summarization-tf.ipynb)| Show how to preprocess the data and fine-tune a pretrained model on XSUM. | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/summarization-tf.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/summarization-tf.ipynb)| #### Computer Vision[[tensorflow-cv]] | Notebook | Description | | | |:---------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------|:-------------|------:| | [How to fine-tune a model on image classification](https://github.com/huggingface/notebooks/blob/main/examples/image_classification-tf.ipynb) | Show how to preprocess the data and fine-tune any pretrained Vision model on Image Classification | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/image_classification-tf.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/image_classification-tf.ipynb)| | [How to fine-tune a SegFormer model on semantic segmentation](https://github.com/huggingface/notebooks/blob/main/examples/semantic_segmentation-tf.ipynb) | Show how to preprocess the data and fine-tune a pretrained SegFormer model on Semantic Segmentation | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/semantic_segmentation-tf.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/semantic_segmentation-tf.ipynb)| #### Biological Sequences[[tensorflow-bio]] | Notebook | Description | | | |:----------|:-------------|:-------------|------:| | [How to fine-tune a pre-trained protein model](https://github.com/huggingface/notebooks/blob/main/examples/protein_language_modeling-tf.ipynb) | See how to tokenize proteins and fine-tune a large pre-trained protein "language" model | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/protein_language_modeling-tf.ipynb) | [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/protein_language_modeling-tf.ipynb) | #### Utility notebooks[[tensorflow-utility]] | Notebook | Description | | | |:----------|:-------------|:-------------|------:| | [How to train TF/Keras models on TPU](https://github.com/huggingface/notebooks/blob/main/examples/tpu_training-tf.ipynb) | See how to train at high speed on Google's TPU hardware | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/tpu_training-tf.ipynb) | [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/tpu_training-tf.ipynb) | ### Optimum notebooks 🤗 [Optimum](https://github.com/huggingface/optimum) is an extension of 🤗 Transformers, providing a set of performance optimization tools enabling maximum efficiency to train and run models on targeted hardwares. | Notebook | Description | | | |:----------|:-------------|:-------------|------:| | [How to quantize a model with ONNX Runtime for text classification](https://github.com/huggingface/notebooks/blob/main/examples/text_classification_quantization_ort.ipynb)| Show how to apply static and dynamic quantization on a model using [ONNX Runtime](https://github.com/microsoft/onnxruntime) for any GLUE task. | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/text_classification_quantization_ort.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/text_classification_quantization_ort.ipynb)| | [How to quantize a model with Intel Neural Compressor for text classification](https://github.com/huggingface/notebooks/blob/main/examples/text_classification_quantization_inc.ipynb)| Show how to apply static, dynamic and aware training quantization on a model using [Intel Neural Compressor (INC)](https://github.com/intel/neural-compressor) for any GLUE task. | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/text_classification_quantization_inc.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/text_classification_quantization_inc.ipynb)| | [How to fine-tune a model on text classification with ONNX Runtime](https://github.com/huggingface/notebooks/blob/main/examples/text_classification_ort.ipynb)| Show how to preprocess the data and fine-tune a model on any GLUE task using [ONNX Runtime](https://github.com/microsoft/onnxruntime). | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/text_classification_ort.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/text_classification_ort.ipynb)| | [How to fine-tune a model on summarization with ONNX Runtime](https://github.com/huggingface/notebooks/blob/main/examples/summarization_ort.ipynb)| Show how to preprocess the data and fine-tune a model on XSUM using [ONNX Runtime](https://github.com/microsoft/onnxruntime). | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/summarization_ort.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/summarization_ort.ipynb)| ## Community notebooks: More notebooks developed by the community are available [here](https://hf.co/docs/transformers/community#community-notebooks).
huggingface/transformers/blob/main/notebooks/README.md
!--Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Trainer The [`Trainer`] class provides an API for feature-complete training in PyTorch, and it supports distributed training on multiple GPUs/TPUs, mixed precision for [NVIDIA GPUs](https://nvidia.github.io/apex/), [AMD GPUs](https://rocm.docs.amd.com/en/latest/rocm.html), and [`torch.amp`](https://pytorch.org/docs/stable/amp.html) for PyTorch. [`Trainer`] goes hand-in-hand with the [`TrainingArguments`] class, which offers a wide range of options to customize how a model is trained. Together, these two classes provide a complete training API. [`Seq2SeqTrainer`] and [`Seq2SeqTrainingArguments`] inherit from the [`Trainer`] and [`TrainingArgument`] classes and they're adapted for training models for sequence-to-sequence tasks such as summarization or translation. <Tip warning={true}> The [`Trainer`] class is optimized for 🤗 Transformers models and can have surprising behaviors when used with other models. When using it with your own model, make sure: - your model always return tuples or subclasses of [`~utils.ModelOutput`] - your model can compute the loss if a `labels` argument is provided and that loss is returned as the first element of the tuple (if your model returns tuples) - your model can accept multiple label arguments (use `label_names` in [`TrainingArguments`] to indicate their name to the [`Trainer`]) but none of them should be named `"label"` </Tip> ## Trainer[[api-reference]] [[autodoc]] Trainer - all ## Seq2SeqTrainer [[autodoc]] Seq2SeqTrainer - evaluate - predict ## TrainingArguments [[autodoc]] TrainingArguments - all ## Seq2SeqTrainingArguments [[autodoc]] Seq2SeqTrainingArguments - all
huggingface/transformers/blob/main/docs/source/en/main_classes/trainer.md
!--Copyright 2021 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # BigBird ## Overview The BigBird model was proposed in [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by Zaheer, Manzil and Guruganesh, Guru and Dubey, Kumar Avinava and Ainslie, Joshua and Alberti, Chris and Ontanon, Santiago and Pham, Philip and Ravula, Anirudh and Wang, Qifan and Yang, Li and others. BigBird, is a sparse-attention based transformer which extends Transformer based models, such as BERT to much longer sequences. In addition to sparse attention, BigBird also applies global attention as well as random attention to the input sequence. Theoretically, it has been shown that applying sparse, global, and random attention approximates full attention, while being computationally much more efficient for longer sequences. As a consequence of the capability to handle longer context, BigBird has shown improved performance on various long document NLP tasks, such as question answering and summarization, compared to BERT or RoBERTa. The abstract from the paper is the following: *Transformers-based models, such as BERT, have been one of the most successful deep learning models for NLP. Unfortunately, one of their core limitations is the quadratic dependency (mainly in terms of memory) on the sequence length due to their full attention mechanism. To remedy this, we propose, BigBird, a sparse attention mechanism that reduces this quadratic dependency to linear. We show that BigBird is a universal approximator of sequence functions and is Turing complete, thereby preserving these properties of the quadratic, full attention model. Along the way, our theoretical analysis reveals some of the benefits of having O(1) global tokens (such as CLS), that attend to the entire sequence as part of the sparse attention mechanism. The proposed sparse attention can handle sequences of length up to 8x of what was previously possible using similar hardware. As a consequence of the capability to handle longer context, BigBird drastically improves performance on various NLP tasks such as question answering and summarization. We also propose novel applications to genomics data.* This model was contributed by [vasudevgupta](https://huggingface.co/vasudevgupta). The original code can be found [here](https://github.com/google-research/bigbird). ## Usage tips - For an in-detail explanation on how BigBird's attention works, see [this blog post](https://huggingface.co/blog/big-bird). - BigBird comes with 2 implementations: **original_full** & **block_sparse**. For the sequence length < 1024, using **original_full** is advised as there is no benefit in using **block_sparse** attention. - The code currently uses window size of 3 blocks and 2 global blocks. - Sequence length must be divisible by block size. - Current implementation supports only **ITC**. - Current implementation doesn't support **num_random_blocks = 0** - BigBird is a model with absolute position embeddings so it's usually advised to pad the inputs on the right rather than the left. ## Resources - [Text classification task guide](../tasks/sequence_classification) - [Token classification task guide](../tasks/token_classification) - [Question answering task guide](../tasks/question_answering) - [Causal language modeling task guide](../tasks/language_modeling) - [Masked language modeling task guide](../tasks/masked_language_modeling) - [Multiple choice task guide](../tasks/multiple_choice) ## BigBirdConfig [[autodoc]] BigBirdConfig ## BigBirdTokenizer [[autodoc]] BigBirdTokenizer - build_inputs_with_special_tokens - get_special_tokens_mask - create_token_type_ids_from_sequences - save_vocabulary ## BigBirdTokenizerFast [[autodoc]] BigBirdTokenizerFast ## BigBird specific outputs [[autodoc]] models.big_bird.modeling_big_bird.BigBirdForPreTrainingOutput <frameworkcontent> <pt> ## BigBirdModel [[autodoc]] BigBirdModel - forward ## BigBirdForPreTraining [[autodoc]] BigBirdForPreTraining - forward ## BigBirdForCausalLM [[autodoc]] BigBirdForCausalLM - forward ## BigBirdForMaskedLM [[autodoc]] BigBirdForMaskedLM - forward ## BigBirdForSequenceClassification [[autodoc]] BigBirdForSequenceClassification - forward ## BigBirdForMultipleChoice [[autodoc]] BigBirdForMultipleChoice - forward ## BigBirdForTokenClassification [[autodoc]] BigBirdForTokenClassification - forward ## BigBirdForQuestionAnswering [[autodoc]] BigBirdForQuestionAnswering - forward </pt> <jax> ## FlaxBigBirdModel [[autodoc]] FlaxBigBirdModel - __call__ ## FlaxBigBirdForPreTraining [[autodoc]] FlaxBigBirdForPreTraining - __call__ ## FlaxBigBirdForCausalLM [[autodoc]] FlaxBigBirdForCausalLM - __call__ ## FlaxBigBirdForMaskedLM [[autodoc]] FlaxBigBirdForMaskedLM - __call__ ## FlaxBigBirdForSequenceClassification [[autodoc]] FlaxBigBirdForSequenceClassification - __call__ ## FlaxBigBirdForMultipleChoice [[autodoc]] FlaxBigBirdForMultipleChoice - __call__ ## FlaxBigBirdForTokenClassification [[autodoc]] FlaxBigBirdForTokenClassification - __call__ ## FlaxBigBirdForQuestionAnswering [[autodoc]] FlaxBigBirdForQuestionAnswering - __call__ </jax> </frameworkcontent>
huggingface/transformers/blob/main/docs/source/en/model_doc/big_bird.md
!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Persimmon ## Overview The Persimmon model was created by [ADEPT](https://www.adept.ai/blog/persimmon-8b), and authored by Erich Elsen, Augustus Odena, Maxwell Nye, Sağnak Taşırlar, Tri Dao, Curtis Hawthorne, Deepak Moparthi, Arushi Somani. The authors introduced Persimmon-8B, a decoder model based on the classic transformers architecture, with query and key normalization. Persimmon-8B is a fully permissively-licensed model with approximately 8 billion parameters, released under the Apache license. Some of the key attributes of Persimmon-8B are long context size (16K), performance, and capabilities for multimodal extensions. The authors showcase their approach to model evaluation, focusing on practical text generation, mirroring how users interact with language models. The work also includes a comparative analysis, pitting Persimmon-8B against other prominent models (MPT 7B Instruct and Llama 2 Base 7B 1-Shot), across various evaluation tasks. The results demonstrate Persimmon-8B's competitive performance, even with limited training data. In terms of model details, the work outlines the architecture and training methodology of Persimmon-8B, providing insights into its design choices, sequence length, and dataset composition. The authors present a fast inference code that outperforms traditional implementations through operator fusion and CUDA graph utilization while maintaining code coherence. They express their anticipation of how the community will leverage this contribution to drive innovation, hinting at further upcoming releases as part of an ongoing series of developments. This model was contributed by [ArthurZ](https://huggingface.co/ArthurZ). The original code can be found [here](https://github.com/persimmon-ai-labs/adept-inference). ## Usage tips <Tip warning={true}> The `Persimmon` models were trained using `bfloat16`, but the original inference uses `float16` The checkpoints uploaded on the hub use `torch_dtype = 'float16'` which will be used by the `AutoModel` API to cast the checkpoints from `torch.float32` to `torch.float16`. The `dtype` of the online weights is mostly irrelevant, unless you are using `torch_dtype="auto"` when initializing a model using `model = AutoModelForCausalLM.from_pretrained("path", torch_dtype = "auto")`. The reason is that the model will first be downloaded ( using the `dtype` of the checkpoints online) then it will be cast to the default `dtype` of `torch` (becomes `torch.float32`). Users should specify the `torch_dtype` they want, and if they don't it will be `torch.float32`. Finetuning the model in `float16` is not recommended and known to produce `nan`, as such the model should be fine-tuned in `bfloat16`. </Tip> Tips: - To convert the model, you need to clone the original repository using `git clone https://github.com/persimmon-ai-labs/adept-inference`, then get the checkpoints: ```bash git clone https://github.com/persimmon-ai-labs/adept-inference wget https://axtkn4xl5cip.objectstorage.us-phoenix-1.oci.customer-oci.com/n/axtkn4xl5cip/b/adept-public-data/o/8b_base_model_release.tar tar -xvf 8b_base_model_release.tar python src/transformers/models/persimmon/convert_persimmon_weights_to_hf.py --input_dir /path/to/downloaded/persimmon/weights/ --output_dir /output/path \ --pt_model_path /path/to/8b_chat_model_release/iter_0001251/mp_rank_00/model_optim_rng.pt --ada_lib_path /path/to/adept-inference ``` For the chat model: ```bash wget https://axtkn4xl5cip.objectstorage.us-phoenix-1.oci.customer-oci.com/n/axtkn4xl5cip/b/adept-public-data/o/8b_chat_model_release.tar tar -xvf 8b_base_model_release.tar ``` Thereafter, models can be loaded via: ```py from transformers import PersimmonForCausalLM, PersimmonTokenizer model = PersimmonForCausalLM.from_pretrained("/output/path") tokenizer = PersimmonTokenizer.from_pretrained("/output/path") ``` - Perismmon uses a `sentencepiece` based tokenizer, with a `Unigram` model. It supports bytefallback, which is only available in `tokenizers==0.14.0` for the fast tokenizer. The `LlamaTokenizer` is used as it is a standard wrapper around sentencepiece. The `chat` template will be updated with the templating functions in a follow up PR! - The authors suggest to use the following prompt format for the chat mode: `f"human: {prompt}\n\nadept:"` ## PersimmonConfig [[autodoc]] PersimmonConfig ## PersimmonModel [[autodoc]] PersimmonModel - forward ## PersimmonForCausalLM [[autodoc]] PersimmonForCausalLM - forward ## PersimmonForSequenceClassification [[autodoc]] PersimmonForSequenceClassification - forward
huggingface/transformers/blob/main/docs/source/en/model_doc/persimmon.md
*TEMPLATE** ===================================== *search & replace the following keywords, e.g.:* `:%s/\[name of model\]/brand_new_bert/g` -[lowercase name of model] # e.g. brand_new_bert -[camelcase name of model] # e.g. BrandNewBert -[name of mentor] # e.g. [Peter](https://github.com/peter) -[link to original repo] -[start date] -[end date] How to add [camelcase name of model] to 🤗 Transformers? ===================================== Mentor: [name of mentor] Begin: [start date] Estimated End: [end date] Adding a new model is often difficult and requires an in-depth knowledge of the 🤗 Transformers library and ideally also of the model's original repository. At Hugging Face, we are trying to empower the community more and more to add models independently. The following sections explain in detail how to add [camelcase name of model] to Transformers. You will work closely with [name of mentor] to integrate [camelcase name of model] into Transformers. By doing so, you will both gain a theoretical and deep practical understanding of [camelcase name of model]. But more importantly, you will have made a major open-source contribution to Transformers. Along the way, you will: - get insights into open-source best practices - understand the design principles of one of the most popular NLP libraries - learn how to do efficiently test large NLP models - learn how to integrate Python utilities like `black`, `ruff`, `make fix-copies` into a library to always ensure clean and readable code To start, let's try to get a general overview of the Transformers library. General overview of 🤗 Transformers ---------------------------------- First, you should get a general overview of 🤗 Transformers. Transformers is a very opinionated library, so there is a chance that you don't agree with some of the library's philosophies or design choices. From our experience, however, we found that the fundamental design choices and philosophies of the library are crucial to efficiently scale Transformers while keeping maintenance costs at a reasonable level. A good first starting point to better understand the library is to read the [documentation of our philosophy](https://huggingface.co/transformers/philosophy.html). As a result of our way of working, there are some choices that we try to apply to all models: - Composition is generally favored over abstraction - Duplicating code is not always bad if it strongly improves the readability or accessibility of a model - Model files are as self-contained as possible so that when you read the code of a specific model, you ideally only have to look into the respective `modeling_....py` file. In our opinion, the library's code is not just a means to provide a product, *e.g.*, the ability to use BERT for inference, but also as the very product that we want to improve. Hence, when adding a model, the user is not only the person that will use your model, but also everybody that will read, try to understand, and possibly tweak your code. With this in mind, let's go a bit deeper into the general library design. ### Overview of models To successfully add a model, it is important to understand the interaction between your model and its config, `PreTrainedModel`, and `PretrainedConfig`. For exemplary purposes, we will call the PyTorch model to be added to 🤗 Transformers `BrandNewBert`. Let's take a look: ![image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers_overview.png) As you can see, we do make use of inheritance in 🤗 Transformers, but we keep the level of abstraction to an absolute minimum. There are never more than two levels of abstraction for any model in the library. `BrandNewBertModel` inherits from `BrandNewBertPreTrainedModel` which in turn inherits from `PreTrainedModel` and that's it. As a general rule, we want to make sure that a new model only depends on `PreTrainedModel`. The important functionalities that are automatically provided to every new model are `PreTrainedModel.from_pretrained` and `PreTrainedModel.save_pretrained`, which are used for serialization and deserialization. All of the other important functionalities, such as `BrandNewBertModel.forward` should be completely defined in the new `modeling_brand_new_bert.py` module. Next, we want to make sure that a model with a specific head layer, such as `BrandNewBertForMaskedLM` does not inherit from `BrandNewBertModel`, but rather uses `BrandNewBertModel` as a component that can be called in its forward pass to keep the level of abstraction low. Every new model requires a configuration class, called `BrandNewBertConfig`. This configuration is always stored as an attribute in `PreTrainedModel`, and thus can be accessed via the `config` attribute for all classes inheriting from `BrandNewBertPreTrainedModel` ```python # assuming that `brand_new_bert` belongs to the organization `brandy` model = BrandNewBertModel.from_pretrained("brandy/brand_new_bert") model.config # model has access to its config ``` Similar to the model, the configuration inherits basic serialization and deserialization functionalities from `PretrainedConfig`. Note that the configuration and the model are always serialized into two different formats - the model to a `pytorch_model.bin` file and the configuration to a `config.json` file. Calling `PreTrainedModel.save_pretrained` will automatically call `PretrainedConfig.save_pretrained`, so that both model and configuration are saved. ### Overview of tokenizers Not quite ready yet :-( This section will be added soon! Step-by-step recipe to add a model to 🤗 Transformers ---------------------------------------------------- Everyone has different preferences of how to port a model so it can be very helpful for you to take a look at summaries of how other contributors ported models to Hugging Face. Here is a list of community blog posts on how to port a model: 1. [Porting GPT2 Model](https://medium.com/huggingface/from-tensorflow-to-pytorch-265f40ef2a28) by [Thomas](https://huggingface.co/thomwolf) 2. [Porting WMT19 MT Model](https://huggingface.co/blog/porting-fsmt) by [Stas](https://huggingface.co/stas) From experience, we can tell you that the most important things to keep in mind when adding a model are: - Don't reinvent the wheel! Most parts of the code you will add for the new 🤗 Transformers model already exist somewhere in 🤗 Transformers. Take some time to find similar, already existing models and tokenizers you can copy from. [grep](https://www.gnu.org/software/grep/) and [rg](https://github.com/BurntSushi/ripgrep) are your friends. Note that it might very well happen that your model's tokenizer is based on one model implementation, and your model's modeling code on another one. *E.g.*, FSMT's modeling code is based on BART, while FSMT's tokenizer code is based on XLM. - It's more of an engineering challenge than a scientific challenge. You should spend more time on creating an efficient debugging environment than trying to understand all theoretical aspects of the model in the paper. - Ask for help when you're stuck! Models are the core component of 🤗 Transformers so we, at Hugging Face, are more than happy to help you at every step to add your model. Don't hesitate to ask if you notice you are not making progress. In the following, we try to give you a general recipe that we found most useful when porting a model to 🤗 Transformers. The following list is a summary of everything that has to be done to add a model and can be used by you as a To-Do List: 1. [ ] (Optional) Understood theoretical aspects 2. [ ] Prepared transformers dev environment 3. [ ] Set up debugging environment of the original repository 4. [ ] Created script that successfully runs forward pass using original repository and checkpoint 5. [ ] Successfully opened a PR and added the model skeleton to Transformers 6. [ ] Successfully converted original checkpoint to Transformers checkpoint 7. [ ] Successfully ran forward pass in Transformers that gives identical output to original checkpoint 8. [ ] Finished model tests in Transformers 9. [ ] Successfully added Tokenizer in Transformers 10. [ ] Run end-to-end integration tests 11. [ ] Finished docs 12. [ ] Uploaded model weights to the hub 13. [ ] Submitted the pull request for review 14. [ ] (Optional) Added a demo notebook To begin with, we usually recommend to start by getting a good theoretical understanding of `[camelcase name of model]`. However, if you prefer to understand the theoretical aspects of the model *on-the-job*, then it is totally fine to directly dive into the `[camelcase name of model]`'s code-base. This option might suit you better, if your engineering skills are better than your theoretical skill, if you have trouble understanding `[camelcase name of model]`'s paper, or if you just enjoy programming much more than reading scientific papers. ### 1. (Optional) Theoretical aspects of [camelcase name of model] You should take some time to read *[camelcase name of model]'s* paper, if such descriptive work exists. There might be large sections of the paper that are difficult to understand. If this is the case, this is fine - don't worry! The goal is not to get a deep theoretical understanding of the paper, but to extract the necessary information required to effectively re-implement the model in 🤗 Transformers. That being said, you don't have to spend too much time on the theoretical aspects, but rather focus on the practical ones, namely: - What type of model is *[camelcase name of model]*? BERT-like encoder-only model? GPT2-like decoder-only model? BART-like encoder-decoder model? Look at the `model_summary` if you're not familiar with the differences between those. - What are the applications of *[camelcase name of model]*? Text classification? Text generation? Seq2Seq tasks, *e.g.,* summarization? - What is the novel feature of the model making it different from BERT/GPT-2/BART? - Which of the already existing [🤗 Transformers models](https://huggingface.co/transformers/#contents) is most similar to *[camelcase name of model]*? - What type of tokenizer is used? A sentencepiece tokenizer? Word piece tokenizer? Is it the same tokenizer as used for BERT or BART? After you feel like you have gotten a good overview of the architecture of the model, you might want to write to [name of mentor] with any questions you might have. This might include questions regarding the model's architecture, its attention layer, etc. We will be more than happy to help you. #### Additional resources Before diving into the code, here are some additional resources that might be worth taking a look at: - [link 1] - [link 2] - [link 3] - ... #### Make sure you've understood the fundamental aspects of [camelcase name of model] Alright, now you should be ready to take a closer look into the actual code of [camelcase name of model]. You should have understood the following aspects of [camelcase name of model] by now: - [characteristic 1 of [camelcase name of model]] - [characteristic 2 of [camelcase name of model]] - ... If any of the mentioned aspects above are **not** clear to you, now is a great time to talk to [name of mentor]. ### 2. Next prepare your environment 1. Fork the [repository](https://github.com/huggingface/transformers) by clicking on the 'Fork' button on the repository's page. This creates a copy of the code under your GitHub user account. 2. Clone your `transformers` fork to your local disk, and add the base repository as a remote: ```bash git clone https://github.com/[your Github handle]/transformers.git cd transformers git remote add upstream https://github.com/huggingface/transformers.git ``` 3. Set up a development environment, for instance by running the following command: ```bash python -m venv .env source .env/bin/activate pip install -e ".[dev]" ``` and return to the parent directory ```bash cd .. ``` 4. We recommend adding the PyTorch version of *[camelcase name of model]* to Transformers. To install PyTorch, please follow the instructions [here](https://pytorch.org/get-started/locally/). **Note:** You don't need to have CUDA installed. Making the new model work on CPU is sufficient. 5. To port *[camelcase name of model]*, you will also need access to its original repository: ```bash git clone [link to original repo].git cd [lowercase name of model] pip install -e . ``` Now you have set up a development environment to port *[camelcase name of model]* to 🤗 Transformers. ### Run a pretrained checkpoint using the original repository **3. Set up debugging environment** At first, you will work on the original *[camelcase name of model]* repository. Often, the original implementation is very "researchy". Meaning that documentation might be lacking and the code can be difficult to understand. But this should be exactly your motivation to reimplement *[camelcase name of model]*. At Hugging Face, one of our main goals is to *make people stand on the shoulders of giants* which translates here very well into taking a working model and rewriting it to make it as **accessible, user-friendly, and beautiful** as possible. This is the number-one motivation to re-implement models into 🤗 Transformers - trying to make complex new NLP technology accessible to **everybody**. You should start thereby by diving into the [original repository]([link to original repo]). Successfully running the official pretrained model in the original repository is often **the most difficult** step. From our experience, it is very important to spend some time getting familiar with the original code-base. You need to figure out the following: - Where to find the pretrained weights? - How to load the pretrained weights into the corresponding model? - How to run the tokenizer independently from the model? - Trace one forward pass so that you know which classes and functions are required for a simple forward pass. Usually, you only have to reimplement those functions. - Be able to locate the important components of the model: Where is the model's class? Are there model sub-classes, *e.g.*, EncoderModel, DecoderModel? Where is the self-attention layer? Are there multiple different attention layers, *e.g.*, *self-attention*, *cross-attention*...? - How can you debug the model in the original environment of the repo? Do you have to add `print` statements, can you work with an interactive debugger like [ipdb](https://pypi.org/project/ipdb/), or should you use an efficient IDE to debug the model, like PyCharm? It is very important that before you start the porting process, that you can **efficiently** debug code in the original repository! Also, remember that you are working with an open-source library, so do not hesitate to open an issue, or even a pull request in the original repository. The maintainers of this repository are most likely very happy about someone looking into their code! At this point, it is really up to you which debugging environment and strategy you prefer to use to debug the original model. We strongly advise against setting up a costly GPU environment, but simply work on a CPU both when starting to dive into the original repository and also when starting to write the 🤗 Transformers implementation of the model. Only at the very end, when the model has already been successfully ported to 🤗 Transformers, one should verify that the model also works as expected on GPU. In general, there are two possible debugging environments for running the original model - [Jupyter notebooks](https://jupyter.org/) / [google colab](https://colab.research.google.com/notebooks/intro.ipynb) - Local python scripts. Jupyter notebooks have the advantage that they allow for cell-by-cell execution which can be helpful to better split logical components from one another and to have faster debugging cycles as intermediate results can be stored. Also, notebooks are often easier to share with other contributors, which might be very helpful if you want to ask the Hugging Face team for help. If you are familiar with Jupyter notebooks, we strongly recommend you to work with them. The obvious disadvantage of Jupyter notebooks is that if you are not used to working with them you will have to spend some time adjusting to the new programming environment and that you might not be able to use your known debugging tools anymore, like `ipdb`. **4. Successfully run forward pass** For each code-base, a good first step is always to load a **small** pretrained checkpoint and to be able to reproduce a single forward pass using a dummy integer vector of input IDs as an input. Such a script could look like this (in pseudocode): ```python model = [camelcase name of model]Model.load_pretrained_checkpoint("/path/to/checkpoint/") input_ids = [0, 4, 5, 2, 3, 7, 9] # vector of input ids original_output = model.predict(input_ids) ``` Next, regarding the debugging strategy, there are generally a few from which to choose from: - Decompose the original model into many small testable components and run a forward pass on each of those for verification - Decompose the original model only into the original *tokenizer* and the original *model*, run a forward pass on those, and use intermediate print statements or breakpoints for verification Again, it is up to you which strategy to choose. Often, one or the other is advantageous depending on the original code base. If the original code-base allows you to decompose the model into smaller sub-components, *e.g.*, if the original code-base can easily be run in eager mode, it is usually worth the effort to do so. There are some important advantages to taking the more difficult road in the beginning: - at a later stage when comparing the original model to the Hugging Face implementation, you can verify automatically for each component individually that the corresponding component of the 🤗 Transformers implementation matches instead of relying on visual comparison via print statements - it can give you some rope to decompose the big problem of porting a model into smaller problems of just porting individual components and thus structure your work better - separating the model into logical meaningful components will help you to get a better overview of the model's design and thus to better understand the model - at a later stage those component-by-component tests help you to ensure that no regression occurs as you continue changing your code [Lysandre's](https://gist.github.com/LysandreJik/db4c948f6b4483960de5cbac598ad4ed) integration checks for ELECTRA gives a nice example of how this can be done. However, if the original code-base is very complex or only allows intermediate components to be run in a compiled mode, it might be too time-consuming or even impossible to separate the model into smaller testable sub-components. A good example is [T5's MeshTensorFlow](https://github.com/tensorflow/mesh/tree/master/mesh_tensorflow) library which is very complex and does not offer a simple way to decompose the model into its sub-components. For such libraries, one often relies on verifying print statements. No matter which strategy you choose, the recommended procedure is often the same in that you should start to debug the starting layers first and the ending layers last. It is recommended that you retrieve the output, either by print statements or sub-component functions, of the following layers in the following order: 1. Retrieve the input IDs passed to the model 2. Retrieve the word embeddings 3. Retrieve the input of the first Transformer layer 4. Retrieve the output of the first Transformer layer 5. Retrieve the output of the following n - 1 Transformer layers 6. Retrieve the output of the whole [camelcase name of model] Model Input IDs should thereby consists of an array of integers, *e.g.*, `input_ids = [0, 4, 4, 3, 2, 4, 1, 7, 19]` The outputs of the following layers often consist of multi-dimensional float arrays and can look like this: ```bash [[ [-0.1465, -0.6501, 0.1993, ..., 0.1451, 0.3430, 0.6024], [-0.4417, -0.5920, 0.3450, ..., -0.3062, 0.6182, 0.7132], [-0.5009, -0.7122, 0.4548, ..., -0.3662, 0.6091, 0.7648], ..., [-0.5613, -0.6332, 0.4324, ..., -0.3792, 0.7372, 0.9288], [-0.5416, -0.6345, 0.4180, ..., -0.3564, 0.6992, 0.9191], [-0.5334, -0.6403, 0.4271, ..., -0.3339, 0.6533, 0.8694]]], ``` We expect that every model added to 🤗 Transformers passes a couple of integration tests, meaning that the original model and the reimplemented version in 🤗 Transformers have to give the exact same output up to a precision of 0.001! Since it is normal that the exact same model written in different libraries can give a slightly different output depending on the library framework, we accept an error tolerance of 1e-3 (0.001). It is not enough if the model gives nearly the same output, they have to be the almost identical. Therefore, you will certainly compare the intermediate outputs of the 🤗 Transformers version multiple times against the intermediate outputs of the original implementation of *[camelcase name of model]* in which case an **efficient** debugging environment of the original repository is absolutely important. Here is some advice to make your debugging environment as efficient as possible. - Find the best way of debugging intermediate results. Is the original repository written in PyTorch? Then you should probably take the time to write a longer script that decomposes the original model into smaller sub-components to retrieve intermediate values. Is the original repository written in Tensorflow 1? Then you might have to rely on TensorFlow print operations like [tf.print](https://www.tensorflow.org/api_docs/python/tf/print) to output intermediate values. Is the original repository written in Jax? Then make sure that the model is **not jitted** when running the forward pass, *e.g.*, check-out [this link](https://github.com/google/jax/issues/196). - Use the smallest pretrained checkpoint you can find. The smaller the checkpoint, the faster your debug cycle becomes. It is not efficient if your pretrained model is so big that your forward pass takes more than 10 seconds. In case only very large checkpoints are available, it might make more sense to create a dummy model in the new environment with randomly initialized weights and save those weights for comparison with the 🤗 Transformers version of your model - Make sure you are using the easiest way of calling a forward pass in the original repository. Ideally, you want to find the function in the original repository that **only** calls a single forward pass, *i.e.* that is often called `predict`, `evaluate`, `forward` or `__call__`. You don't want to debug a function that calls `forward` multiple times, *e.g.*, to generate text, like `autoregressive_sample`, `generate`. - Try to separate the tokenization from the model's forward pass. If the original repository shows examples where you have to input a string, then try to find out where in the forward call the string input is changed to input ids and start from this point. This might mean that you have to possibly write a small script yourself or change the original code so that you can directly input the ids instead of an input string. - Make sure that the model in your debugging setup is **not** in training mode, which often causes the model to yield random outputs due to multiple dropout layers in the model. Make sure that the forward pass in your debugging environment is **deterministic** so that the dropout layers are not used. Or use `transformers.utils.set_seed` if the old and new implementations are in the same framework. #### More details on how to create a debugging environment for [camelcase name of model] [TODO FILL: Here the mentor should add very specific information on what the student should do] [to set up an efficient environment for the special requirements of this model] ### Port [camelcase name of model] to 🤗 Transformers Next, you can finally start adding new code to 🤗 Transformers. Go into the clone of your 🤗 Transformers' fork: cd transformers In the special case that you are adding a model whose architecture exactly matches the model architecture of an existing model you only have to add a conversion script as described in [this section](#write-a-conversion-script). In this case, you can just re-use the whole model architecture of the already existing model. Otherwise, let's start generating a new model with the amazing Cookiecutter! **Use the Cookiecutter to automatically generate the model's code** To begin with head over to the [🤗 Transformers templates](https://github.com/huggingface/transformers/tree/main/templates/adding_a_new_model) to make use of our `cookiecutter` implementation to automatically generate all the relevant files for your model. Again, we recommend only adding the PyTorch version of the model at first. Make sure you follow the instructions of the `README.md` on the [🤗 Transformers templates](https://github.com/huggingface/transformers/tree/main/templates/adding_a_new_model) carefully. **Open a Pull Request on the main huggingface/transformers repo** Before starting to adapt the automatically generated code, now is the time to open a "Work in progress (WIP)" pull request, *e.g.*, "\[WIP\] Add *[camelcase name of model]*", in 🤗 Transformers so that you and the Hugging Face team can work side-by-side on integrating the model into 🤗 Transformers. You should do the following: 1. Create a branch with a descriptive name from your main branch ``` git checkout -b add_[lowercase name of model] ``` 2. Commit the automatically generated code: ``` git add . git commit ``` 3. Fetch and rebase to current main ``` git fetch upstream git rebase upstream/main ``` 4. Push the changes to your account using: ``` git push -u origin a-descriptive-name-for-my-changes ``` 5. Once you are satisfied, go to the webpage of your fork on GitHub. Click on "Pull request". Make sure to add the GitHub handle of [name of mentor] as a reviewer, so that the Hugging Face team gets notified for future changes. 6. Change the PR into a draft by clicking on "Convert to draft" on the right of the GitHub pull request web page. In the following, whenever you have done some progress, don't forget to commit your work and push it to your account so that it shows in the pull request. Additionally, you should make sure to update your work with the current main from time to time by doing: git fetch upstream git merge upstream/main In general, all questions you might have regarding the model or your implementation should be asked in your PR and discussed/solved in the PR. This way, [name of mentor] will always be notified when you are committing new code or if you have a question. It is often very helpful to point [name of mentor] to your added code so that the Hugging Face team can efficiently understand your problem or question. To do so, you can go to the "Files changed" tab where you see all of your changes, go to a line regarding which you want to ask a question, and click on the "+" symbol to add a comment. Whenever a question or problem has been solved, you can click on the "Resolve" button of the created comment. In the same way, [name of mentor] will open comments when reviewing your code. We recommend asking most questions on GitHub on your PR. For some very general questions that are not very useful for the public, feel free to ping [name of mentor] by Slack or email. **5. Adapt the generated models code for [camelcase name of model]** At first, we will focus only on the model itself and not care about the tokenizer. All the relevant code should be found in the generated files `src/transformers/models/[lowercase name of model]/modeling_[lowercase name of model].py` and `src/transformers/models/[lowercase name of model]/configuration_[lowercase name of model].py`. Now you can finally start coding :). The generated code in `src/transformers/models/[lowercase name of model]/modeling_[lowercase name of model].py` will either have the same architecture as BERT if it's an encoder-only model or BART if it's an encoder-decoder model. At this point, you should remind yourself what you've learned in the beginning about the theoretical aspects of the model: *How is the model different from BERT or BART?*\". Implement those changes which often means to change the *self-attention* layer, the order of the normalization layer, etc... Again, it is often useful to look at the similar architecture of already existing models in Transformers to get a better feeling of how your model should be implemented. **Note** that at this point, you don't have to be very sure that your code is fully correct or clean. Rather, it is advised to add a first *unclean*, copy-pasted version of the original code to `src/transformers/models/[lowercase name of model]/modeling_[lowercase name of model].py` until you feel like all the necessary code is added. From our experience, it is much more efficient to quickly add a first version of the required code and improve/correct the code iteratively with the conversion script as described in the next section. The only thing that has to work at this point is that you can instantiate the 🤗 Transformers implementation of *[camelcase name of model]*, *i.e.* the following command should work: ```python from transformers import [camelcase name of model]Model, [camelcase name of model]Config model = [camelcase name of model]Model([camelcase name of model]Config()) ``` The above command will create a model according to the default parameters as defined in `[camelcase name of model]Config()` with random weights, thus making sure that the `init()` methods of all components works. [TODO FILL: Here the mentor should add very specific information on what exactly has to be changed for this model] [...] [...] **6. Write a conversion script** Next, you should write a conversion script that lets you convert the checkpoint you used to debug *[camelcase name of model]* in the original repository to a checkpoint compatible with your just created 🤗 Transformers implementation of *[camelcase name of model]*. It is not advised to write the conversion script from scratch, but rather to look through already existing conversion scripts in 🤗 Transformers for one that has been used to convert a similar model that was written in the same framework as *[camelcase name of model]*. Usually, it is enough to copy an already existing conversion script and slightly adapt it for your use case. Don't hesitate to ask [name of mentor] to point you to a similar already existing conversion script for your model. - If you are porting a model from TensorFlow to PyTorch, a good starting point might be BERT's conversion script [here](https://github.com/huggingface/transformers/blob/7acfa95afb8194f8f9c1f4d2c6028224dbed35a2/src/transformers/models/bert/modeling_bert.py#L91) - If you are porting a model from PyTorch to PyTorch, a good starting point might be BART's conversion script [here](https://github.com/huggingface/transformers/blob/main/src/transformers/models/bart/convert_bart_original_pytorch_checkpoint_to_pytorch.py) In the following, we'll quickly explain how PyTorch models store layer weights and define layer names. In PyTorch, the name of a layer is defined by the name of the class attribute you give the layer. Let's define a dummy model in PyTorch, called `SimpleModel` as follows: ```python from torch import nn class SimpleModel(nn.Module): def __init__(self): super().__init__() self.dense = nn.Linear(10, 10) self.intermediate = nn.Linear(10, 10) self.layer_norm = nn.LayerNorm(10) ``` Now we can create an instance of this model definition which will fill all weights: `dense`, `intermediate`, `layer_norm` with random weights. We can print the model to see its architecture ```python model = SimpleModel() print(model) ``` This will print out the following: ```bash SimpleModel( (dense): Linear(in_features=10, out_features=10, bias=True) (intermediate): Linear(in_features=10, out_features=10, bias=True) (layer_norm): LayerNorm((10,), eps=1e-05, elementwise_affine=True) ) ``` We can see that the layer names are defined by the name of the class attribute in PyTorch. You can print out the weight values of a specific layer: ```python print(model.dense.weight.data) ``` to see that the weights were randomly initialized ```bash tensor([[-0.0818, 0.2207, -0.0749, -0.0030, 0.0045, -0.1569, -0.1598, 0.0212, -0.2077, 0.2157], [ 0.1044, 0.0201, 0.0990, 0.2482, 0.3116, 0.2509, 0.2866, -0.2190, 0.2166, -0.0212], [-0.2000, 0.1107, -0.1999, -0.3119, 0.1559, 0.0993, 0.1776, -0.1950, -0.1023, -0.0447], [-0.0888, -0.1092, 0.2281, 0.0336, 0.1817, -0.0115, 0.2096, 0.1415, -0.1876, -0.2467], [ 0.2208, -0.2352, -0.1426, -0.2636, -0.2889, -0.2061, -0.2849, -0.0465, 0.2577, 0.0402], [ 0.1502, 0.2465, 0.2566, 0.0693, 0.2352, -0.0530, 0.1859, -0.0604, 0.2132, 0.1680], [ 0.1733, -0.2407, -0.1721, 0.1484, 0.0358, -0.0633, -0.0721, -0.0090, 0.2707, -0.2509], [-0.1173, 0.1561, 0.2945, 0.0595, -0.1996, 0.2988, -0.0802, 0.0407, 0.1829, -0.1568], [-0.1164, -0.2228, -0.0403, 0.0428, 0.1339, 0.0047, 0.1967, 0.2923, 0.0333, -0.0536], [-0.1492, -0.1616, 0.1057, 0.1950, -0.2807, -0.2710, -0.1586, 0.0739, 0.2220, 0.2358]]). ``` In the conversion script, you should fill those randomly initialized weights with the exact weights of the corresponding layer in the checkpoint. *E.g.*, ```python # retrieve matching layer weights, e.g. by # recursive algorithm layer_name = "dense" pretrained_weight = array_of_dense_layer model_pointer = getattr(model, "dense") model_pointer.weight.data = torch.from_numpy(pretrained_weight) ``` While doing so, you must verify that each randomly initialized weight of your PyTorch model and its corresponding pretrained checkpoint weight exactly match in both **shape and name**. To do so, it is **necessary** to add assert statements for the shape and print out the names of the checkpoints weights. *E.g.*, you should add statements like: ```python assert ( model_pointer.weight.shape == pretrained_weight.shape ), f"Pointer shape of random weight {model_pointer.shape} and array shape of checkpoint weight {pretrained_weight.shape} mismatched" ``` Besides, you should also print out the names of both weights to make sure they match, *e.g.*, ```python logger.info(f"Initialize PyTorch weight {layer_name} from {pretrained_weight.name}") ``` If either the shape or the name doesn't match, you probably assigned the wrong checkpoint weight to a randomly initialized layer of the 🤗 Transformers implementation. An incorrect shape is most likely due to an incorrect setting of the config parameters in `[camelcase name of model]Config()` that do not exactly match those that were used for the checkpoint you want to convert. However, it could also be that PyTorch's implementation of a layer requires the weight to be transposed beforehand. Finally, you should also check that **all** required weights are initialized and print out all checkpoint weights that were not used for initialization to make sure the model is correctly converted. It is completely normal, that the conversion trials fail with either a wrong shape statement or wrong name assignment. This is most likely because either you used incorrect parameters in `[camelcase name of model]Config()`, have a wrong architecture in the 🤗 Transformers implementation, you have a bug in the `init()` functions of one of the components of the 🤗 Transformers implementation or you need to transpose one of the checkpoint weights. This step should be iterated with the previous step until all weights of the checkpoint are correctly loaded in the Transformers model. Having correctly loaded the checkpoint into the 🤗 Transformers implementation, you can then save the model under a folder of your choice `/path/to/converted/checkpoint/folder` that should then contain both a `pytorch_model.bin` file and a `config.json` file: ```python model.save_pretrained("/path/to/converted/checkpoint/folder") ``` [TODO FILL: Here the mentor should add very specific information on what exactly has to be done for the conversion of this model] [...] [...] **7. Implement the forward pass** Having managed to correctly load the pretrained weights into the 🤗 Transformers implementation, you should now make sure that the forward pass is correctly implemented. In [Get familiar with the original repository](#34-run-a-pretrained-checkpoint-using-the-original-repository), you have already created a script that runs a forward pass of the model using the original repository. Now you should write an analogous script using the 🤗 Transformers implementation instead of the original one. It should look as follows: [TODO FILL: Here the model name might have to be adapted, *e.g.*, maybe [camelcase name of model]ForConditionalGeneration instead of [camelcase name of model]Model] ```python model = [camelcase name of model]Model.from_pretrained("/path/to/converted/checkpoint/folder") input_ids = [0, 4, 4, 3, 2, 4, 1, 7, 19] output = model(input_ids).last_hidden_states ``` It is very likely that the 🤗 Transformers implementation and the original model implementation don't give the exact same output the very first time or that the forward pass throws an error. Don't be disappointed - it's expected! First, you should make sure that the forward pass doesn't throw any errors. It often happens that the wrong dimensions are used leading to a `"Dimensionality mismatch"` error or that the wrong data type object is used, *e.g.*, `torch.long` instead of `torch.float32`. Don't hesitate to ask [name of mentor] for help, if you don't manage to solve certain errors. The final part to make sure the 🤗 Transformers implementation works correctly is to ensure that the outputs are equivalent to a precision of `1e-3`. First, you should ensure that the output shapes are identical, *i.e.* `outputs.shape` should yield the same value for the script of the 🤗 Transformers implementation and the original implementation. Next, you should make sure that the output values are identical as well. This one of the most difficult parts of adding a new model. Common mistakes why the outputs are not identical are: - Some layers were not added, *i.e.* an activation layer was not added, or the residual connection was forgotten - The word embedding matrix was not tied - The wrong positional embeddings are used because the original implementation uses on offset - Dropout is applied during the forward pass. To fix this make sure `model.training is False` and that no dropout layer is falsely activated during the forward pass, *i.e.* pass `self.training` to [PyTorch's functional dropout](https://pytorch.org/docs/stable/nn.functional.html?highlight=dropout#torch.nn.functional.dropout) The best way to fix the problem is usually to look at the forward pass of the original implementation and the 🤗 Transformers implementation side-by-side and check if there are any differences. Ideally, you should debug/print out intermediate outputs of both implementations of the forward pass to find the exact position in the network where the 🤗 Transformers implementation shows a different output than the original implementation. First, make sure that the hard-coded `input_ids` in both scripts are identical. Next, verify that the outputs of the first transformation of the `input_ids` (usually the word embeddings) are identical. And then work your way up to the very last layer of the network. At some point, you will notice a difference between the two implementations, which should point you to the bug in the 🤗 Transformers implementation. From our experience, a simple and efficient way is to add many print statements in both the original implementation and 🤗 Transformers implementation, at the same positions in the network respectively, and to successively remove print statements showing the same values for intermediate presentions. When you're confident that both implementations yield the same output, verifying the outputs with `torch.allclose(original_output, output, atol=1e-3)`, you're done with the most difficult part! Congratulations - the work left to be done should be a cakewalk 😊. **8. Adding all necessary model tests** At this point, you have successfully added a new model. However, it is very much possible that the model does not yet fully comply with the required design. To make sure, the implementation is fully compatible with 🤗 Transformers, all common tests should pass. The Cookiecutter should have automatically added a test file for your model, probably under the same `tests/test_modeling_[lowercase name of model].py`. Run this test file to verify that all common tests pass: ```python pytest tests/test_modeling_[lowercase name of model].py ``` [TODO FILL: Here the mentor should add very specific information on what tests are likely to fail after having implemented the model , e.g. given the model, it might be very likely that `test_attention_output` fails] [...] [...] Having fixed all common tests, it is now crucial to ensure that all the nice work you have done is well tested, so that - a) The community can easily understand your work by looking at specific tests of *[camelcase name of model]* - b) Future changes to your model will not break any important feature of the model. At first, integration tests should be added. Those integration tests essentially do the same as the debugging scripts you used earlier to implement the model to 🤗 Transformers. A template of those model tests is already added by the Cookiecutter, called `[camelcase name of model]ModelIntegrationTests` and only has to be filled out by you. To ensure that those tests are passing, run ```python RUN_SLOW=1 pytest -sv tests/test_modeling_[lowercase name of model].py::[camelcase name of model]ModelIntegrationTests ``` **Note:** In case you are using Windows, you should replace `RUN_SLOW=1` with `SET RUN_SLOW=1` Second, all features that are special to *[camelcase name of model]* should be tested additionally in a separate test under `[camelcase name of model]ModelTester`/`[camelcase name of model]ModelTest`. This part is often forgotten but is extremely useful in two ways: - It helps to transfer the knowledge you have acquired during the model addition to the community by showing how the special features of *[camelcase name of model]* should work. - Future contributors can quickly test changes to the model by running those special tests. [TODO FILL: Here the mentor should add very specific information on what special features of the model should be tested additionally] [...] [...] **9. Implement the tokenizer** Next, we should add the tokenizer of *[camelcase name of model]*. Usually, the tokenizer is equivalent or very similar to an already existing tokenizer of 🤗 Transformers. [TODO FILL: Here the mentor should add a comment whether a new tokenizer is required or if this is not the case which existing tokenizer closest resembles [camelcase name of model]'s tokenizer and how the tokenizer should be implemented] [...] [...] It is very important to find/extract the original tokenizer file and to manage to load this file into the 🤗 Transformers' implementation of the tokenizer. For [camelcase name of model], the tokenizer files can be found here: - [To be filled out by mentor] and having implemented the 🤗 Transformers' version of the tokenizer can be loaded as follows: [To be filled out by mentor] To ensure that the tokenizer works correctly, it is recommended to first create a script in the original repository that inputs a string and returns the `input_ids`. It could look similar to this (in pseudo-code): ```bash input_str = "This is a long example input string containing special characters .$?-, numbers 2872 234 12 and words." model = [camelcase name of model]Model.load_pretrained_checkpoint("/path/to/checkpoint/") input_ids = model.tokenize(input_str) ``` You might have to take a deeper look again into the original repository to find the correct tokenizer function or you might even have to do changes to your clone of the original repository to only output the `input_ids`. Having written a functional tokenization script that uses the original repository, an analogous script for 🤗 Transformers should be created. It should look similar to this: ```python from transformers import [camelcase name of model]Tokenizer input_str = "This is a long example input string containing special characters .$?-, numbers 2872 234 12 and words." tokenizer = [camelcase name of model]Tokenizer.from_pretrained("/path/to/tokenizer/folder/") input_ids = tokenizer(input_str).input_ids ``` When both `input_ids` yield the same values, as a final step a tokenizer test file should also be added. [TODO FILL: Here mentor should point the student to test files of similar tokenizers] Analogous to the modeling test files of *[camelcase name of model]*, the tokenization test files of *[camelcase name of model]* should contain a couple of hard-coded integration tests. [TODO FILL: Here mentor should again point to an existing similar test of another model that the student can copy & adapt] **10. Run End-to-end integration tests** Having added the tokenizer, you should also add a couple of end-to-end integration tests using both the model and the tokenizer to `tests/test_modeling_[lowercase name of model].py` in 🤗 Transformers. Such a test should show on a meaningful text-to-text sample that the 🤗 Transformers implementation works as expected. A meaningful text-to-text sample can include *e.g.* a source-to-target-translation pair, an article-to-summary pair, a question-to-answer pair, etc... If none of the ported checkpoints has been fine-tuned on a downstream task it is enough to simply rely on the model tests. In a final step to ensure that the model is fully functional, it is advised that you also run all tests on GPU. It can happen that you forgot to add some `.to(self.device)` statements to internal tensors of the model, which in such a test would show in an error. In case you have no access to a GPU, the Hugging Face team can take care of running those tests for you. **11. Add Docstring** Now, all the necessary functionality for *[camelcase name of model]* is added - you're almost done! The only thing left to add is a nice docstring and a doc page. The Cookiecutter should have added a template file called `docs/source/model_doc/[lowercase name of model].rst` that you should fill out. Users of your model will usually first look at this page before using your model. Hence, the documentation must be understandable and concise. It is very useful for the community to add some *Tips* to show how the model should be used. Don't hesitate to ping [name of mentor] regarding the docstrings. Next, make sure that the docstring added to `src/transformers/models/[lowercase name of model]/modeling_[lowercase name of model].py` is correct and included all necessary inputs and outputs. It is always to good to remind oneself that documentation should be treated at least as carefully as the code in 🤗 Transformers since the documentation is usually the first contact point of the community with the model. **Code refactor** Great, now you have added all the necessary code for *[camelcase name of model]*. At this point, you should correct some potential incorrect code style by running: ```bash make style ``` and verify that your coding style passes the quality check: ```bash make quality ``` There are a couple of other very strict design tests in 🤗 Transformers that might still be failing, which shows up in the tests of your pull request. This is often because of some missing information in the docstring or some incorrect naming. [name of mentor] will surely help you if you're stuck here. Lastly, it is always a good idea to refactor one's code after having ensured that the code works correctly. With all tests passing, now it's a good time to go over the added code again and do some refactoring. You have now finished the coding part, congratulation! 🎉 You are Awesome! 😎 **12. Upload the models to the model hub** In this final part, you should convert and upload all checkpoints to the model hub and add a model card for each uploaded model checkpoint. You should work alongside [name of mentor] here to decide on a fitting name for each checkpoint and to get the required access rights to be able to upload the model under the author's organization of *[camelcase name of model]*. It is worth spending some time to create fitting model cards for each checkpoint. The model cards should highlight the specific characteristics of this particular checkpoint, *e.g.*, On which dataset was the checkpoint pretrained/fine-tuned on? On what down-stream task should the model be used? And also include some code on how to correctly use the model. **13. (Optional) Add notebook** It is very helpful to add a notebook that showcases in-detail how *[camelcase name of model]* can be used for inference and/or fine-tuned on a downstream task. This is not mandatory to merge your PR, but very useful for the community. **14. Submit your finished PR** You're done programming now and can move to the last step, which is getting your PR merged into main. Usually, [name of mentor] should have helped you already at this point, but it is worth taking some time to give your finished PR a nice description and eventually add comments to your code, if you want to point out certain design choices to your reviewer. ### Share your work!! Now, it's time to get some credit from the community for your work! Having completed a model addition is a major contribution to Transformers and the whole NLP community. Your code and the ported pre-trained models will certainly be used by hundreds and possibly even thousands of developers and researchers. You should be proud of your work and share your achievement with the community. **You have made another model that is super easy to access for everyone in the community! 🤯**
huggingface/transformers/blob/main/templates/adding_a_new_model/ADD_NEW_MODEL_PROPOSAL_TEMPLATE.md
!--- Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> ## Whole Word Mask Language Model These scripts leverage the 🤗 Datasets library and the Trainer API. You can easily customize them to your needs if you need extra processing on your datasets. The following examples, will run on a datasets hosted on our [hub](https://huggingface.co/datasets) or with your own text files for training and validation. We give examples of both below. The BERT authors released a new version of BERT using Whole Word Masking in May 2019. Instead of masking randomly selected tokens (which may be part of words), they mask randomly selected words (masking all the tokens corresponding to that word). This technique has been refined for Chinese in [this paper](https://arxiv.org/abs/1906.08101). To fine-tune a model using whole word masking, use the following script: ```bash python run_mlm_wwm.py \ --model_name_or_path roberta-base \ --dataset_name wikitext \ --dataset_config_name wikitext-2-raw-v1 \ --do_train \ --do_eval \ --output_dir /tmp/test-mlm-wwm ``` For Chinese models, we need to generate a reference files (which requires the ltp library), because it's tokenized at the character level. **Q :** Why a reference file? **A :** Suppose we have a Chinese sentence like: `我喜欢你` The original Chinese-BERT will tokenize it as `['我','喜','欢','你']` (character level). But `喜欢` is a whole word. For whole word masking proxy, we need a result like `['我','喜','##欢','你']`, so we need a reference file to tell the model which position of the BERT original token should be added `##`. **Q :** Why LTP ? **A :** Cause the best known Chinese WWM BERT is [Chinese-BERT-wwm](https://github.com/ymcui/Chinese-BERT-wwm) by HIT. It works well on so many Chines Task like CLUE (Chinese GLUE). They use LTP, so if we want to fine-tune their model, we need LTP. You could run the following: ```bash export TRAIN_FILE=/path/to/train/file export LTP_RESOURCE=/path/to/ltp/tokenizer export BERT_RESOURCE=/path/to/bert/tokenizer export SAVE_PATH=/path/to/data/ref.txt python run_chinese_ref.py \ --file_name=$TRAIN_FILE \ --ltp=$LTP_RESOURCE \ --bert=$BERT_RESOURCE \ --save_path=$SAVE_PATH ``` Then you can run the script like this: ```bash export TRAIN_FILE=/path/to/train/file export VALIDATION_FILE=/path/to/validation/file export TRAIN_REF_FILE=/path/to/train/chinese_ref/file export VALIDATION_REF_FILE=/path/to/validation/chinese_ref/file export OUTPUT_DIR=/tmp/test-mlm-wwm python run_mlm_wwm.py \ --model_name_or_path roberta-base \ --train_file $TRAIN_FILE \ --validation_file $VALIDATION_FILE \ --train_ref_file $TRAIN_REF_FILE \ --validation_ref_file $VALIDATION_REF_FILE \ --do_train \ --do_eval \ --output_dir $OUTPUT_DIR ``` **Note1:** On TPU, you should the flag `--pad_to_max_length` to make sure all your batches have the same length. **Note2:** And if you have any questions or something goes wrong when runing this code, don't hesitate to pin @wlhgtc.
huggingface/transformers/blob/main/examples/research_projects/mlm_wwm/README.md
!--Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # MarianMT <div class="flex flex-wrap space-x-1"> <a href="https://huggingface.co/models?filter=marian"> <img alt="Models" src="https://img.shields.io/badge/All_model_pages-marian-blueviolet"> </a> <a href="https://huggingface.co/spaces/docs-demos/opus-mt-zh-en"> <img alt="Spaces" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue"> </a> </div> ## Overview A framework for translation models, using the same models as BART. Translations should be similar, but not identical to output in the test set linked to in each model card. This model was contributed by [sshleifer](https://huggingface.co/sshleifer). ## Implementation Notes - Each model is about 298 MB on disk, there are more than 1,000 models. - The list of supported language pairs can be found [here](https://huggingface.co/Helsinki-NLP). - Models were originally trained by [Jörg Tiedemann](https://researchportal.helsinki.fi/en/persons/j%C3%B6rg-tiedemann) using the [Marian](https://marian-nmt.github.io/) C++ library, which supports fast training and translation. - All models are transformer encoder-decoders with 6 layers in each component. Each model's performance is documented in a model card. - The 80 opus models that require BPE preprocessing are not supported. - The modeling code is the same as [`BartForConditionalGeneration`] with a few minor modifications: - static (sinusoid) positional embeddings (`MarianConfig.static_position_embeddings=True`) - no layernorm_embedding (`MarianConfig.normalize_embedding=False`) - the model starts generating with `pad_token_id` (which has 0 as a token_embedding) as the prefix (Bart uses `<s/>`), - Code to bulk convert models can be found in `convert_marian_to_pytorch.py`. ## Naming - All model names use the following format: `Helsinki-NLP/opus-mt-{src}-{tgt}` - The language codes used to name models are inconsistent. Two digit codes can usually be found [here](https://developers.google.com/admin-sdk/directory/v1/languages), three digit codes require googling "language code {code}". - Codes formatted like `es_AR` are usually `code_{region}`. That one is Spanish from Argentina. - The models were converted in two stages. The first 1000 models use ISO-639-2 codes to identify languages, the second group use a combination of ISO-639-5 codes and ISO-639-2 codes. ## Examples - Since Marian models are smaller than many other translation models available in the library, they can be useful for fine-tuning experiments and integration tests. - [Fine-tune on GPU](https://github.com/huggingface/transformers/blob/master/examples/legacy/seq2seq/train_distil_marian_enro.sh) ## Multilingual Models - All model names use the following format: `Helsinki-NLP/opus-mt-{src}-{tgt}`: - If a model can output multiple languages, and you should specify a language code by prepending the desired output language to the `src_text`. - You can see a models's supported language codes in its model card, under target constituents, like in [opus-mt-en-roa](https://huggingface.co/Helsinki-NLP/opus-mt-en-roa). - Note that if a model is only multilingual on the source side, like `Helsinki-NLP/opus-mt-roa-en`, no language codes are required. New multi-lingual models from the [Tatoeba-Challenge repo](https://github.com/Helsinki-NLP/Tatoeba-Challenge) require 3 character language codes: ```python >>> from transformers import MarianMTModel, MarianTokenizer >>> src_text = [ ... ">>fra<< this is a sentence in english that we want to translate to french", ... ">>por<< This should go to portuguese", ... ">>esp<< And this to Spanish", ... ] >>> model_name = "Helsinki-NLP/opus-mt-en-roa" >>> tokenizer = MarianTokenizer.from_pretrained(model_name) >>> print(tokenizer.supported_language_codes) ['>>zlm_Latn<<', '>>mfe<<', '>>hat<<', '>>pap<<', '>>ast<<', '>>cat<<', '>>ind<<', '>>glg<<', '>>wln<<', '>>spa<<', '>>fra<<', '>>ron<<', '>>por<<', '>>ita<<', '>>oci<<', '>>arg<<', '>>min<<'] >>> model = MarianMTModel.from_pretrained(model_name) >>> translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True)) >>> [tokenizer.decode(t, skip_special_tokens=True) for t in translated] ["c'est une phrase en anglais que nous voulons traduire en français", 'Isto deve ir para o português.', 'Y esto al español'] ``` Here is the code to see all available pretrained models on the hub: ```python from huggingface_hub import list_models model_list = list_models() org = "Helsinki-NLP" model_ids = [x.modelId for x in model_list if x.modelId.startswith(org)] suffix = [x.split("/")[1] for x in model_ids] old_style_multi_models = [f"{org}/{s}" for s in suffix if s != s.lower()] ``` ## Old Style Multi-Lingual Models These are the old style multi-lingual models ported from the OPUS-MT-Train repo: and the members of each language group: ```python no-style ['Helsinki-NLP/opus-mt-NORTH_EU-NORTH_EU', 'Helsinki-NLP/opus-mt-ROMANCE-en', 'Helsinki-NLP/opus-mt-SCANDINAVIA-SCANDINAVIA', 'Helsinki-NLP/opus-mt-de-ZH', 'Helsinki-NLP/opus-mt-en-CELTIC', 'Helsinki-NLP/opus-mt-en-ROMANCE', 'Helsinki-NLP/opus-mt-es-NORWAY', 'Helsinki-NLP/opus-mt-fi-NORWAY', 'Helsinki-NLP/opus-mt-fi-ZH', 'Helsinki-NLP/opus-mt-fi_nb_no_nn_ru_sv_en-SAMI', 'Helsinki-NLP/opus-mt-sv-NORWAY', 'Helsinki-NLP/opus-mt-sv-ZH'] GROUP_MEMBERS = { 'ZH': ['cmn', 'cn', 'yue', 'ze_zh', 'zh_cn', 'zh_CN', 'zh_HK', 'zh_tw', 'zh_TW', 'zh_yue', 'zhs', 'zht', 'zh'], 'ROMANCE': ['fr', 'fr_BE', 'fr_CA', 'fr_FR', 'wa', 'frp', 'oc', 'ca', 'rm', 'lld', 'fur', 'lij', 'lmo', 'es', 'es_AR', 'es_CL', 'es_CO', 'es_CR', 'es_DO', 'es_EC', 'es_ES', 'es_GT', 'es_HN', 'es_MX', 'es_NI', 'es_PA', 'es_PE', 'es_PR', 'es_SV', 'es_UY', 'es_VE', 'pt', 'pt_br', 'pt_BR', 'pt_PT', 'gl', 'lad', 'an', 'mwl', 'it', 'it_IT', 'co', 'nap', 'scn', 'vec', 'sc', 'ro', 'la'], 'NORTH_EU': ['de', 'nl', 'fy', 'af', 'da', 'fo', 'is', 'no', 'nb', 'nn', 'sv'], 'SCANDINAVIA': ['da', 'fo', 'is', 'no', 'nb', 'nn', 'sv'], 'SAMI': ['se', 'sma', 'smj', 'smn', 'sms'], 'NORWAY': ['nb_NO', 'nb', 'nn_NO', 'nn', 'nog', 'no_nb', 'no'], 'CELTIC': ['ga', 'cy', 'br', 'gd', 'kw', 'gv'] } ``` Example of translating english to many romance languages, using old-style 2 character language codes ```python >>> from transformers import MarianMTModel, MarianTokenizer >>> src_text = [ ... ">>fr<< this is a sentence in english that we want to translate to french", ... ">>pt<< This should go to portuguese", ... ">>es<< And this to Spanish", ... ] >>> model_name = "Helsinki-NLP/opus-mt-en-ROMANCE" >>> tokenizer = MarianTokenizer.from_pretrained(model_name) >>> model = MarianMTModel.from_pretrained(model_name) >>> translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True)) >>> tgt_text = [tokenizer.decode(t, skip_special_tokens=True) for t in translated] ["c'est une phrase en anglais que nous voulons traduire en français", 'Isto deve ir para o português.', 'Y esto al español'] ``` ## Resources - [Translation task guide](../tasks/translation) - [Summarization task guide](../tasks/summarization) - [Causal language modeling task guide](../tasks/language_modeling) ## MarianConfig [[autodoc]] MarianConfig ## MarianTokenizer [[autodoc]] MarianTokenizer - build_inputs_with_special_tokens <frameworkcontent> <pt> ## MarianModel [[autodoc]] MarianModel - forward ## MarianMTModel [[autodoc]] MarianMTModel - forward ## MarianForCausalLM [[autodoc]] MarianForCausalLM - forward </pt> <tf> ## TFMarianModel [[autodoc]] TFMarianModel - call ## TFMarianMTModel [[autodoc]] TFMarianMTModel - call </tf> <jax> ## FlaxMarianModel [[autodoc]] FlaxMarianModel - __call__ ## FlaxMarianMTModel [[autodoc]] FlaxMarianMTModel - __call__ </jax> </frameworkcontent>
huggingface/transformers/blob/main/docs/source/en/model_doc/marian.md
!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Wav2Vec2-Conformer ## Overview The Wav2Vec2-Conformer was added to an updated version of [fairseq S2T: Fast Speech-to-Text Modeling with fairseq](https://arxiv.org/abs/2010.05171) by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Sravya Popuri, Dmytro Okhonko, Juan Pino. The official results of the model can be found in Table 3 and Table 4 of the paper. The Wav2Vec2-Conformer weights were released by the Meta AI team within the [Fairseq library](https://github.com/pytorch/fairseq/blob/main/examples/wav2vec/README.md#pre-trained-models). This model was contributed by [patrickvonplaten](https://huggingface.co/patrickvonplaten). The original code can be found [here](https://github.com/pytorch/fairseq/tree/main/examples/wav2vec). ## Usage tips - Wav2Vec2-Conformer follows the same architecture as Wav2Vec2, but replaces the *Attention*-block with a *Conformer*-block as introduced in [Conformer: Convolution-augmented Transformer for Speech Recognition](https://arxiv.org/abs/2005.08100). - For the same number of layers, Wav2Vec2-Conformer requires more parameters than Wav2Vec2, but also yields an improved word error rate. - Wav2Vec2-Conformer uses the same tokenizer and feature extractor as Wav2Vec2. - Wav2Vec2-Conformer can use either no relative position embeddings, Transformer-XL-like position embeddings, or rotary position embeddings by setting the correct `config.position_embeddings_type`. ## Resources - [Audio classification task guide](../tasks/audio_classification) - [Automatic speech recognition task guide](../tasks/asr) ## Wav2Vec2ConformerConfig [[autodoc]] Wav2Vec2ConformerConfig ## Wav2Vec2Conformer specific outputs [[autodoc]] models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerForPreTrainingOutput ## Wav2Vec2ConformerModel [[autodoc]] Wav2Vec2ConformerModel - forward ## Wav2Vec2ConformerForCTC [[autodoc]] Wav2Vec2ConformerForCTC - forward ## Wav2Vec2ConformerForSequenceClassification [[autodoc]] Wav2Vec2ConformerForSequenceClassification - forward ## Wav2Vec2ConformerForAudioFrameClassification [[autodoc]] Wav2Vec2ConformerForAudioFrameClassification - forward ## Wav2Vec2ConformerForXVector [[autodoc]] Wav2Vec2ConformerForXVector - forward ## Wav2Vec2ConformerForPreTraining [[autodoc]] Wav2Vec2ConformerForPreTraining - forward
huggingface/transformers/blob/main/docs/source/en/model_doc/wav2vec2-conformer.md
!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # TAPEX <Tip warning={true}> This model is in maintenance mode only, we don't accept any new PRs changing its code. If you run into any issues running this model, please reinstall the last version that supported this model: v4.30.0. You can do so by running the following command: `pip install -U transformers==4.30.0`. </Tip> ## Overview The TAPEX model was proposed in [TAPEX: Table Pre-training via Learning a Neural SQL Executor](https://arxiv.org/abs/2107.07653) by Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi Lin, Weizhu Chen, Jian-Guang Lou. TAPEX pre-trains a BART model to solve synthetic SQL queries, after which it can be fine-tuned to answer natural language questions related to tabular data, as well as performing table fact checking. TAPEX has been fine-tuned on several datasets: - [SQA](https://www.microsoft.com/en-us/download/details.aspx?id=54253) (Sequential Question Answering by Microsoft) - [WTQ](https://github.com/ppasupat/WikiTableQuestions) (Wiki Table Questions by Stanford University) - [WikiSQL](https://github.com/salesforce/WikiSQL) (by Salesforce) - [TabFact](https://tabfact.github.io/) (by USCB NLP Lab). The abstract from the paper is the following: *Recent progress in language model pre-training has achieved a great success via leveraging large-scale unstructured textual data. However, it is still a challenge to apply pre-training on structured tabular data due to the absence of large-scale high-quality tabular data. In this paper, we propose TAPEX to show that table pre-training can be achieved by learning a neural SQL executor over a synthetic corpus, which is obtained by automatically synthesizing executable SQL queries and their execution outputs. TAPEX addresses the data scarcity challenge via guiding the language model to mimic a SQL executor on the diverse, large-scale and high-quality synthetic corpus. We evaluate TAPEX on four benchmark datasets. Experimental results demonstrate that TAPEX outperforms previous table pre-training approaches by a large margin and achieves new state-of-the-art results on all of them. This includes improvements on the weakly-supervised WikiSQL denotation accuracy to 89.5% (+2.3%), the WikiTableQuestions denotation accuracy to 57.5% (+4.8%), the SQA denotation accuracy to 74.5% (+3.5%), and the TabFact accuracy to 84.2% (+3.2%). To our knowledge, this is the first work to exploit table pre-training via synthetic executable programs and to achieve new state-of-the-art results on various downstream tasks.* ## Usage tips - TAPEX is a generative (seq2seq) model. One can directly plug in the weights of TAPEX into a BART model. - TAPEX has checkpoints on the hub that are either pre-trained only, or fine-tuned on WTQ, SQA, WikiSQL and TabFact. - Sentences + tables are presented to the model as `sentence + " " + linearized table`. The linearized table has the following format: `col: col1 | col2 | col 3 row 1 : val1 | val2 | val3 row 2 : ...`. - TAPEX has its own tokenizer, that allows to prepare all data for the model easily. One can pass Pandas DataFrames and strings to the tokenizer, and it will automatically create the `input_ids` and `attention_mask` (as shown in the usage examples below). ### Usage: inference Below, we illustrate how to use TAPEX for table question answering. As one can see, one can directly plug in the weights of TAPEX into a BART model. We use the [Auto API](auto), which will automatically instantiate the appropriate tokenizer ([`TapexTokenizer`]) and model ([`BartForConditionalGeneration`]) for us, based on the configuration file of the checkpoint on the hub. ```python >>> from transformers import AutoTokenizer, AutoModelForSeq2SeqLM >>> import pandas as pd >>> tokenizer = AutoTokenizer.from_pretrained("microsoft/tapex-large-finetuned-wtq") >>> model = AutoModelForSeq2SeqLM.from_pretrained("microsoft/tapex-large-finetuned-wtq") >>> # prepare table + question >>> data = {"Actors": ["Brad Pitt", "Leonardo Di Caprio", "George Clooney"], "Number of movies": ["87", "53", "69"]} >>> table = pd.DataFrame.from_dict(data) >>> question = "how many movies does Leonardo Di Caprio have?" >>> encoding = tokenizer(table, question, return_tensors="pt") >>> # let the model generate an answer autoregressively >>> outputs = model.generate(**encoding) >>> # decode back to text >>> predicted_answer = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0] >>> print(predicted_answer) 53 ``` Note that [`TapexTokenizer`] also supports batched inference. Hence, one can provide a batch of different tables/questions, or a batch of a single table and multiple questions, or a batch of a single query and multiple tables. Let's illustrate this: ```python >>> # prepare table + question >>> data = {"Actors": ["Brad Pitt", "Leonardo Di Caprio", "George Clooney"], "Number of movies": ["87", "53", "69"]} >>> table = pd.DataFrame.from_dict(data) >>> questions = [ ... "how many movies does Leonardo Di Caprio have?", ... "which actor has 69 movies?", ... "what's the first name of the actor who has 87 movies?", ... ] >>> encoding = tokenizer(table, questions, padding=True, return_tensors="pt") >>> # let the model generate an answer autoregressively >>> outputs = model.generate(**encoding) >>> # decode back to text >>> tokenizer.batch_decode(outputs, skip_special_tokens=True) [' 53', ' george clooney', ' brad pitt'] ``` In case one wants to do table verification (i.e. the task of determining whether a given sentence is supported or refuted by the contents of a table), one can instantiate a [`BartForSequenceClassification`] model. TAPEX has checkpoints on the hub fine-tuned on TabFact, an important benchmark for table fact checking (it achieves 84% accuracy). The code example below again leverages the [Auto API](auto). ```python >>> from transformers import AutoTokenizer, AutoModelForSequenceClassification >>> tokenizer = AutoTokenizer.from_pretrained("microsoft/tapex-large-finetuned-tabfact") >>> model = AutoModelForSequenceClassification.from_pretrained("microsoft/tapex-large-finetuned-tabfact") >>> # prepare table + sentence >>> data = {"Actors": ["Brad Pitt", "Leonardo Di Caprio", "George Clooney"], "Number of movies": ["87", "53", "69"]} >>> table = pd.DataFrame.from_dict(data) >>> sentence = "George Clooney has 30 movies" >>> encoding = tokenizer(table, sentence, return_tensors="pt") >>> # forward pass >>> outputs = model(**encoding) >>> # print prediction >>> predicted_class_idx = outputs.logits[0].argmax(dim=0).item() >>> print(model.config.id2label[predicted_class_idx]) Refused ``` <Tip> TAPEX architecture is the same as BART, except for tokenization. Refer to [BART documentation](bart) for information on configuration classes and their parameters. TAPEX-specific tokenizer is documented below. </Tip> ## TapexTokenizer [[autodoc]] TapexTokenizer - __call__ - save_vocabulary
huggingface/transformers/blob/main/docs/source/en/model_doc/tapex.md
!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Video classification [[open-in-colab]] Video classification is the task of assigning a label or class to an entire video. Videos are expected to have only one class for each video. Video classification models take a video as input and return a prediction about which class the video belongs to. These models can be used to categorize what a video is all about. A real-world application of video classification is action / activity recognition, which is useful for fitness applications. It is also helpful for vision-impaired individuals, especially when they are commuting. This guide will show you how to: 1. Fine-tune [VideoMAE](https://huggingface.co/docs/transformers/main/en/model_doc/videomae) on a subset of the [UCF101](https://www.crcv.ucf.edu/data/UCF101.php) dataset. 2. Use your fine-tuned model for inference. <Tip> The task illustrated in this tutorial is supported by the following model architectures: <!--This tip is automatically generated by `make fix-copies`, do not fill manually!--> [TimeSformer](../model_doc/timesformer), [VideoMAE](../model_doc/videomae), [ViViT](../model_doc/vivit) <!--End of the generated tip--> </Tip> Before you begin, make sure you have all the necessary libraries installed: ```bash pip install -q pytorchvideo transformers evaluate ``` You will use [PyTorchVideo](https://pytorchvideo.org/) (dubbed `pytorchvideo`) to process and prepare the videos. We encourage you to log in to your Hugging Face account so you can upload and share your model with the community. When prompted, enter your token to log in: ```py >>> from huggingface_hub import notebook_login >>> notebook_login() ``` ## Load UCF101 dataset Start by loading a subset of the [UCF-101 dataset](https://www.crcv.ucf.edu/data/UCF101.php). This will give you a chance to experiment and make sure everything works before spending more time training on the full dataset. ```py >>> from huggingface_hub import hf_hub_download >>> hf_dataset_identifier = "sayakpaul/ucf101-subset" >>> filename = "UCF101_subset.tar.gz" >>> file_path = hf_hub_download(repo_id=hf_dataset_identifier, filename=filename, repo_type="dataset") ``` After the subset has been downloaded, you need to extract the compressed archive: ```py >>> import tarfile >>> with tarfile.open(file_path) as t: ... t.extractall(".") ``` At a high level, the dataset is organized like so: ```bash UCF101_subset/ train/ BandMarching/ video_1.mp4 video_2.mp4 ... Archery video_1.mp4 video_2.mp4 ... ... val/ BandMarching/ video_1.mp4 video_2.mp4 ... Archery video_1.mp4 video_2.mp4 ... ... test/ BandMarching/ video_1.mp4 video_2.mp4 ... Archery video_1.mp4 video_2.mp4 ... ... ``` The (`sorted`) video paths appear like so: ```bash ... 'UCF101_subset/train/ApplyEyeMakeup/v_ApplyEyeMakeup_g07_c04.avi', 'UCF101_subset/train/ApplyEyeMakeup/v_ApplyEyeMakeup_g07_c06.avi', 'UCF101_subset/train/ApplyEyeMakeup/v_ApplyEyeMakeup_g08_c01.avi', 'UCF101_subset/train/ApplyEyeMakeup/v_ApplyEyeMakeup_g09_c02.avi', 'UCF101_subset/train/ApplyEyeMakeup/v_ApplyEyeMakeup_g09_c06.avi' ... ``` You will notice that there are video clips belonging to the same group / scene where group is denoted by `g` in the video file paths. `v_ApplyEyeMakeup_g07_c04.avi` and `v_ApplyEyeMakeup_g07_c06.avi`, for example. For the validation and evaluation splits, you wouldn't want to have video clips from the same group / scene to prevent [data leakage](https://www.kaggle.com/code/alexisbcook/data-leakage). The subset that you are using in this tutorial takes this information into account. Next up, you will derive the set of labels present in the dataset. Also, create two dictionaries that'll be helpful when initializing the model: * `label2id`: maps the class names to integers. * `id2label`: maps the integers to class names. ```py >>> class_labels = sorted({str(path).split("/")[2] for path in all_video_file_paths}) >>> label2id = {label: i for i, label in enumerate(class_labels)} >>> id2label = {i: label for label, i in label2id.items()} >>> print(f"Unique classes: {list(label2id.keys())}.") # Unique classes: ['ApplyEyeMakeup', 'ApplyLipstick', 'Archery', 'BabyCrawling', 'BalanceBeam', 'BandMarching', 'BaseballPitch', 'Basketball', 'BasketballDunk', 'BenchPress']. ``` There are 10 unique classes. For each class, there are 30 videos in the training set. ## Load a model to fine-tune Instantiate a video classification model from a pretrained checkpoint and its associated image processor. The model's encoder comes with pre-trained parameters, and the classification head is randomly initialized. The image processor will come in handy when writing the preprocessing pipeline for our dataset. ```py >>> from transformers import VideoMAEImageProcessor, VideoMAEForVideoClassification >>> model_ckpt = "MCG-NJU/videomae-base" >>> image_processor = VideoMAEImageProcessor.from_pretrained(model_ckpt) >>> model = VideoMAEForVideoClassification.from_pretrained( ... model_ckpt, ... label2id=label2id, ... id2label=id2label, ... ignore_mismatched_sizes=True, # provide this in case you're planning to fine-tune an already fine-tuned checkpoint ... ) ``` While the model is loading, you might notice the following warning: ```bash Some weights of the model checkpoint at MCG-NJU/videomae-base were not used when initializing VideoMAEForVideoClassification: [..., 'decoder.decoder_layers.1.attention.output.dense.bias', 'decoder.decoder_layers.2.attention.attention.key.weight'] - This IS expected if you are initializing VideoMAEForVideoClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model). - This IS NOT expected if you are initializing VideoMAEForVideoClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model). Some weights of VideoMAEForVideoClassification were not initialized from the model checkpoint at MCG-NJU/videomae-base and are newly initialized: ['classifier.bias', 'classifier.weight'] You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference. ``` The warning is telling us we are throwing away some weights (e.g. the weights and bias of the `classifier` layer) and randomly initializing some others (the weights and bias of a new `classifier` layer). This is expected in this case, because we are adding a new head for which we don't have pretrained weights, so the library warns us we should fine-tune this model before using it for inference, which is exactly what we are going to do. **Note** that [this checkpoint](https://huggingface.co/MCG-NJU/videomae-base-finetuned-kinetics) leads to better performance on this task as the checkpoint was obtained fine-tuning on a similar downstream task having considerable domain overlap. You can check out [this checkpoint](https://huggingface.co/sayakpaul/videomae-base-finetuned-kinetics-finetuned-ucf101-subset) which was obtained by fine-tuning `MCG-NJU/videomae-base-finetuned-kinetics`. ## Prepare the datasets for training For preprocessing the videos, you will leverage the [PyTorchVideo library](https://pytorchvideo.org/). Start by importing the dependencies we need. ```py >>> import pytorchvideo.data >>> from pytorchvideo.transforms import ( ... ApplyTransformToKey, ... Normalize, ... RandomShortSideScale, ... RemoveKey, ... ShortSideScale, ... UniformTemporalSubsample, ... ) >>> from torchvision.transforms import ( ... Compose, ... Lambda, ... RandomCrop, ... RandomHorizontalFlip, ... Resize, ... ) ``` For the training dataset transformations, use a combination of uniform temporal subsampling, pixel normalization, random cropping, and random horizontal flipping. For the validation and evaluation dataset transformations, keep the same transformation chain except for random cropping and horizontal flipping. To learn more about the details of these transformations check out the [official documentation of PyTorchVideo](https://pytorchvideo.org). Use the `image_processor` associated with the pre-trained model to obtain the following information: * Image mean and standard deviation with which the video frame pixels will be normalized. * Spatial resolution to which the video frames will be resized. Start by defining some constants. ```py >>> mean = image_processor.image_mean >>> std = image_processor.image_std >>> if "shortest_edge" in image_processor.size: ... height = width = image_processor.size["shortest_edge"] >>> else: ... height = image_processor.size["height"] ... width = image_processor.size["width"] >>> resize_to = (height, width) >>> num_frames_to_sample = model.config.num_frames >>> sample_rate = 4 >>> fps = 30 >>> clip_duration = num_frames_to_sample * sample_rate / fps ``` Now, define the dataset-specific transformations and the datasets respectively. Starting with the training set: ```py >>> train_transform = Compose( ... [ ... ApplyTransformToKey( ... key="video", ... transform=Compose( ... [ ... UniformTemporalSubsample(num_frames_to_sample), ... Lambda(lambda x: x / 255.0), ... Normalize(mean, std), ... RandomShortSideScale(min_size=256, max_size=320), ... RandomCrop(resize_to), ... RandomHorizontalFlip(p=0.5), ... ] ... ), ... ), ... ] ... ) >>> train_dataset = pytorchvideo.data.Ucf101( ... data_path=os.path.join(dataset_root_path, "train"), ... clip_sampler=pytorchvideo.data.make_clip_sampler("random", clip_duration), ... decode_audio=False, ... transform=train_transform, ... ) ``` The same sequence of workflow can be applied to the validation and evaluation sets: ```py >>> val_transform = Compose( ... [ ... ApplyTransformToKey( ... key="video", ... transform=Compose( ... [ ... UniformTemporalSubsample(num_frames_to_sample), ... Lambda(lambda x: x / 255.0), ... Normalize(mean, std), ... Resize(resize_to), ... ] ... ), ... ), ... ] ... ) >>> val_dataset = pytorchvideo.data.Ucf101( ... data_path=os.path.join(dataset_root_path, "val"), ... clip_sampler=pytorchvideo.data.make_clip_sampler("uniform", clip_duration), ... decode_audio=False, ... transform=val_transform, ... ) >>> test_dataset = pytorchvideo.data.Ucf101( ... data_path=os.path.join(dataset_root_path, "test"), ... clip_sampler=pytorchvideo.data.make_clip_sampler("uniform", clip_duration), ... decode_audio=False, ... transform=val_transform, ... ) ``` **Note**: The above dataset pipelines are taken from the [official PyTorchVideo example](https://pytorchvideo.org/docs/tutorial_classification#dataset). We're using the [`pytorchvideo.data.Ucf101()`](https://pytorchvideo.readthedocs.io/en/latest/api/data/data.html#pytorchvideo.data.Ucf101) function because it's tailored for the UCF-101 dataset. Under the hood, it returns a [`pytorchvideo.data.labeled_video_dataset.LabeledVideoDataset`](https://pytorchvideo.readthedocs.io/en/latest/api/data/data.html#pytorchvideo.data.LabeledVideoDataset) object. `LabeledVideoDataset` class is the base class for all things video in the PyTorchVideo dataset. So, if you want to use a custom dataset not supported off-the-shelf by PyTorchVideo, you can extend the `LabeledVideoDataset` class accordingly. Refer to the `data` API [documentation to](https://pytorchvideo.readthedocs.io/en/latest/api/data/data.html) learn more. Also, if your dataset follows a similar structure (as shown above), then using the `pytorchvideo.data.Ucf101()` should work just fine. You can access the `num_videos` argument to know the number of videos in the dataset. ```py >>> print(train_dataset.num_videos, val_dataset.num_videos, test_dataset.num_videos) # (300, 30, 75) ``` ## Visualize the preprocessed video for better debugging ```py >>> import imageio >>> import numpy as np >>> from IPython.display import Image >>> def unnormalize_img(img): ... """Un-normalizes the image pixels.""" ... img = (img * std) + mean ... img = (img * 255).astype("uint8") ... return img.clip(0, 255) >>> def create_gif(video_tensor, filename="sample.gif"): ... """Prepares a GIF from a video tensor. ... ... The video tensor is expected to have the following shape: ... (num_frames, num_channels, height, width). ... """ ... frames = [] ... for video_frame in video_tensor: ... frame_unnormalized = unnormalize_img(video_frame.permute(1, 2, 0).numpy()) ... frames.append(frame_unnormalized) ... kargs = {"duration": 0.25} ... imageio.mimsave(filename, frames, "GIF", **kargs) ... return filename >>> def display_gif(video_tensor, gif_name="sample.gif"): ... """Prepares and displays a GIF from a video tensor.""" ... video_tensor = video_tensor.permute(1, 0, 2, 3) ... gif_filename = create_gif(video_tensor, gif_name) ... return Image(filename=gif_filename) >>> sample_video = next(iter(train_dataset)) >>> video_tensor = sample_video["video"] >>> display_gif(video_tensor) ``` <div class="flex justify-center"> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/sample_gif.gif" alt="Person playing basketball"/> </div> ## Train the model Leverage [`Trainer`](https://huggingface.co/docs/transformers/main_classes/trainer) from 🤗 Transformers for training the model. To instantiate a `Trainer`, you need to define the training configuration and an evaluation metric. The most important is the [`TrainingArguments`](https://huggingface.co/transformers/main_classes/trainer.html#transformers.TrainingArguments), which is a class that contains all the attributes to configure the training. It requires an output folder name, which will be used to save the checkpoints of the model. It also helps sync all the information in the model repository on 🤗 Hub. Most of the training arguments are self-explanatory, but one that is quite important here is `remove_unused_columns=False`. This one will drop any features not used by the model's call function. By default it's `True` because usually it's ideal to drop unused feature columns, making it easier to unpack inputs into the model's call function. But, in this case, you need the unused features ('video' in particular) in order to create `pixel_values` (which is a mandatory key our model expects in its inputs). ```py >>> from transformers import TrainingArguments, Trainer >>> model_name = model_ckpt.split("/")[-1] >>> new_model_name = f"{model_name}-finetuned-ucf101-subset" >>> num_epochs = 4 >>> args = TrainingArguments( ... new_model_name, ... remove_unused_columns=False, ... evaluation_strategy="epoch", ... save_strategy="epoch", ... learning_rate=5e-5, ... per_device_train_batch_size=batch_size, ... per_device_eval_batch_size=batch_size, ... warmup_ratio=0.1, ... logging_steps=10, ... load_best_model_at_end=True, ... metric_for_best_model="accuracy", ... push_to_hub=True, ... max_steps=(train_dataset.num_videos // batch_size) * num_epochs, ... ) ``` The dataset returned by `pytorchvideo.data.Ucf101()` doesn't implement the `__len__` method. As such, we must define `max_steps` when instantiating `TrainingArguments`. Next, you need to define a function to compute the metrics from the predictions, which will use the `metric` you'll load now. The only preprocessing you have to do is to take the argmax of our predicted logits: ```py import evaluate metric = evaluate.load("accuracy") def compute_metrics(eval_pred): predictions = np.argmax(eval_pred.predictions, axis=1) return metric.compute(predictions=predictions, references=eval_pred.label_ids) ``` **A note on evaluation**: In the [VideoMAE paper](https://arxiv.org/abs/2203.12602), the authors use the following evaluation strategy. They evaluate the model on several clips from test videos and apply different crops to those clips and report the aggregate score. However, in the interest of simplicity and brevity, we don't consider that in this tutorial. Also, define a `collate_fn`, which will be used to batch examples together. Each batch consists of 2 keys, namely `pixel_values` and `labels`. ```py >>> def collate_fn(examples): ... # permute to (num_frames, num_channels, height, width) ... pixel_values = torch.stack( ... [example["video"].permute(1, 0, 2, 3) for example in examples] ... ) ... labels = torch.tensor([example["label"] for example in examples]) ... return {"pixel_values": pixel_values, "labels": labels} ``` Then you just pass all of this along with the datasets to `Trainer`: ```py >>> trainer = Trainer( ... model, ... args, ... train_dataset=train_dataset, ... eval_dataset=val_dataset, ... tokenizer=image_processor, ... compute_metrics=compute_metrics, ... data_collator=collate_fn, ... ) ``` You might wonder why you passed along the `image_processor` as a tokenizer when you preprocessed the data already. This is only to make sure the image processor configuration file (stored as JSON) will also be uploaded to the repo on the Hub. Now fine-tune our model by calling the `train` method: ```py >>> train_results = trainer.train() ``` Once training is completed, share your model to the Hub with the [`~transformers.Trainer.push_to_hub`] method so everyone can use your model: ```py >>> trainer.push_to_hub() ``` ## Inference Great, now that you have fine-tuned a model, you can use it for inference! Load a video for inference: ```py >>> sample_test_video = next(iter(test_dataset)) ``` <div class="flex justify-center"> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/sample_gif_two.gif" alt="Teams playing basketball"/> </div> The simplest way to try out your fine-tuned model for inference is to use it in a [`pipeline`](https://huggingface.co/docs/transformers/main/en/main_classes/pipelines#transformers.VideoClassificationPipeline). Instantiate a `pipeline` for video classification with your model, and pass your video to it: ```py >>> from transformers import pipeline >>> video_cls = pipeline(model="my_awesome_video_cls_model") >>> video_cls("https://huggingface.co/datasets/sayakpaul/ucf101-subset/resolve/main/v_BasketballDunk_g14_c06.avi") [{'score': 0.9272987842559814, 'label': 'BasketballDunk'}, {'score': 0.017777055501937866, 'label': 'BabyCrawling'}, {'score': 0.01663011871278286, 'label': 'BalanceBeam'}, {'score': 0.009560945443809032, 'label': 'BandMarching'}, {'score': 0.0068979403004050255, 'label': 'BaseballPitch'}] ``` You can also manually replicate the results of the `pipeline` if you'd like. ```py >>> def run_inference(model, video): ... # (num_frames, num_channels, height, width) ... perumuted_sample_test_video = video.permute(1, 0, 2, 3) ... inputs = { ... "pixel_values": perumuted_sample_test_video.unsqueeze(0), ... "labels": torch.tensor( ... [sample_test_video["label"]] ... ), # this can be skipped if you don't have labels available. ... } ... device = torch.device("cuda" if torch.cuda.is_available() else "cpu") ... inputs = {k: v.to(device) for k, v in inputs.items()} ... model = model.to(device) ... # forward pass ... with torch.no_grad(): ... outputs = model(**inputs) ... logits = outputs.logits ... return logits ``` Now, pass your input to the model and return the `logits`: ``` >>> logits = run_inference(trained_model, sample_test_video["video"]) ``` Decoding the `logits`, we get: ```py >>> predicted_class_idx = logits.argmax(-1).item() >>> print("Predicted class:", model.config.id2label[predicted_class_idx]) # Predicted class: BasketballDunk ```
huggingface/transformers/blob/main/docs/source/en/tasks/video_classification.md
!--Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # OpenAI GPT <div class="flex flex-wrap space-x-1"> <a href="https://huggingface.co/models?filter=openai-gpt"> <img alt="Models" src="https://img.shields.io/badge/All_model_pages-openai--gpt-blueviolet"> </a> <a href="https://huggingface.co/spaces/docs-demos/openai-gpt"> <img alt="Spaces" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue"> </a> </div> ## Overview OpenAI GPT model was proposed in [Improving Language Understanding by Generative Pre-Training](https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf) by Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever. It's a causal (unidirectional) transformer pre-trained using language modeling on a large corpus will long range dependencies, the Toronto Book Corpus. The abstract from the paper is the following: *Natural language understanding comprises a wide range of diverse tasks such as textual entailment, question answering, semantic similarity assessment, and document classification. Although large unlabeled text corpora are abundant, labeled data for learning these specific tasks is scarce, making it challenging for discriminatively trained models to perform adequately. We demonstrate that large gains on these tasks can be realized by generative pretraining of a language model on a diverse corpus of unlabeled text, followed by discriminative fine-tuning on each specific task. In contrast to previous approaches, we make use of task-aware input transformations during fine-tuning to achieve effective transfer while requiring minimal changes to the model architecture. We demonstrate the effectiveness of our approach on a wide range of benchmarks for natural language understanding. Our general task-agnostic model outperforms discriminatively trained models that use architectures specifically crafted for each task, significantly improving upon the state of the art in 9 out of the 12 tasks studied.* [Write With Transformer](https://transformer.huggingface.co/doc/gpt) is a webapp created and hosted by Hugging Face showcasing the generative capabilities of several models. GPT is one of them. This model was contributed by [thomwolf](https://huggingface.co/thomwolf). The original code can be found [here](https://github.com/openai/finetune-transformer-lm). ## Usage tips - GPT is a model with absolute position embeddings so it's usually advised to pad the inputs on the right rather than the left. - GPT was trained with a causal language modeling (CLM) objective and is therefore powerful at predicting the next token in a sequence. Leveraging this feature allows GPT-2 to generate syntactically coherent text as it can be observed in the *run_generation.py* example script. Note: If you want to reproduce the original tokenization process of the *OpenAI GPT* paper, you will need to install `ftfy` and `SpaCy`: ```bash pip install spacy ftfy==4.4.3 python -m spacy download en ``` If you don't install `ftfy` and `SpaCy`, the [`OpenAIGPTTokenizer`] will default to tokenize using BERT's `BasicTokenizer` followed by Byte-Pair Encoding (which should be fine for most usage, don't worry). ## Resources A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with OpenAI GPT. If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource. <PipelineTag pipeline="text-classification"/> - A blog post on [outperforming OpenAI GPT-3 with SetFit for text-classification](https://www.philschmid.de/getting-started-setfit). - See also: [Text classification task guide](../tasks/sequence_classification) <PipelineTag pipeline="text-generation"/> - A blog on how to [Finetune a non-English GPT-2 Model with Hugging Face](https://www.philschmid.de/fine-tune-a-non-english-gpt-2-model-with-huggingface). - A blog on [How to generate text: using different decoding methods for language generation with Transformers](https://huggingface.co/blog/how-to-generate) with GPT-2. - A blog on [Training CodeParrot 🦜 from Scratch](https://huggingface.co/blog/codeparrot), a large GPT-2 model. - A blog on [Faster Text Generation with TensorFlow and XLA](https://huggingface.co/blog/tf-xla-generate) with GPT-2. - A blog on [How to train a Language Model with Megatron-LM](https://huggingface.co/blog/megatron-training) with a GPT-2 model. - A notebook on how to [finetune GPT2 to generate lyrics in the style of your favorite artist](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb). 🌎 - A notebook on how to [finetune GPT2 to generate tweets in the style of your favorite Twitter user](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb). 🌎 - [Causal language modeling](https://huggingface.co/course/en/chapter7/6?fw=pt#training-a-causal-language-model-from-scratch) chapter of the 🤗 Hugging Face Course. - [`OpenAIGPTLMHeadModel`] is supported by this [causal language modeling example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/language-modeling#gpt-2gpt-and-causal-language-modeling), [text generation example script](https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-generation/run_generation.py) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling.ipynb). - [`TFOpenAIGPTLMHeadModel`] is supported by this [causal language modeling example script](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/language-modeling#run_clmpy) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling-tf.ipynb). - See also: [Causal language modeling task guide](../tasks/language_modeling) <PipelineTag pipeline="token-classification"/> - A course material on [Byte-Pair Encoding tokenization](https://huggingface.co/course/en/chapter6/5). ## OpenAIGPTConfig [[autodoc]] OpenAIGPTConfig ## OpenAIGPTTokenizer [[autodoc]] OpenAIGPTTokenizer - save_vocabulary ## OpenAIGPTTokenizerFast [[autodoc]] OpenAIGPTTokenizerFast ## OpenAI specific outputs [[autodoc]] models.openai.modeling_openai.OpenAIGPTDoubleHeadsModelOutput [[autodoc]] models.openai.modeling_tf_openai.TFOpenAIGPTDoubleHeadsModelOutput <frameworkcontent> <pt> ## OpenAIGPTModel [[autodoc]] OpenAIGPTModel - forward ## OpenAIGPTLMHeadModel [[autodoc]] OpenAIGPTLMHeadModel - forward ## OpenAIGPTDoubleHeadsModel [[autodoc]] OpenAIGPTDoubleHeadsModel - forward ## OpenAIGPTForSequenceClassification [[autodoc]] OpenAIGPTForSequenceClassification - forward </pt> <tf> ## TFOpenAIGPTModel [[autodoc]] TFOpenAIGPTModel - call ## TFOpenAIGPTLMHeadModel [[autodoc]] TFOpenAIGPTLMHeadModel - call ## TFOpenAIGPTDoubleHeadsModel [[autodoc]] TFOpenAIGPTDoubleHeadsModel - call ## TFOpenAIGPTForSequenceClassification [[autodoc]] TFOpenAIGPTForSequenceClassification - call </tf> </frameworkcontent>
huggingface/transformers/blob/main/docs/source/en/model_doc/openai-gpt.md
!--- Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> <!--- A useful guide for English-Chinese translation of Hugging Face documentation - Add space around English words and numbers when they appear between Chinese characters. E.g., 共 100 多种语言; 使用 transformers 库。 - Use square quotes, e.g.,「引用」 Dictionary Hugging Face: 抱抱脸 token: 词符(并用括号标注原英文) tokenize: 词符化(并用括号标注原英文) tokenizer: 词符化器(并用括号标注原英文) transformer: transformer(不翻译) pipeline: 流水线 API: API (不翻译) inference: 推理 Trainer: 训练器。当作为类名出现时不翻译。 pretrained/pretrain: 预训练 finetune: 微调 community: 社区 example: 当特指仓库中 example 目录时翻译为「用例」 Python data structures (e.g., list, set, dict): 翻译为列表,集合,词典,并用括号标注原英文 NLP/Natural Language Processing: 以 NLP 出现时不翻译,以 Natural Language Processing 出现时翻译为自然语言处理 checkpoint: 检查点 --> <p align="center"> <br> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers_logo_name.png" width="400"/> <br> </p> <p align="center"> <a href="https://circleci.com/gh/huggingface/transformers"> <img alt="Build" src="https://img.shields.io/circleci/build/github/huggingface/transformers/main"> </a> <a href="https://github.com/huggingface/transformers/blob/main/LICENSE"> <img alt="GitHub" src="https://img.shields.io/github/license/huggingface/transformers.svg?color=blue"> </a> <a href="https://huggingface.co/docs/transformers/index"> <img alt="Documentation" src="https://img.shields.io/website/http/huggingface.co/docs/transformers/index.svg?down_color=red&down_message=offline&up_message=online"> </a> <a href="https://github.com/huggingface/transformers/releases"> <img alt="GitHub release" src="https://img.shields.io/github/release/huggingface/transformers.svg"> </a> <a href="https://github.com/huggingface/transformers/blob/main/CODE_OF_CONDUCT.md"> <img alt="Contributor Covenant" src="https://img.shields.io/badge/Contributor%20Covenant-v2.0%20adopted-ff69b4.svg"> </a> <a href="https://zenodo.org/badge/latestdoi/155220641"><img src="https://zenodo.org/badge/155220641.svg" alt="DOI"></a> </p> <h4 align="center"> <p> <a href="https://github.com/huggingface/transformers/">English</a> | <b>简体中文</b> | <a href="https://github.com/huggingface/transformers/blob/main/README_zh-hant.md">繁體中文</a> | <a href="https://github.com/huggingface/transformers/blob/main/README_ko.md">한국어</a> | <a href="https://github.com/huggingface/transformers/blob/main/README_es.md">Español</a> | <a href="https://github.com/huggingface/transformers/blob/main/README_ja.md">日本語</a> | <a href="https://github.com/huggingface/transformers/blob/main/README_hd.md">हिन्दी</a> <a href="https://github.com/huggingface/transformers//blob/main/README_te.md">తెలుగు</a> | </p> </h4> <h3 align="center"> <p>为 Jax、PyTorch 和 TensorFlow 打造的先进的自然语言处理</p> </h3> <h3 align="center"> <a href="https://hf.co/course"><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/course_banner.png"></a> </h3> 🤗 Transformers 提供了数以千计的预训练模型,支持 100 多种语言的文本分类、信息抽取、问答、摘要、翻译、文本生成。它的宗旨是让最先进的 NLP 技术人人易用。 🤗 Transformers 提供了便于快速下载和使用的API,让你可以把预训练模型用在给定文本、在你的数据集上微调然后通过 [model hub](https://huggingface.co/models) 与社区共享。同时,每个定义的 Python 模块均完全独立,方便修改和快速研究实验。 🤗 Transformers 支持三个最热门的深度学习库: [Jax](https://jax.readthedocs.io/en/latest/), [PyTorch](https://pytorch.org/) 以及 [TensorFlow](https://www.tensorflow.org/) — 并与之无缝整合。你可以直接使用一个框架训练你的模型然后用另一个加载和推理。 ## 在线演示 你可以直接在模型页面上测试大多数 [model hub](https://huggingface.co/models) 上的模型。 我们也提供了 [私有模型托管、模型版本管理以及推理API](https://huggingface.co/pricing)。 这里是一些例子: - [用 BERT 做掩码填词](https://huggingface.co/bert-base-uncased?text=Paris+is+the+%5BMASK%5D+of+France) - [用 Electra 做命名实体识别](https://huggingface.co/dbmdz/electra-large-discriminator-finetuned-conll03-english?text=My+name+is+Sarah+and+I+live+in+London+city) - [用 GPT-2 做文本生成](https://huggingface.co/gpt2?text=A+long+time+ago%2C+) - [用 RoBERTa 做自然语言推理](https://huggingface.co/roberta-large-mnli?text=The+dog+was+lost.+Nobody+lost+any+animal) - [用 BART 做文本摘要](https://huggingface.co/facebook/bart-large-cnn?text=The+tower+is+324+metres+%281%2C063+ft%29+tall%2C+about+the+same+height+as+an+81-storey+building%2C+and+the+tallest+structure+in+Paris.+Its+base+is+square%2C+measuring+125+metres+%28410+ft%29+on+each+side.+During+its+construction%2C+the+Eiffel+Tower+surpassed+the+Washington+Monument+to+become+the+tallest+man-made+structure+in+the+world%2C+a+title+it+held+for+41+years+until+the+Chrysler+Building+in+New+York+City+was+finished+in+1930.+It+was+the+first+structure+to+reach+a+height+of+300+metres.+Due+to+the+addition+of+a+broadcasting+aerial+at+the+top+of+the+tower+in+1957%2C+it+is+now+taller+than+the+Chrysler+Building+by+5.2+metres+%2817+ft%29.+Excluding+transmitters%2C+the+Eiffel+Tower+is+the+second+tallest+free-standing+structure+in+France+after+the+Millau+Viaduct) - [用 DistilBERT 做问答](https://huggingface.co/distilbert-base-uncased-distilled-squad?text=Which+name+is+also+used+to+describe+the+Amazon+rainforest+in+English%3F&context=The+Amazon+rainforest+%28Portuguese%3A+Floresta+Amaz%C3%B4nica+or+Amaz%C3%B4nia%3B+Spanish%3A+Selva+Amaz%C3%B3nica%2C+Amazon%C3%ADa+or+usually+Amazonia%3B+French%3A+For%C3%AAt+amazonienne%3B+Dutch%3A+Amazoneregenwoud%29%2C+also+known+in+English+as+Amazonia+or+the+Amazon+Jungle%2C+is+a+moist+broadleaf+forest+that+covers+most+of+the+Amazon+basin+of+South+America.+This+basin+encompasses+7%2C000%2C000+square+kilometres+%282%2C700%2C000+sq+mi%29%2C+of+which+5%2C500%2C000+square+kilometres+%282%2C100%2C000+sq+mi%29+are+covered+by+the+rainforest.+This+region+includes+territory+belonging+to+nine+nations.+The+majority+of+the+forest+is+contained+within+Brazil%2C+with+60%25+of+the+rainforest%2C+followed+by+Peru+with+13%25%2C+Colombia+with+10%25%2C+and+with+minor+amounts+in+Venezuela%2C+Ecuador%2C+Bolivia%2C+Guyana%2C+Suriname+and+French+Guiana.+States+or+departments+in+four+nations+contain+%22Amazonas%22+in+their+names.+The+Amazon+represents+over+half+of+the+planet%27s+remaining+rainforests%2C+and+comprises+the+largest+and+most+biodiverse+tract+of+tropical+rainforest+in+the+world%2C+with+an+estimated+390+billion+individual+trees+divided+into+16%2C000+species) - [用 T5 做翻译](https://huggingface.co/t5-base?text=My+name+is+Wolfgang+and+I+live+in+Berlin) **[Write With Transformer](https://transformer.huggingface.co)**,由抱抱脸团队打造,是一个文本生成的官方 demo。 ## 如果你在寻找由抱抱脸团队提供的定制化支持服务 <a target="_blank" href="https://huggingface.co/support"> <img alt="HuggingFace Expert Acceleration Program" src="https://huggingface.co/front/thumbnails/support.png" style="max-width: 600px; border: 1px solid #eee; border-radius: 4px; box-shadow: 0 1px 2px 0 rgba(0, 0, 0, 0.05);"> </a><br> ## 快速上手 我们为快速使用模型提供了 `pipeline` (流水线)API。流水线聚合了预训练模型和对应的文本预处理。下面是一个快速使用流水线去判断正负面情绪的例子: ```python >>> from transformers import pipeline # 使用情绪分析流水线 >>> classifier = pipeline('sentiment-analysis') >>> classifier('We are very happy to introduce pipeline to the transformers repository.') [{'label': 'POSITIVE', 'score': 0.9996980428695679}] ``` 第二行代码下载并缓存了流水线使用的预训练模型,而第三行代码则在给定的文本上进行了评估。这里的答案“正面” (positive) 具有 99 的置信度。 许多的 NLP 任务都有开箱即用的预训练流水线。比如说,我们可以轻松的从给定文本中抽取问题答案: ``` python >>> from transformers import pipeline # 使用问答流水线 >>> question_answerer = pipeline('question-answering') >>> question_answerer({ ... 'question': 'What is the name of the repository ?', ... 'context': 'Pipeline has been included in the huggingface/transformers repository' ... }) {'score': 0.30970096588134766, 'start': 34, 'end': 58, 'answer': 'huggingface/transformers'} ``` 除了给出答案,预训练模型还给出了对应的置信度分数、答案在词符化 (tokenized) 后的文本中开始和结束的位置。你可以从[这个教程](https://huggingface.co/docs/transformers/task_summary)了解更多流水线API支持的任务。 要在你的任务上下载和使用任意预训练模型也很简单,只需三行代码。这里是 PyTorch 版的示例: ```python >>> from transformers import AutoTokenizer, AutoModel >>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") >>> model = AutoModel.from_pretrained("bert-base-uncased") >>> inputs = tokenizer("Hello world!", return_tensors="pt") >>> outputs = model(**inputs) ``` 这里是等效的 TensorFlow 代码: ```python >>> from transformers import AutoTokenizer, TFAutoModel >>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") >>> model = TFAutoModel.from_pretrained("bert-base-uncased") >>> inputs = tokenizer("Hello world!", return_tensors="tf") >>> outputs = model(**inputs) ``` 词符化器 (tokenizer) 为所有的预训练模型提供了预处理,并可以直接对单个字符串进行调用(比如上面的例子)或对列表 (list) 调用。它会输出一个你可以在下游代码里使用或直接通过 `**` 解包表达式传给模型的词典 (dict)。 模型本身是一个常规的 [Pytorch `nn.Module`](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) 或 [TensorFlow `tf.keras.Model`](https://www.tensorflow.org/api_docs/python/tf/keras/Model)(取决于你的后端),可以常规方式使用。 [这个教程](https://huggingface.co/transformers/training.html)解释了如何将这样的模型整合到经典的 PyTorch 或 TensorFlow 训练循环中,或是如何使用我们的 `Trainer` 训练器)API 来在一个新的数据集上快速微调。 ## 为什么要用 transformers? 1. 便于使用的先进模型: - NLU 和 NLG 上表现优越 - 对教学和实践友好且低门槛 - 高级抽象,只需了解三个类 - 对所有模型统一的API 1. 更低计算开销,更少的碳排放: - 研究人员可以分享已训练的模型而非每次从头开始训练 - 工程师可以减少计算用时和生产环境开销 - 数十种模型架构、两千多个预训练模型、100多种语言支持 1. 对于模型生命周期的每一个部分都面面俱到: - 训练先进的模型,只需 3 行代码 - 模型在不同深度学习框架间任意转移,随你心意 - 为训练、评估和生产选择最适合的框架,衔接无缝 1. 为你的需求轻松定制专属模型和用例: - 我们为每种模型架构提供了多个用例来复现原论文结果 - 模型内部结构保持透明一致 - 模型文件可单独使用,方便魔改和快速实验 ## 什么情况下我不该用 transformers? - 本库并不是模块化的神经网络工具箱。模型文件中的代码特意呈若璞玉,未经额外抽象封装,以便研究人员快速迭代魔改而不致溺于抽象和文件跳转之中。 - `Trainer` API 并非兼容任何模型,只为本库之模型优化。若是在寻找适用于通用机器学习的训练循环实现,请另觅他库。 - 尽管我们已尽力而为,[examples 目录](https://github.com/huggingface/transformers/tree/main/examples)中的脚本也仅为用例而已。对于你的特定问题,它们并不一定开箱即用,可能需要改几行代码以适之。 ## 安装 ### 使用 pip 这个仓库已在 Python 3.8+、Flax 0.4.1+、PyTorch 1.10+ 和 TensorFlow 2.6+ 下经过测试。 你可以在[虚拟环境](https://docs.python.org/3/library/venv.html)中安装 🤗 Transformers。如果你还不熟悉 Python 的虚拟环境,请阅此[用户说明](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/)。 首先,用你打算使用的版本的 Python 创建一个虚拟环境并激活。 然后,你需要安装 Flax、PyTorch 或 TensorFlow 其中之一。关于在你使用的平台上安装这些框架,请参阅 [TensorFlow 安装页](https://www.tensorflow.org/install/), [PyTorch 安装页](https://pytorch.org/get-started/locally/#start-locally) 或 [Flax 安装页](https://github.com/google/flax#quick-install)。 当这些后端之一安装成功后, 🤗 Transformers 可依此安装: ```bash pip install transformers ``` 如果你想要试试用例或者想在正式发布前使用最新的开发中代码,你得[从源代码安装](https://huggingface.co/docs/transformers/installation#installing-from-source)。 ### 使用 conda 自 Transformers 4.0.0 版始,我们有了一个 conda 频道: `huggingface`。 🤗 Transformers 可以通过 conda 依此安装: ```shell script conda install -c huggingface transformers ``` 要通过 conda 安装 Flax、PyTorch 或 TensorFlow 其中之一,请参阅它们各自安装页的说明。 ## 模型架构 🤗 Transformers 支持的[**所有的模型检查点**](https://huggingface.co/models)由[用户](https://huggingface.co/users)和[组织](https://huggingface.co/organizations)上传,均与 huggingface.co [model hub](https://huggingface.co) 无缝整合。 目前的检查点数量: ![](https://img.shields.io/endpoint?url=https://huggingface.co/api/shields/models&color=brightgreen) 🤗 Transformers 目前支持如下的架构(模型概述请阅[这里](https://huggingface.co/docs/transformers/model_summary)): 1. **[ALBERT](https://huggingface.co/docs/transformers/model_doc/albert)** (来自 Google Research and the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。 1. **[ALIGN](https://huggingface.co/docs/transformers/model_doc/align)** (来自 Google Research) 伴随论文 [Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision](https://arxiv.org/abs/2102.05918) 由 Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc V. Le, Yunhsuan Sung, Zhen Li, Tom Duerig 发布。 1. **[AltCLIP](https://huggingface.co/docs/transformers/model_doc/altclip)** (来自 BAAI) 伴随论文 [AltCLIP: Altering the Language Encoder in CLIP for Extended Language Capabilities](https://arxiv.org/abs/2211.06679) 由 Chen, Zhongzhi and Liu, Guang and Zhang, Bo-Wen and Ye, Fulong and Yang, Qinghong and Wu, Ledell 发布。 1. **[Audio Spectrogram Transformer](https://huggingface.co/docs/transformers/model_doc/audio-spectrogram-transformer)** (来自 MIT) 伴随论文 [AST: Audio Spectrogram Transformer](https://arxiv.org/abs/2104.01778) 由 Yuan Gong, Yu-An Chung, James Glass 发布。 1. **[Autoformer](https://huggingface.co/docs/transformers/model_doc/autoformer)** (from Tsinghua University) released with the paper [Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting](https://arxiv.org/abs/2106.13008) by Haixu Wu, Jiehui Xu, Jianmin Wang, Mingsheng Long. 1. **[Bark](https://huggingface.co/docs/transformers/model_doc/bark)** (from Suno) released in the repository [suno-ai/bark](https://github.com/suno-ai/bark) by Suno AI team. 1. **[BART](https://huggingface.co/docs/transformers/model_doc/bart)** (来自 Facebook) 伴随论文 [BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension](https://arxiv.org/pdf/1910.13461.pdf) 由 Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov and Luke Zettlemoyer 发布。 1. **[BARThez](https://huggingface.co/docs/transformers/model_doc/barthez)** (来自 École polytechnique) 伴随论文 [BARThez: a Skilled Pretrained French Sequence-to-Sequence Model](https://arxiv.org/abs/2010.12321) 由 Moussa Kamal Eddine, Antoine J.-P. Tixier, Michalis Vazirgiannis 发布。 1. **[BARTpho](https://huggingface.co/docs/transformers/model_doc/bartpho)** (来自 VinAI Research) 伴随论文 [BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnamese](https://arxiv.org/abs/2109.09701) 由 Nguyen Luong Tran, Duong Minh Le and Dat Quoc Nguyen 发布。 1. **[BEiT](https://huggingface.co/docs/transformers/model_doc/beit)** (来自 Microsoft) 伴随论文 [BEiT: BERT Pre-Training of Image Transformers](https://arxiv.org/abs/2106.08254) 由 Hangbo Bao, Li Dong, Furu Wei 发布。 1. **[BERT](https://huggingface.co/docs/transformers/model_doc/bert)** (来自 Google) 伴随论文 [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805) 由 Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova 发布。 1. **[BERT For Sequence Generation](https://huggingface.co/docs/transformers/model_doc/bert-generation)** (来自 Google) 伴随论文 [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) 由 Sascha Rothe, Shashi Narayan, Aliaksei Severyn 发布。 1. **[BERTweet](https://huggingface.co/docs/transformers/model_doc/bertweet)** (来自 VinAI Research) 伴随论文 [BERTweet: A pre-trained language model for English Tweets](https://aclanthology.org/2020.emnlp-demos.2/) 由 Dat Quoc Nguyen, Thanh Vu and Anh Tuan Nguyen 发布。 1. **[BigBird-Pegasus](https://huggingface.co/docs/transformers/model_doc/bigbird_pegasus)** (来自 Google Research) 伴随论文 [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) 由 Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed 发布。 1. **[BigBird-RoBERTa](https://huggingface.co/docs/transformers/model_doc/big_bird)** (来自 Google Research) 伴随论文 [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) 由 Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed 发布。 1. **[BioGpt](https://huggingface.co/docs/transformers/model_doc/biogpt)** (来自 Microsoft Research AI4Science) 伴随论文 [BioGPT: generative pre-trained transformer for biomedical text generation and mining](https://academic.oup.com/bib/advance-article/doi/10.1093/bib/bbac409/6713511?guestAccessKey=a66d9b5d-4f83-4017-bb52-405815c907b9) 由 Renqian Luo, Liai Sun, Yingce Xia, Tao Qin, Sheng Zhang, Hoifung Poon and Tie-Yan Liu 发布。 1. **[BiT](https://huggingface.co/docs/transformers/model_doc/bit)** (来自 Google AI) 伴随论文 [Big Transfer (BiT) 由 Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica Yung, Sylvain Gelly, Neil Houlsby 发布。 1. **[Blenderbot](https://huggingface.co/docs/transformers/model_doc/blenderbot)** (来自 Facebook) 伴随论文 [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) 由 Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston 发布。 1. **[BlenderbotSmall](https://huggingface.co/docs/transformers/model_doc/blenderbot-small)** (来自 Facebook) 伴随论文 [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) 由 Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston 发布。 1. **[BLIP](https://huggingface.co/docs/transformers/model_doc/blip)** (来自 Salesforce) 伴随论文 [BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation](https://arxiv.org/abs/2201.12086) 由 Junnan Li, Dongxu Li, Caiming Xiong, Steven Hoi 发布。 1. **[BLIP-2](https://huggingface.co/docs/transformers/model_doc/blip-2)** (来自 Salesforce) 伴随论文 [BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models](https://arxiv.org/abs/2301.12597) 由 Junnan Li, Dongxu Li, Silvio Savarese, Steven Hoi 发布。 1. **[BLOOM](https://huggingface.co/docs/transformers/model_doc/bloom)** (from BigScience workshop) released by the [BigScience Workshop](https://bigscience.huggingface.co/). 1. **[BORT](https://huggingface.co/docs/transformers/model_doc/bort)** (来自 Alexa) 伴随论文 [Optimal Subarchitecture Extraction For BERT](https://arxiv.org/abs/2010.10499) 由 Adrian de Wynter and Daniel J. Perry 发布。 1. **[BridgeTower](https://huggingface.co/docs/transformers/model_doc/bridgetower)** (from Harbin Institute of Technology/Microsoft Research Asia/Intel Labs) released with the paper [BridgeTower: Building Bridges Between Encoders in Vision-Language Representation Learning](https://arxiv.org/abs/2206.08657) by Xiao Xu, Chenfei Wu, Shachar Rosenman, Vasudev Lal, Wanxiang Che, Nan Duan. 1. **[BROS](https://huggingface.co/docs/transformers/model_doc/bros)** (来自 NAVER CLOVA) 伴随论文 [BROS: A Pre-trained Language Model Focusing on Text and Layout for Better Key Information Extraction from Documents](https://arxiv.org/abs/2108.04539) 由 Teakgyu Hong, Donghyun Kim, Mingi Ji, Wonseok Hwang, Daehyun Nam, Sungrae Park 发布。 1. **[ByT5](https://huggingface.co/docs/transformers/model_doc/byt5)** (来自 Google Research) 伴随论文 [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://arxiv.org/abs/2105.13626) 由 Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel 发布。 1. **[CamemBERT](https://huggingface.co/docs/transformers/model_doc/camembert)** (来自 Inria/Facebook/Sorbonne) 伴随论文 [CamemBERT: a Tasty French Language Model](https://arxiv.org/abs/1911.03894) 由 Louis Martin*, Benjamin Muller*, Pedro Javier Ortiz Suárez*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot 发布。 1. **[CANINE](https://huggingface.co/docs/transformers/model_doc/canine)** (来自 Google Research) 伴随论文 [CANINE: Pre-training an Efficient Tokenization-Free Encoder for Language Representation](https://arxiv.org/abs/2103.06874) 由 Jonathan H. Clark, Dan Garrette, Iulia Turc, John Wieting 发布。 1. **[Chinese-CLIP](https://huggingface.co/docs/transformers/model_doc/chinese_clip)** (来自 OFA-Sys) 伴随论文 [Chinese CLIP: Contrastive Vision-Language Pretraining in Chinese](https://arxiv.org/abs/2211.01335) 由 An Yang, Junshu Pan, Junyang Lin, Rui Men, Yichang Zhang, Jingren Zhou, Chang Zhou 发布。 1. **[CLAP](https://huggingface.co/docs/transformers/model_doc/clap)** (来自 LAION-AI) 伴随论文 [Large-scale Contrastive Language-Audio Pretraining with Feature Fusion and Keyword-to-Caption Augmentation](https://arxiv.org/abs/2211.06687) 由 Yusong Wu, Ke Chen, Tianyu Zhang, Yuchen Hui, Taylor Berg-Kirkpatrick, Shlomo Dubnov 发布。 1. **[CLIP](https://huggingface.co/docs/transformers/model_doc/clip)** (来自 OpenAI) 伴随论文 [Learning Transferable Visual Models From Natural Language Supervision](https://arxiv.org/abs/2103.00020) 由 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever 发布。 1. **[CLIPSeg](https://huggingface.co/docs/transformers/model_doc/clipseg)** (来自 University of Göttingen) 伴随论文 [Image Segmentation Using Text and Image Prompts](https://arxiv.org/abs/2112.10003) 由 Timo Lüddecke and Alexander Ecker 发布。 1. **[CLVP](https://huggingface.co/docs/transformers/model_doc/clvp)** released with the paper [Better speech synthesis through scaling](https://arxiv.org/abs/2305.07243) by James Betker. 1. **[CodeGen](https://huggingface.co/docs/transformers/model_doc/codegen)** (来自 Salesforce) 伴随论文 [A Conversational Paradigm for Program Synthesis](https://arxiv.org/abs/2203.13474) 由 Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, Caiming Xiong 发布。 1. **[CodeLlama](https://huggingface.co/docs/transformers/model_doc/llama_code)** (来自 MetaAI) 伴随论文 [Code Llama: Open Foundation Models for Code](https://ai.meta.com/research/publications/code-llama-open-foundation-models-for-code/) 由 Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas Scialom, Gabriel Synnaeve 发布。 1. **[Conditional DETR](https://huggingface.co/docs/transformers/model_doc/conditional_detr)** (来自 Microsoft Research Asia) 伴随论文 [Conditional DETR for Fast Training Convergence](https://arxiv.org/abs/2108.06152) 由 Depu Meng, Xiaokang Chen, Zejia Fan, Gang Zeng, Houqiang Li, Yuhui Yuan, Lei Sun, Jingdong Wang 发布。 1. **[ConvBERT](https://huggingface.co/docs/transformers/model_doc/convbert)** (来自 YituTech) 伴随论文 [ConvBERT: Improving BERT with Span-based Dynamic Convolution](https://arxiv.org/abs/2008.02496) 由 Zihang Jiang, Weihao Yu, Daquan Zhou, Yunpeng Chen, Jiashi Feng, Shuicheng Yan 发布。 1. **[ConvNeXT](https://huggingface.co/docs/transformers/model_doc/convnext)** (来自 Facebook AI) 伴随论文 [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545) 由 Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, Saining Xie 发布。 1. **[ConvNeXTV2](https://huggingface.co/docs/transformers/model_doc/convnextv2)** (from Facebook AI) released with the paper [ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders](https://arxiv.org/abs/2301.00808) by Sanghyun Woo, Shoubhik Debnath, Ronghang Hu, Xinlei Chen, Zhuang Liu, In So Kweon, Saining Xie. 1. **[CPM](https://huggingface.co/docs/transformers/model_doc/cpm)** (来自 Tsinghua University) 伴随论文 [CPM: A Large-scale Generative Chinese Pre-trained Language Model](https://arxiv.org/abs/2012.00413) 由 Zhengyan Zhang, Xu Han, Hao Zhou, Pei Ke, Yuxian Gu, Deming Ye, Yujia Qin, Yusheng Su, Haozhe Ji, Jian Guan, Fanchao Qi, Xiaozhi Wang, Yanan Zheng, Guoyang Zeng, Huanqi Cao, Shengqi Chen, Daixuan Li, Zhenbo Sun, Zhiyuan Liu, Minlie Huang, Wentao Han, Jie Tang, Juanzi Li, Xiaoyan Zhu, Maosong Sun 发布。 1. **[CPM-Ant](https://huggingface.co/docs/transformers/model_doc/cpmant)** (from OpenBMB) released by the [OpenBMB](https://www.openbmb.org/). 1. **[CTRL](https://huggingface.co/docs/transformers/model_doc/ctrl)** (来自 Salesforce) 伴随论文 [CTRL: A Conditional Transformer Language Model for Controllable Generation](https://arxiv.org/abs/1909.05858) 由 Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher 发布。 1. **[CvT](https://huggingface.co/docs/transformers/model_doc/cvt)** (来自 Microsoft) 伴随论文 [CvT: Introducing Convolutions to Vision Transformers](https://arxiv.org/abs/2103.15808) 由 Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, Lei Zhang 发布。 1. **[Data2Vec](https://huggingface.co/docs/transformers/model_doc/data2vec)** (来自 Facebook) 伴随论文 [Data2Vec: A General Framework for Self-supervised Learning in Speech, Vision and Language](https://arxiv.org/abs/2202.03555) 由 Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, Michael Auli 发布。 1. **[DeBERTa](https://huggingface.co/docs/transformers/model_doc/deberta)** (来自 Microsoft) 伴随论文 [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) 由 Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen 发布。 1. **[DeBERTa-v2](https://huggingface.co/docs/transformers/model_doc/deberta-v2)** (来自 Microsoft) 伴随论文 [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) 由 Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen 发布。 1. **[Decision Transformer](https://huggingface.co/docs/transformers/model_doc/decision_transformer)** (来自 Berkeley/Facebook/Google) 伴随论文 [Decision Transformer: Reinforcement Learning via Sequence Modeling](https://arxiv.org/abs/2106.01345) 由 Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas, Igor Mordatch 发布。 1. **[Deformable DETR](https://huggingface.co/docs/transformers/model_doc/deformable_detr)** (来自 SenseTime Research) 伴随论文 [Deformable DETR: Deformable Transformers for End-to-End Object Detection](https://arxiv.org/abs/2010.04159) 由 Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, Jifeng Dai 发布。 1. **[DeiT](https://huggingface.co/docs/transformers/model_doc/deit)** (来自 Facebook) 伴随论文 [Training data-efficient image transformers & distillation through attention](https://arxiv.org/abs/2012.12877) 由 Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, Hervé Jégou 发布。 1. **[DePlot](https://huggingface.co/docs/transformers/model_doc/deplot)** (来自 Google AI) 伴随论文 [DePlot: One-shot visual language reasoning by plot-to-table translation](https://arxiv.org/abs/2212.10505) 由 Fangyu Liu, Julian Martin Eisenschlos, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Wenhu Chen, Nigel Collier, Yasemin Altun 发布。 1. **[DETA](https://huggingface.co/docs/transformers/model_doc/deta)** (来自 The University of Texas at Austin) 伴随论文 [NMS Strikes Back](https://arxiv.org/abs/2212.06137) 由 Jeffrey Ouyang-Zhang, Jang Hyun Cho, Xingyi Zhou, Philipp Krähenbühl 发布。 1. **[DETR](https://huggingface.co/docs/transformers/model_doc/detr)** (来自 Facebook) 伴随论文 [End-to-End Object Detection with Transformers](https://arxiv.org/abs/2005.12872) 由 Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, Sergey Zagoruyko 发布。 1. **[DialoGPT](https://huggingface.co/docs/transformers/model_doc/dialogpt)** (来自 Microsoft Research) 伴随论文 [DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation](https://arxiv.org/abs/1911.00536) 由 Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing Liu, Bill Dolan 发布。 1. **[DiNAT](https://huggingface.co/docs/transformers/model_doc/dinat)** (来自 SHI Labs) 伴随论文 [Dilated Neighborhood Attention Transformer](https://arxiv.org/abs/2209.15001) 由 Ali Hassani and Humphrey Shi 发布。 1. **[DINOv2](https://huggingface.co/docs/transformers/model_doc/dinov2)** (来自 Meta AI) 伴随论文 [DINOv2: Learning Robust Visual Features without Supervision](https://arxiv.org/abs/2304.07193) 由 Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Mahmoud Assran, Nicolas Ballas, Wojciech Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra, Michael Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Hervé Jegou, Julien Mairal, Patrick Labatut, Armand Joulin, Piotr Bojanowski 发布。 1. **[DistilBERT](https://huggingface.co/docs/transformers/model_doc/distilbert)** (来自 HuggingFace), 伴随论文 [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 同样的方法也应用于压缩 GPT-2 到 [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa 到 [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation), Multilingual BERT 到 [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) 和德语版 DistilBERT。 1. **[DiT](https://huggingface.co/docs/transformers/model_doc/dit)** (来自 Microsoft Research) 伴随论文 [DiT: Self-supervised Pre-training for Document Image Transformer](https://arxiv.org/abs/2203.02378) 由 Junlong Li, Yiheng Xu, Tengchao Lv, Lei Cui, Cha Zhang, Furu Wei 发布。 1. **[Donut](https://huggingface.co/docs/transformers/model_doc/donut)** (来自 NAVER) 伴随论文 [OCR-free Document Understanding Transformer](https://arxiv.org/abs/2111.15664) 由 Geewook Kim, Teakgyu Hong, Moonbin Yim, Jeongyeon Nam, Jinyoung Park, Jinyeong Yim, Wonseok Hwang, Sangdoo Yun, Dongyoon Han, Seunghyun Park 发布。 1. **[DPR](https://huggingface.co/docs/transformers/model_doc/dpr)** (来自 Facebook) 伴随论文 [Dense Passage Retrieval for Open-Domain Question Answering](https://arxiv.org/abs/2004.04906) 由 Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih 发布。 1. **[DPT](https://huggingface.co/docs/transformers/master/model_doc/dpt)** (来自 Intel Labs) 伴随论文 [Vision Transformers for Dense Prediction](https://arxiv.org/abs/2103.13413) 由 René Ranftl, Alexey Bochkovskiy, Vladlen Koltun 发布。 1. **[EfficientFormer](https://huggingface.co/docs/transformers/model_doc/efficientformer)** (来自 Snap Research) 伴随论文 [EfficientFormer: Vision Transformers at MobileNetSpeed](https://arxiv.org/abs/2206.01191) 由 Yanyu Li, Geng Yuan, Yang Wen, Ju Hu, Georgios Evangelidis, Sergey Tulyakov, Yanzhi Wang, Jian Ren 发布。 1. **[EfficientNet](https://huggingface.co/docs/transformers/model_doc/efficientnet)** (from Google Brain) released with the paper [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks](https://arxiv.org/abs/1905.11946) by Mingxing Tan, Quoc V. Le. 1. **[ELECTRA](https://huggingface.co/docs/transformers/model_doc/electra)** (来自 Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le, Christopher D. Manning 发布。 1. **[EnCodec](https://huggingface.co/docs/transformers/model_doc/encodec)** (来自 Meta AI) 伴随论文 [High Fidelity Neural Audio Compression](https://arxiv.org/abs/2210.13438) 由 Alexandre Défossez, Jade Copet, Gabriel Synnaeve, Yossi Adi 发布。 1. **[EncoderDecoder](https://huggingface.co/docs/transformers/model_doc/encoder-decoder)** (来自 Google Research) 伴随论文 [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) 由 Sascha Rothe, Shashi Narayan, Aliaksei Severyn 发布。 1. **[ERNIE](https://huggingface.co/docs/transformers/model_doc/ernie)** (来自 Baidu) 伴随论文 [ERNIE: Enhanced Representation through Knowledge Integration](https://arxiv.org/abs/1904.09223) by Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Xuyi Chen, Han Zhang, Xin Tian, Danxiang Zhu, Hao Tian, Hua Wu 发布。 1. **[ErnieM](https://huggingface.co/docs/transformers/model_doc/ernie_m)** (来自 Baidu) 伴随论文 [ERNIE-M: Enhanced Multilingual Representation by Aligning Cross-lingual Semantics with Monolingual Corpora](https://arxiv.org/abs/2012.15674) 由 Xuan Ouyang, Shuohuan Wang, Chao Pang, Yu Sun, Hao Tian, Hua Wu, Haifeng Wang 发布。 1. **[ESM](https://huggingface.co/docs/transformers/model_doc/esm)** (from Meta AI) are transformer protein language models. **ESM-1b** was released with the paper [Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences](https://www.pnas.org/content/118/15/e2016239118) by Alexander Rives, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin, Jason Liu, Demi Guo, Myle Ott, C. Lawrence Zitnick, Jerry Ma, and Rob Fergus. **ESM-1v** was released with the paper [Language models enable zero-shot prediction of the effects of mutations on protein function](https://doi.org/10.1101/2021.07.09.450648) by Joshua Meier, Roshan Rao, Robert Verkuil, Jason Liu, Tom Sercu and Alexander Rives. **ESM-2** was released with the paper [Language models of protein sequences at the scale of evolution enable accurate structure prediction](https://doi.org/10.1101/2022.07.20.500902) by Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Allan dos Santos Costa, Maryam Fazel-Zarandi, Tom Sercu, Sal Candido, Alexander Rives. 1. **[Falcon](https://huggingface.co/docs/transformers/model_doc/falcon)** (from Technology Innovation Institute) by Almazrouei, Ebtesam and Alobeidli, Hamza and Alshamsi, Abdulaziz and Cappelli, Alessandro and Cojocaru, Ruxandra and Debbah, Merouane and Goffinet, Etienne and Heslow, Daniel and Launay, Julien and Malartic, Quentin and Noune, Badreddine and Pannier, Baptiste and Penedo, Guilherme. 1. **[FLAN-T5](https://huggingface.co/docs/transformers/model_doc/flan-t5)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-t5-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei 1. **[FLAN-UL2](https://huggingface.co/docs/transformers/model_doc/flan-ul2)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-ul2-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei 1. **[FlauBERT](https://huggingface.co/docs/transformers/model_doc/flaubert)** (来自 CNRS) 伴随论文 [FlauBERT: Unsupervised Language Model Pre-training for French](https://arxiv.org/abs/1912.05372) 由 Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoît Crabbé, Laurent Besacier, Didier Schwab 发布。 1. **[FLAVA](https://huggingface.co/docs/transformers/model_doc/flava)** (来自 Facebook AI) 伴随论文 [FLAVA: A Foundational Language And Vision Alignment Model](https://arxiv.org/abs/2112.04482) 由 Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guillaume Couairon, Wojciech Galuba, Marcus Rohrbach, and Douwe Kiela 发布。 1. **[FNet](https://huggingface.co/docs/transformers/model_doc/fnet)** (来自 Google Research) 伴随论文 [FNet: Mixing Tokens with Fourier Transforms](https://arxiv.org/abs/2105.03824) 由 James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon 发布。 1. **[FocalNet](https://huggingface.co/docs/transformers/model_doc/focalnet)** (来自 Microsoft Research) 伴随论文 [Focal Modulation Networks](https://arxiv.org/abs/2203.11926) 由 Jianwei Yang, Chunyuan Li, Xiyang Dai, Lu Yuan, Jianfeng Gao 发布。 1. **[Funnel Transformer](https://huggingface.co/docs/transformers/model_doc/funnel)** (来自 CMU/Google Brain) 伴随论文 [Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing](https://arxiv.org/abs/2006.03236) 由 Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le 发布。 1. **[Fuyu](https://huggingface.co/docs/transformers/model_doc/fuyu)** (来自 ADEPT) 伴随论文 [blog post](https://www.adept.ai/blog/fuyu-8b 由 Rohan Bavishi, Erich Elsen, Curtis Hawthorne, Maxwell Nye, Augustus Odena, Arushi Somani, Sağnak Taşırlar 发布。) 1. **[GIT](https://huggingface.co/docs/transformers/model_doc/git)** (来自 Microsoft Research) 伴随论文 [GIT: A Generative Image-to-text Transformer for Vision and Language](https://arxiv.org/abs/2205.14100) 由 Jianfeng Wang, Zhengyuan Yang, Xiaowei Hu, Linjie Li, Kevin Lin, Zhe Gan, Zicheng Liu, Ce Liu, Lijuan Wang 发布。 1. **[GLPN](https://huggingface.co/docs/transformers/model_doc/glpn)** (来自 KAIST) 伴随论文 [Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth](https://arxiv.org/abs/2201.07436) 由 Doyeon Kim, Woonghyun Ga, Pyungwhan Ahn, Donggyu Joo, Sehwan Chun, Junmo Kim 发布。 1. **[GPT](https://huggingface.co/docs/transformers/model_doc/openai-gpt)** (来自 OpenAI) 伴随论文 [Improving Language Understanding by Generative Pre-Training](https://blog.openai.com/language-unsupervised/) 由 Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever 发布。 1. **[GPT Neo](https://huggingface.co/docs/transformers/model_doc/gpt_neo)** (来自 EleutherAI) 随仓库 [EleutherAI/gpt-neo](https://github.com/EleutherAI/gpt-neo) 发布。作者为 Sid Black, Stella Biderman, Leo Gao, Phil Wang and Connor Leahy 发布。 1. **[GPT NeoX](https://huggingface.co/docs/transformers/model_doc/gpt_neox)** (from EleutherAI) released with the paper [GPT-NeoX-20B: An Open-Source Autoregressive Language Model](https://arxiv.org/abs/2204.06745) by Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Horace He, Connor Leahy, Kyle McDonell, Jason Phang, Michael Pieler, USVSN Sai Prashanth, Shivanshu Purohit, Laria Reynolds, Jonathan Tow, Ben Wang, Samuel Weinbach 1. **[GPT NeoX Japanese](https://huggingface.co/docs/transformers/model_doc/gpt_neox_japanese)** (来自 ABEJA) 由 Shinya Otani, Takayoshi Makabe, Anuj Arora, Kyo Hattori。 1. **[GPT-2](https://huggingface.co/docs/transformers/model_doc/gpt2)** (来自 OpenAI) 伴随论文 [Language Models are Unsupervised Multitask Learners](https://blog.openai.com/better-language-models/) 由 Alec Radford*, Jeffrey Wu*, Rewon Child, David Luan, Dario Amodei** and Ilya Sutskever** 发布。 1. **[GPT-J](https://huggingface.co/docs/transformers/model_doc/gptj)** (来自 EleutherAI) 伴随论文 [kingoflolz/mesh-transformer-jax](https://github.com/kingoflolz/mesh-transformer-jax/) 由 Ben Wang and Aran Komatsuzaki 发布。 1. **[GPT-Sw3](https://huggingface.co/docs/transformers/model_doc/gpt-sw3)** (from AI-Sweden) released with the paper [Lessons Learned from GPT-SW3: Building the First Large-Scale Generative Language Model for Swedish](http://www.lrec-conf.org/proceedings/lrec2022/pdf/2022.lrec-1.376.pdf) by Ariel Ekgren, Amaru Cuba Gyllensten, Evangelia Gogoulou, Alice Heiman, Severine Verlinden, Joey Öhman, Fredrik Carlsson, Magnus Sahlgren. 1. **[GPTBigCode](https://huggingface.co/docs/transformers/model_doc/gpt_bigcode)** (来自 BigCode) 伴随论文 [SantaCoder: don't reach for the stars!](https://arxiv.org/abs/2301.03988) 由 Loubna Ben Allal, Raymond Li, Denis Kocetkov, Chenghao Mou, Christopher Akiki, Carlos Munoz Ferrandis, Niklas Muennighoff, Mayank Mishra, Alex Gu, Manan Dey, Logesh Kumar Umapathi, Carolyn Jane Anderson, Yangtian Zi, Joel Lamy Poirier, Hailey Schoelkopf, Sergey Troshin, Dmitry Abulkhanov, Manuel Romero, Michael Lappert, Francesco De Toni, Bernardo García del Río, Qian Liu, Shamik Bose, Urvashi Bhattacharyya, Terry Yue Zhuo, Ian Yu, Paulo Villegas, Marco Zocca, Sourab Mangrulkar, David Lansky, Huu Nguyen, Danish Contractor, Luis Villa, Jia Li, Dzmitry Bahdanau, Yacine Jernite, Sean Hughes, Daniel Fried, Arjun Guha, Harm de Vries, Leandro von Werra 发布。 1. **[GPTSAN-japanese](https://huggingface.co/docs/transformers/model_doc/gptsan-japanese)** released in the repository [tanreinama/GPTSAN](https://github.com/tanreinama/GPTSAN/blob/main/report/model.md) by 坂本俊之(tanreinama). 1. **[Graphormer](https://huggingface.co/docs/transformers/model_doc/graphormer)** (from Microsoft) released with the paper [Do Transformers Really Perform Bad for Graph Representation?](https://arxiv.org/abs/2106.05234) by Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, Tie-Yan Liu. 1. **[GroupViT](https://huggingface.co/docs/transformers/model_doc/groupvit)** (来自 UCSD, NVIDIA) 伴随论文 [GroupViT: Semantic Segmentation Emerges from Text Supervision](https://arxiv.org/abs/2202.11094) 由 Jiarui Xu, Shalini De Mello, Sifei Liu, Wonmin Byeon, Thomas Breuel, Jan Kautz, Xiaolong Wang 发布。 1. **[HerBERT](https://huggingface.co/docs/transformers/model_doc/herbert)** (来自 Allegro.pl, AGH University of Science and Technology) 伴随论文 [KLEJ: Comprehensive Benchmark for Polish Language Understanding](https://www.aclweb.org/anthology/2020.acl-main.111.pdf) 由 Piotr Rybak, Robert Mroczkowski, Janusz Tracz, Ireneusz Gawlik 发布。 1. **[Hubert](https://huggingface.co/docs/transformers/model_doc/hubert)** (来自 Facebook) 伴随论文 [HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units](https://arxiv.org/abs/2106.07447) 由 Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, Abdelrahman Mohamed 发布。 1. **[I-BERT](https://huggingface.co/docs/transformers/model_doc/ibert)** (来自 Berkeley) 伴随论文 [I-BERT: Integer-only BERT Quantization](https://arxiv.org/abs/2101.01321) 由 Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W. Mahoney, Kurt Keutzer 发布。 1. **[IDEFICS](https://huggingface.co/docs/transformers/model_doc/idefics)** (from HuggingFace) released with the paper [OBELICS: An Open Web-Scale Filtered Dataset of Interleaved Image-Text Documents](https://huggingface.co/papers/2306.16527) by Hugo Laurençon, Lucile Saulnier, Léo Tronchon, Stas Bekman, Amanpreet Singh, Anton Lozhkov, Thomas Wang, Siddharth Karamcheti, Alexander M. Rush, Douwe Kiela, Matthieu Cord, Victor Sanh. 1. **[ImageGPT](https://huggingface.co/docs/transformers/model_doc/imagegpt)** (来自 OpenAI) 伴随论文 [Generative Pretraining from Pixels](https://openai.com/blog/image-gpt/) 由 Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, Ilya Sutskever 发布。 1. **[Informer](https://huggingface.co/docs/transformers/model_doc/informer)** (from Beihang University, UC Berkeley, Rutgers University, SEDD Company) released with the paper [Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting](https://arxiv.org/abs/2012.07436) by Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang. 1. **[InstructBLIP](https://huggingface.co/docs/transformers/model_doc/instructblip)** (来自 Salesforce) 伴随论文 [InstructBLIP: Towards General-purpose Vision-Language Models with Instruction Tuning](https://arxiv.org/abs/2305.06500) 由 Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao, Weisheng Wang, Boyang Li, Pascale Fung, Steven Hoi 发布。 1. **[Jukebox](https://huggingface.co/docs/transformers/model_doc/jukebox)** (from OpenAI) released with the paper [Jukebox: A Generative Model for Music](https://arxiv.org/pdf/2005.00341.pdf) by Prafulla Dhariwal, Heewoo Jun, Christine Payne, Jong Wook Kim, Alec Radford, Ilya Sutskever. 1. **[KOSMOS-2](https://huggingface.co/docs/transformers/model_doc/kosmos-2)** (from Microsoft Research Asia) released with the paper [Kosmos-2: Grounding Multimodal Large Language Models to the World](https://arxiv.org/abs/2306.14824) by Zhiliang Peng, Wenhui Wang, Li Dong, Yaru Hao, Shaohan Huang, Shuming Ma, Furu Wei. 1. **[LayoutLM](https://huggingface.co/docs/transformers/model_doc/layoutlm)** (来自 Microsoft Research Asia) 伴随论文 [LayoutLM: Pre-training of Text and Layout for Document Image Understanding](https://arxiv.org/abs/1912.13318) 由 Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou 发布。 1. **[LayoutLMv2](https://huggingface.co/docs/transformers/model_doc/layoutlmv2)** (来自 Microsoft Research Asia) 伴随论文 [LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding](https://arxiv.org/abs/2012.14740) 由 Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Wanxiang Che, Min Zhang, Lidong Zhou 发布。 1. **[LayoutLMv3](https://huggingface.co/docs/transformers/model_doc/layoutlmv3)** (来自 Microsoft Research Asia) 伴随论文 [LayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking](https://arxiv.org/abs/2204.08387) 由 Yupan Huang, Tengchao Lv, Lei Cui, Yutong Lu, Furu Wei 发布。 1. **[LayoutXLM](https://huggingface.co/docs/transformers/model_doc/layoutxlm)** (来自 Microsoft Research Asia) 伴随论文 [LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding](https://arxiv.org/abs/2104.08836) 由 Yiheng Xu, Tengchao Lv, Lei Cui, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Furu Wei 发布。 1. **[LED](https://huggingface.co/docs/transformers/model_doc/led)** (来自 AllenAI) 伴随论文 [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) 由 Iz Beltagy, Matthew E. Peters, Arman Cohan 发布。 1. **[LeViT](https://huggingface.co/docs/transformers/model_doc/levit)** (来自 Meta AI) 伴随论文 [LeViT: A Vision Transformer in ConvNet's Clothing for Faster Inference](https://arxiv.org/abs/2104.01136) 由 Ben Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand Joulin, Hervé Jégou, Matthijs Douze 发布。 1. **[LiLT](https://huggingface.co/docs/transformers/model_doc/lilt)** (来自 South China University of Technology) 伴随论文 [LiLT: A Simple yet Effective Language-Independent Layout Transformer for Structured Document Understanding](https://arxiv.org/abs/2202.13669) 由 Jiapeng Wang, Lianwen Jin, Kai Ding 发布。 1. **[LLaMA](https://huggingface.co/docs/transformers/model_doc/llama)** (来自 The FAIR team of Meta AI) 伴随论文 [LLaMA: Open and Efficient Foundation Language Models](https://arxiv.org/abs/2302.13971) 由 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, Guillaume Lample 发布。 1. **[Llama2](https://huggingface.co/docs/transformers/model_doc/llama2)** (来自 The FAIR team of Meta AI) 伴随论文 [Llama2: Open Foundation and Fine-Tuned Chat Models](https://ai.meta.com/research/publications/llama-2-open-foundation-and-fine-tuned-chat-models/XXX) 由 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushka rMishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing EllenTan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, Sergey Edunov, Thomas Scialom. 发布。 1. **[LLaVa](https://huggingface.co/docs/transformers/model_doc/llava)** (来自 Microsoft Research & University of Wisconsin-Madison) 伴随论文 [Visual Instruction Tuning](https://arxiv.org/abs/2304.08485) 由 Haotian Liu, Chunyuan Li, Yuheng Li and Yong Jae Lee 发布。 1. **[Longformer](https://huggingface.co/docs/transformers/model_doc/longformer)** (来自 AllenAI) 伴随论文 [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) 由 Iz Beltagy, Matthew E. Peters, Arman Cohan 发布。 1. **[LongT5](https://huggingface.co/docs/transformers/model_doc/longt5)** (来自 Google AI) released 伴随论文 [LongT5: Efficient Text-To-Text Transformer for Long Sequences](https://arxiv.org/abs/2112.07916) 由 Mandy Guo, Joshua Ainslie, David Uthus, Santiago Ontanon, Jianmo Ni, Yun-Hsuan Sung, Yinfei Yang 发布。 1. **[LUKE](https://huggingface.co/docs/transformers/model_doc/luke)** (来自 Studio Ousia) 伴随论文 [LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention](https://arxiv.org/abs/2010.01057) 由 Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, Yuji Matsumoto 发布。 1. **[LXMERT](https://huggingface.co/docs/transformers/model_doc/lxmert)** (来自 UNC Chapel Hill) 伴随论文 [LXMERT: Learning Cross-Modality Encoder Representations from Transformers for Open-Domain Question Answering](https://arxiv.org/abs/1908.07490) 由 Hao Tan and Mohit Bansal 发布。 1. **[M-CTC-T](https://huggingface.co/docs/transformers/model_doc/mctct)** (来自 Facebook) 伴随论文 [Pseudo-Labeling For Massively Multilingual Speech Recognition](https://arxiv.org/abs/2111.00161) 由 Loren Lugosch, Tatiana Likhomanenko, Gabriel Synnaeve, and Ronan Collobert 发布。 1. **[M2M100](https://huggingface.co/docs/transformers/model_doc/m2m_100)** (来自 Facebook) 伴随论文 [Beyond English-Centric Multilingual Machine Translation](https://arxiv.org/abs/2010.11125) 由 Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi Ma, Ahmed El-Kishky, Siddharth Goyal, Mandeep Baines, Onur Celebi, Guillaume Wenzek, Vishrav Chaudhary, Naman Goyal, Tom Birch, Vitaliy Liptchinsky, Sergey Edunov, Edouard Grave, Michael Auli, Armand Joulin 发布。 1. **[MADLAD-400](https://huggingface.co/docs/transformers/model_doc/madlad-400)** (from Google) released with the paper [MADLAD-400: A Multilingual And Document-Level Large Audited Dataset](https://arxiv.org/abs/2309.04662) by Sneha Kudugunta, Isaac Caswell, Biao Zhang, Xavier Garcia, Christopher A. Choquette-Choo, Katherine Lee, Derrick Xin, Aditya Kusupati, Romi Stella, Ankur Bapna, Orhan Firat. 1. **[MarianMT](https://huggingface.co/docs/transformers/model_doc/marian)** 用 [OPUS](http://opus.nlpl.eu/) 数据训练的机器翻译模型由 Jörg Tiedemann 发布。[Marian Framework](https://marian-nmt.github.io/) 由微软翻译团队开发。 1. **[MarkupLM](https://huggingface.co/docs/transformers/model_doc/markuplm)** (来自 Microsoft Research Asia) 伴随论文 [MarkupLM: Pre-training of Text and Markup Language for Visually-rich Document Understanding](https://arxiv.org/abs/2110.08518) 由 Junlong Li, Yiheng Xu, Lei Cui, Furu Wei 发布。 1. **[Mask2Former](https://huggingface.co/docs/transformers/model_doc/mask2former)** (来自 FAIR and UIUC) 伴随论文 [Masked-attention Mask Transformer for Universal Image Segmentation](https://arxiv.org/abs/2112.01527) 由 Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexander Kirillov, Rohit Girdhar 发布。 1. **[MaskFormer](https://huggingface.co/docs/transformers/model_doc/maskformer)** (from Meta and UIUC) released with the paper [Per-Pixel Classification is Not All You Need for Semantic Segmentation](https://arxiv.org/abs/2107.06278) by Bowen Cheng, Alexander G. Schwing, Alexander Kirillov 1. **[MatCha](https://huggingface.co/docs/transformers/model_doc/matcha)** (来自 Google AI) 伴随论文 [MatCha: Enhancing Visual Language Pretraining with Math Reasoning and Chart Derendering](https://arxiv.org/abs/2212.09662) 由 Fangyu Liu, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Yasemin Altun, Nigel Collier, Julian Martin Eisenschlos 发布。 1. **[mBART](https://huggingface.co/docs/transformers/model_doc/mbart)** (来自 Facebook) 伴随论文 [Multilingual Denoising Pre-training for Neural Machine Translation](https://arxiv.org/abs/2001.08210) 由 Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad, Mike Lewis, Luke Zettlemoyer 发布。 1. **[mBART-50](https://huggingface.co/docs/transformers/model_doc/mbart)** (来自 Facebook) 伴随论文 [Multilingual Translation with Extensible Multilingual Pretraining and Finetuning](https://arxiv.org/abs/2008.00401) 由 Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Naman Goyal, Vishrav Chaudhary, Jiatao Gu, Angela Fan 发布。 1. **[MEGA](https://huggingface.co/docs/transformers/model_doc/mega)** (来自 Facebook) 伴随论文 [Mega: Moving Average Equipped Gated Attention](https://arxiv.org/abs/2209.10655) 由 Xuezhe Ma, Chunting Zhou, Xiang Kong, Junxian He, Liangke Gui, Graham Neubig, Jonathan May, and Luke Zettlemoyer 发布。 1. **[Megatron-BERT](https://huggingface.co/docs/transformers/model_doc/megatron-bert)** (来自 NVIDIA) 伴随论文 [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) 由 Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro 发布。 1. **[Megatron-GPT2](https://huggingface.co/docs/transformers/model_doc/megatron_gpt2)** (来自 NVIDIA) 伴随论文 [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) 由 Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro 发布。 1. **[MGP-STR](https://huggingface.co/docs/transformers/model_doc/mgp-str)** (来自 Alibaba Research) 伴随论文 [Multi-Granularity Prediction for Scene Text Recognition](https://arxiv.org/abs/2209.03592) 由 Peng Wang, Cheng Da, and Cong Yao 发布。 1. **[Mistral](https://huggingface.co/docs/transformers/model_doc/mistral)** (from Mistral AI) by The Mistral AI team: Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed.. 1. **[Mixtral](https://huggingface.co/docs/transformers/model_doc/mixtral)** (from Mistral AI) by The [Mistral AI](https://mistral.ai) team: Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed. 1. **[mLUKE](https://huggingface.co/docs/transformers/model_doc/mluke)** (来自 Studio Ousia) 伴随论文 [mLUKE: The Power of Entity Representations in Multilingual Pretrained Language Models](https://arxiv.org/abs/2110.08151) 由 Ryokan Ri, Ikuya Yamada, and Yoshimasa Tsuruoka 发布。 1. **[MMS](https://huggingface.co/docs/transformers/model_doc/mms)** (来自 Facebook) 伴随论文 [Scaling Speech Technology to 1,000+ Languages](https://arxiv.org/abs/2305.13516) 由 Vineel Pratap, Andros Tjandra, Bowen Shi, Paden Tomasello, Arun Babu, Sayani Kundu, Ali Elkahky, Zhaoheng Ni, Apoorv Vyas, Maryam Fazel-Zarandi, Alexei Baevski, Yossi Adi, Xiaohui Zhang, Wei-Ning Hsu, Alexis Conneau, Michael Auli 发布。 1. **[MobileBERT](https://huggingface.co/docs/transformers/model_doc/mobilebert)** (来自 CMU/Google Brain) 伴随论文 [MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices](https://arxiv.org/abs/2004.02984) 由 Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou 发布。 1. **[MobileNetV1](https://huggingface.co/docs/transformers/model_doc/mobilenet_v1)** (来自 Google Inc.) 伴随论文 [MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications](https://arxiv.org/abs/1704.04861) 由 Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam 发布。 1. **[MobileNetV2](https://huggingface.co/docs/transformers/model_doc/mobilenet_v2)** (来自 Google Inc.) 伴随论文 [MobileNetV2: Inverted Residuals and Linear Bottlenecks](https://arxiv.org/abs/1801.04381) 由 Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen 发布。 1. **[MobileViT](https://huggingface.co/docs/transformers/model_doc/mobilevit)** (来自 Apple) 伴随论文 [MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer](https://arxiv.org/abs/2110.02178) 由 Sachin Mehta and Mohammad Rastegari 发布。 1. **[MobileViTV2](https://huggingface.co/docs/transformers/model_doc/mobilevitv2)** (来自 Apple) 伴随论文 [Separable Self-attention for Mobile Vision Transformers](https://arxiv.org/abs/2206.02680) 由 Sachin Mehta and Mohammad Rastegari 发布。 1. **[MPNet](https://huggingface.co/docs/transformers/model_doc/mpnet)** (来自 Microsoft Research) 伴随论文 [MPNet: Masked and Permuted Pre-training for Language Understanding](https://arxiv.org/abs/2004.09297) 由 Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu 发布。 1. **[MPT](https://huggingface.co/docs/transformers/model_doc/mpt)** (来自 MosaiML) 伴随论文 [llm-foundry](https://github.com/mosaicml/llm-foundry/) 由 the MosaicML NLP Team 发布。 1. **[MRA](https://huggingface.co/docs/transformers/model_doc/mra)** (来自 the University of Wisconsin - Madison) 伴随论文 [Multi Resolution Analysis (MRA)](https://arxiv.org/abs/2207.10284) 由 Zhanpeng Zeng, Sourav Pal, Jeffery Kline, Glenn M Fung, Vikas Singh 发布。 1. **[MT5](https://huggingface.co/docs/transformers/model_doc/mt5)** (来自 Google AI) 伴随论文 [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934) 由 Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel 发布。 1. **[MusicGen](https://huggingface.co/docs/transformers/model_doc/musicgen)** (from Meta) released with the paper [Simple and Controllable Music Generation](https://arxiv.org/abs/2306.05284) by Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi and Alexandre Défossez. 1. **[MVP](https://huggingface.co/docs/transformers/model_doc/mvp)** (来自 中国人民大学 AI Box) 伴随论文 [MVP: Multi-task Supervised Pre-training for Natural Language Generation](https://arxiv.org/abs/2206.12131) 由 Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen 发布。 1. **[NAT](https://huggingface.co/docs/transformers/model_doc/nat)** (来自 SHI Labs) 伴随论文 [Neighborhood Attention Transformer](https://arxiv.org/abs/2204.07143) 由 Ali Hassani, Steven Walton, Jiachen Li, Shen Li, and Humphrey Shi 发布。 1. **[Nezha](https://huggingface.co/docs/transformers/model_doc/nezha)** (来自华为诺亚方舟实验室) 伴随论文 [NEZHA: Neural Contextualized Representation for Chinese Language Understanding](https://arxiv.org/abs/1909.00204) 由 Junqiu Wei, Xiaozhe Ren, Xiaoguang Li, Wenyong Huang, Yi Liao, Yasheng Wang, Jiashu Lin, Xin Jiang, Xiao Chen and Qun Liu 发布。 1. **[NLLB](https://huggingface.co/docs/transformers/model_doc/nllb)** (来自 Meta) 伴随论文 [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) 由 the NLLB team 发布。 1. **[NLLB-MOE](https://huggingface.co/docs/transformers/model_doc/nllb-moe)** (来自 Meta) 伴随论文 [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) 由 the NLLB team 发布。 1. **[Nougat](https://huggingface.co/docs/transformers/model_doc/nougat)** (来自 Meta AI) 伴随论文 [Nougat: Neural Optical Understanding for Academic Documents](https://arxiv.org/abs/2308.13418) 由 Lukas Blecher, Guillem Cucurull, Thomas Scialom, Robert Stojnic 发布。 1. **[Nyströmformer](https://huggingface.co/docs/transformers/model_doc/nystromformer)** (来自 the University of Wisconsin - Madison) 伴随论文 [Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention](https://arxiv.org/abs/2102.03902) 由 Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, Vikas Singh 发布。 1. **[OneFormer](https://huggingface.co/docs/transformers/model_doc/oneformer)** (来自 SHI Labs) 伴随论文 [OneFormer: One Transformer to Rule Universal Image Segmentation](https://arxiv.org/abs/2211.06220) 由 Jitesh Jain, Jiachen Li, MangTik Chiu, Ali Hassani, Nikita Orlov, Humphrey Shi 发布。 1. **[OpenLlama](https://huggingface.co/docs/transformers/model_doc/open-llama)** (来自 [s-JoL](https://huggingface.co/s-JoL)) 由 GitHub (现已删除). 1. **[OPT](https://huggingface.co/docs/transformers/master/model_doc/opt)** (来自 Meta AI) 伴随论文 [OPT: Open Pre-trained Transformer Language Models](https://arxiv.org/abs/2205.01068) 由 Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen et al 发布。 1. **[OWL-ViT](https://huggingface.co/docs/transformers/model_doc/owlvit)** (来自 Google AI) 伴随论文 [Simple Open-Vocabulary Object Detection with Vision Transformers](https://arxiv.org/abs/2205.06230) 由 Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, Xiao Wang, Xiaohua Zhai, Thomas Kipf, and Neil Houlsby 发布。 1. **[OWLv2](https://huggingface.co/docs/transformers/model_doc/owlv2)** (来自 Google AI) 伴随论文 [Scaling Open-Vocabulary Object Detection](https://arxiv.org/abs/2306.09683) 由 Matthias Minderer, Alexey Gritsenko, Neil Houlsby 发布。 1. **[PatchTSMixer](https://huggingface.co/docs/transformers/model_doc/patchtsmixer)** (来自 IBM Research) 伴随论文 [TSMixer: Lightweight MLP-Mixer Model for Multivariate Time Series Forecasting](https://arxiv.org/pdf/2306.09364.pdf) 由 Vijay Ekambaram, Arindam Jati, Nam Nguyen, Phanwadee Sinthong, Jayant Kalagnanam 发布。 1. **[PatchTST](https://huggingface.co/docs/transformers/model_doc/patchtst)** (来自 IBM) 伴随论文 [A Time Series is Worth 64 Words: Long-term Forecasting with Transformers](https://arxiv.org/pdf/2211.14730.pdf) 由 Yuqi Nie, Nam H. Nguyen, Phanwadee Sinthong, Jayant Kalagnanam 发布。 1. **[Pegasus](https://huggingface.co/docs/transformers/model_doc/pegasus)** (来自 Google) 伴随论文 [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777) 由 Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu 发布。 1. **[PEGASUS-X](https://huggingface.co/docs/transformers/model_doc/pegasus_x)** (来自 Google) 伴随论文 [Investigating Efficiently Extending Transformers for Long Input Summarization](https://arxiv.org/abs/2208.04347) 由 Jason Phang, Yao Zhao, Peter J. Liu 发布。 1. **[Perceiver IO](https://huggingface.co/docs/transformers/model_doc/perceiver)** (来自 Deepmind) 伴随论文 [Perceiver IO: A General Architecture for Structured Inputs & Outputs](https://arxiv.org/abs/2107.14795) 由 Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu, David Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, Olivier Hénaff, Matthew M. Botvinick, Andrew Zisserman, Oriol Vinyals, João Carreira 发布。 1. **[Persimmon](https://huggingface.co/docs/transformers/model_doc/persimmon)** (来自 ADEPT) 伴随论文 [blog post](https://www.adept.ai/blog/persimmon-8b) 由 Erich Elsen, Augustus Odena, Maxwell Nye, Sağnak Taşırlar, Tri Dao, Curtis Hawthorne, Deepak Moparthi, Arushi Somani 发布。 1. **[Phi](https://huggingface.co/docs/transformers/model_doc/phi)** (from Microsoft) released with the papers - [Textbooks Are All You Need](https://arxiv.org/abs/2306.11644) by Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio César Teodoro Mendes, Allie Del Giorno, Sivakanth Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo de Rosa, Olli Saarikivi, Adil Salim, Shital Shah, Harkirat Singh Behl, Xin Wang, Sébastien Bubeck, Ronen Eldan, Adam Tauman Kalai, Yin Tat Lee and Yuanzhi Li, [Textbooks Are All You Need II: phi-1.5 technical report](https://arxiv.org/abs/2309.05463) by Yuanzhi Li, Sébastien Bubeck, Ronen Eldan, Allie Del Giorno, Suriya Gunasekar and Yin Tat Lee. 1. **[PhoBERT](https://huggingface.co/docs/transformers/model_doc/phobert)** (来自 VinAI Research) 伴随论文 [PhoBERT: Pre-trained language models for Vietnamese](https://www.aclweb.org/anthology/2020.findings-emnlp.92/) 由 Dat Quoc Nguyen and Anh Tuan Nguyen 发布。 1. **[Pix2Struct](https://huggingface.co/docs/transformers/model_doc/pix2struct)** (来自 Google) 伴随论文 [Pix2Struct: Screenshot Parsing as Pretraining for Visual Language Understanding](https://arxiv.org/abs/2210.03347) 由 Kenton Lee, Mandar Joshi, Iulia Turc, Hexiang Hu, Fangyu Liu, Julian Eisenschlos, Urvashi Khandelwal, Peter Shaw, Ming-Wei Chang, Kristina Toutanova 发布。 1. **[PLBart](https://huggingface.co/docs/transformers/model_doc/plbart)** (来自 UCLA NLP) 伴随论文 [Unified Pre-training for Program Understanding and Generation](https://arxiv.org/abs/2103.06333) 由 Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, Kai-Wei Chang 发布。 1. **[PoolFormer](https://huggingface.co/docs/transformers/model_doc/poolformer)** (来自 Sea AI Labs) 伴随论文 [MetaFormer is Actually What You Need for Vision](https://arxiv.org/abs/2111.11418) 由 Yu, Weihao and Luo, Mi and Zhou, Pan and Si, Chenyang and Zhou, Yichen and Wang, Xinchao and Feng, Jiashi and Yan, Shuicheng 发布。 1. **[Pop2Piano](https://huggingface.co/docs/transformers/model_doc/pop2piano)** released with the paper [Pop2Piano : Pop Audio-based Piano Cover Generation](https://arxiv.org/abs/2211.00895) by Jongho Choi, Kyogu Lee. 1. **[ProphetNet](https://huggingface.co/docs/transformers/model_doc/prophetnet)** (来自 Microsoft Research) 伴随论文 [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) 由 Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou 发布。 1. **[PVT](https://huggingface.co/docs/transformers/model_doc/pvt)** (来自 Nanjing University, The University of Hong Kong etc.) 伴随论文 [Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions](https://arxiv.org/pdf/2102.12122.pdf) 由 Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao 发布。 1. **[QDQBert](https://huggingface.co/docs/transformers/model_doc/qdqbert)** (来自 NVIDIA) 伴随论文 [Integer Quantization for Deep Learning Inference: Principles and Empirical Evaluation](https://arxiv.org/abs/2004.09602) 由 Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev and Paulius Micikevicius 发布。 1. **[RAG](https://huggingface.co/docs/transformers/model_doc/rag)** (来自 Facebook) 伴随论文 [Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks](https://arxiv.org/abs/2005.11401) 由 Patrick Lewis, Ethan Perez, Aleksandara Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, Douwe Kiela 发布。 1. **[REALM](https://huggingface.co/docs/transformers/model_doc/realm.html)** (来自 Google Research) 伴随论文 [REALM: Retrieval-Augmented Language Model Pre-Training](https://arxiv.org/abs/2002.08909) 由 Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat and Ming-Wei Chang 发布。 1. **[Reformer](https://huggingface.co/docs/transformers/model_doc/reformer)** (来自 Google Research) 伴随论文 [Reformer: The Efficient Transformer](https://arxiv.org/abs/2001.04451) 由 Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya 发布。 1. **[RegNet](https://huggingface.co/docs/transformers/model_doc/regnet)** (from META Research) released with the paper [Designing Network Design Space](https://arxiv.org/abs/2003.13678) by Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, Piotr Dollár. 1. **[RemBERT](https://huggingface.co/docs/transformers/model_doc/rembert)** (来自 Google Research) 伴随论文 [Rethinking embedding coupling in pre-trained language models](https://arxiv.org/pdf/2010.12821.pdf) 由 Hyung Won Chung, Thibault Févry, Henry Tsai, M. Johnson, Sebastian Ruder 发布。 1. **[ResNet](https://huggingface.co/docs/transformers/model_doc/resnet)** (from Microsoft Research) released with the paper [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) by Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun. 1. **[RoBERTa](https://huggingface.co/docs/transformers/model_doc/roberta)** (来自 Facebook), 伴随论文 [Robustly Optimized BERT Pretraining Approach](https://arxiv.org/abs/1907.11692) 由 Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov 发布。 1. **[RoBERTa-PreLayerNorm](https://huggingface.co/docs/transformers/model_doc/roberta-prelayernorm)** (来自 Facebook) 伴随论文 [fairseq: A Fast, Extensible Toolkit for Sequence Modeling](https://arxiv.org/abs/1904.01038) 由 Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier, Michael Auli 发布。 1. **[RoCBert](https://huggingface.co/docs/transformers/model_doc/roc_bert)** (来自 WeChatAI), 伴随论文 [RoCBert: Robust Chinese Bert with Multimodal Contrastive Pretraining](https://aclanthology.org/2022.acl-long.65.pdf) 由 HuiSu, WeiweiShi, XiaoyuShen, XiaoZhou, TuoJi, JiaruiFang, JieZhou 发布。 1. **[RoFormer](https://huggingface.co/docs/transformers/model_doc/roformer)** (来自 ZhuiyiTechnology), 伴随论文 [RoFormer: Enhanced Transformer with Rotary Position Embedding](https://arxiv.org/pdf/2104.09864v1.pdf) 由 Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu 发布。 1. **[RWKV](https://huggingface.co/docs/transformers/model_doc/rwkv)** (来自 Bo Peng) 伴随论文 [this repo](https://github.com/BlinkDL/RWKV-LM) 由 Bo Peng 发布。 1. **[SeamlessM4T](https://huggingface.co/docs/transformers/model_doc/seamless_m4t)** (from Meta AI) released with the paper [SeamlessM4T — Massively Multilingual & Multimodal Machine Translation](https://dl.fbaipublicfiles.com/seamless/seamless_m4t_paper.pdf) by the Seamless Communication team. 1. **[SeamlessM4Tv2](https://huggingface.co/docs/transformers/model_doc/seamless_m4t_v2)** (from Meta AI) released with the paper [Seamless: Multilingual Expressive and Streaming Speech Translation](https://ai.meta.com/research/publications/seamless-multilingual-expressive-and-streaming-speech-translation/) by the Seamless Communication team. 1. **[SegFormer](https://huggingface.co/docs/transformers/model_doc/segformer)** (来自 NVIDIA) 伴随论文 [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203) 由 Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M. Alvarez, Ping Luo 发布。 1. **[Segment Anything](https://huggingface.co/docs/transformers/model_doc/sam)** (来自 Meta AI) 伴随论文 [Segment Anything](https://arxiv.org/pdf/2304.02643v1.pdf) 由 Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer Whitehead, Alex Berg, Wan-Yen Lo, Piotr Dollar, Ross Girshick 发布。 1. **[SEW](https://huggingface.co/docs/transformers/model_doc/sew)** (来自 ASAPP) 伴随论文 [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) 由 Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi 发布。 1. **[SEW-D](https://huggingface.co/docs/transformers/model_doc/sew_d)** (来自 ASAPP) 伴随论文 [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) 由 Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi 发布。 1. **[SpeechT5](https://huggingface.co/docs/transformers/model_doc/speecht5)** (来自 Microsoft Research) 伴随论文 [SpeechT5: Unified-Modal Encoder-Decoder Pre-Training for Spoken Language Processing](https://arxiv.org/abs/2110.07205) 由 Junyi Ao, Rui Wang, Long Zhou, Chengyi Wang, Shuo Ren, Yu Wu, Shujie Liu, Tom Ko, Qing Li, Yu Zhang, Zhihua Wei, Yao Qian, Jinyu Li, Furu Wei 发布。 1. **[SpeechToTextTransformer](https://huggingface.co/docs/transformers/model_doc/speech_to_text)** (来自 Facebook), 伴随论文 [fairseq S2T: Fast Speech-to-Text Modeling with fairseq](https://arxiv.org/abs/2010.05171) 由 Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Dmytro Okhonko, Juan Pino 发布。 1. **[SpeechToTextTransformer2](https://huggingface.co/docs/transformers/model_doc/speech_to_text_2)** (来自 Facebook) 伴随论文 [Large-Scale Self- and Semi-Supervised Learning for Speech Translation](https://arxiv.org/abs/2104.06678) 由 Changhan Wang, Anne Wu, Juan Pino, Alexei Baevski, Michael Auli, Alexis Conneau 发布。 1. **[Splinter](https://huggingface.co/docs/transformers/model_doc/splinter)** (来自 Tel Aviv University) 伴随论文 [Few-Shot Question Answering by Pretraining Span Selection](https://arxiv.org/abs/2101.00438) 由 Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Globerson, Omer Levy 发布。 1. **[SqueezeBERT](https://huggingface.co/docs/transformers/model_doc/squeezebert)** (来自 Berkeley) 伴随论文 [SqueezeBERT: What can computer vision teach NLP about efficient neural networks?](https://arxiv.org/abs/2006.11316) 由 Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer 发布。 1. **[SwiftFormer](https://huggingface.co/docs/transformers/model_doc/swiftformer)** (来自 MBZUAI) 伴随论文 [SwiftFormer: Efficient Additive Attention for Transformer-based Real-time Mobile Vision Applications](https://arxiv.org/abs/2303.15446) 由 Abdelrahman Shaker, Muhammad Maaz, Hanoona Rasheed, Salman Khan, Ming-Hsuan Yang, Fahad Shahbaz Khan 发布。 1. **[Swin Transformer](https://huggingface.co/docs/transformers/model_doc/swin)** (来自 Microsoft) 伴随论文 [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030) 由 Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo 发布。 1. **[Swin Transformer V2](https://huggingface.co/docs/transformers/model_doc/swinv2)** (来自 Microsoft) 伴随论文 [Swin Transformer V2: Scaling Up Capacity and Resolution](https://arxiv.org/abs/2111.09883) 由 Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong, Furu Wei, Baining Guo 发布。 1. **[Swin2SR](https://huggingface.co/docs/transformers/model_doc/swin2sr)** (来自 University of Würzburg) 伴随论文 [Swin2SR: SwinV2 Transformer for Compressed Image Super-Resolution and Restoration](https://arxiv.org/abs/2209.11345) 由 Marcos V. Conde, Ui-Jin Choi, Maxime Burchi, Radu Timofte 发布。 1. **[SwitchTransformers](https://huggingface.co/docs/transformers/model_doc/switch_transformers)** (from Google) released with the paper [Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity](https://arxiv.org/abs/2101.03961) by William Fedus, Barret Zoph, Noam Shazeer. 1. **[T5](https://huggingface.co/docs/transformers/model_doc/t5)** (来自 Google AI) 伴随论文 [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/abs/1910.10683) 由 Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu 发布。 1. **[T5v1.1](https://huggingface.co/docs/transformers/model_doc/t5v1.1)** (来自 Google AI) 伴随论文 [google-research/text-to-text-transfer-transformer](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#t511) 由 Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu 发布。 1. **[Table Transformer](https://huggingface.co/docs/transformers/model_doc/table-transformer)** (来自 Microsoft Research) 伴随论文 [PubTables-1M: Towards Comprehensive Table Extraction From Unstructured Documents](https://arxiv.org/abs/2110.00061) 由 Brandon Smock, Rohith Pesala, Robin Abraham 发布。 1. **[TAPAS](https://huggingface.co/docs/transformers/model_doc/tapas)** (来自 Google AI) 伴随论文 [TAPAS: Weakly Supervised Table Parsing via Pre-training](https://arxiv.org/abs/2004.02349) 由 Jonathan Herzig, Paweł Krzysztof Nowak, Thomas Müller, Francesco Piccinno and Julian Martin Eisenschlos 发布。 1. **[TAPEX](https://huggingface.co/docs/transformers/model_doc/tapex)** (来自 Microsoft Research) 伴随论文 [TAPEX: Table Pre-training via Learning a Neural SQL Executor](https://arxiv.org/abs/2107.07653) 由 Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi Lin, Weizhu Chen, Jian-Guang Lou 发布。 1. **[Time Series Transformer](https://huggingface.co/docs/transformers/model_doc/time_series_transformer)** (from HuggingFace). 1. **[TimeSformer](https://huggingface.co/docs/transformers/model_doc/timesformer)** (from Facebook) released with the paper [Is Space-Time Attention All You Need for Video Understanding?](https://arxiv.org/abs/2102.05095) by Gedas Bertasius, Heng Wang, Lorenzo Torresani. 1. **[Trajectory Transformer](https://huggingface.co/docs/transformers/model_doc/trajectory_transformers)** (from the University of California at Berkeley) released with the paper [Offline Reinforcement Learning as One Big Sequence Modeling Problem](https://arxiv.org/abs/2106.02039) by Michael Janner, Qiyang Li, Sergey Levine 1. **[Transformer-XL](https://huggingface.co/docs/transformers/model_doc/transfo-xl)** (来自 Google/CMU) 伴随论文 [Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context](https://arxiv.org/abs/1901.02860) 由 Zihang Dai*, Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov 发布。 1. **[TrOCR](https://huggingface.co/docs/transformers/model_doc/trocr)** (来自 Microsoft) 伴随论文 [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282) 由 Minghao Li, Tengchao Lv, Lei Cui, Yijuan Lu, Dinei Florencio, Cha Zhang, Zhoujun Li, Furu Wei 发布。 1. **[TVLT](https://huggingface.co/docs/transformers/model_doc/tvlt)** (来自 UNC Chapel Hill) 伴随论文 [TVLT: Textless Vision-Language Transformer](https://arxiv.org/abs/2209.14156) 由 Zineng Tang, Jaemin Cho, Yixin Nie, Mohit Bansal 发布。 1. **[TVP](https://huggingface.co/docs/transformers/model_doc/tvp)** (来自 Intel) 伴随论文 [Text-Visual Prompting for Efficient 2D Temporal Video Grounding](https://arxiv.org/abs/2303.04995) 由 Yimeng Zhang, Xin Chen, Jinghan Jia, Sijia Liu, Ke Ding 发布. 1. **[UL2](https://huggingface.co/docs/transformers/model_doc/ul2)** (from Google Research) released with the paper [Unifying Language Learning Paradigms](https://arxiv.org/abs/2205.05131v1) by Yi Tay, Mostafa Dehghani, Vinh Q. Tran, Xavier Garcia, Dara Bahri, Tal Schuster, Huaixiu Steven Zheng, Neil Houlsby, Donald Metzler 1. **[UMT5](https://huggingface.co/docs/transformers/model_doc/umt5)** (来自 Google Research) 伴随论文 [UniMax: Fairer and More Effective Language Sampling for Large-Scale Multilingual Pretraining](https://openreview.net/forum?id=kXwdL1cWOAi) 由 Hyung Won Chung, Xavier Garcia, Adam Roberts, Yi Tay, Orhan Firat, Sharan Narang, Noah Constant 发布。 1. **[UniSpeech](https://huggingface.co/docs/transformers/model_doc/unispeech)** (来自 Microsoft Research) 伴随论文 [UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data](https://arxiv.org/abs/2101.07597) 由 Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang 发布。 1. **[UniSpeechSat](https://huggingface.co/docs/transformers/model_doc/unispeech-sat)** (来自 Microsoft Research) 伴随论文 [UNISPEECH-SAT: UNIVERSAL SPEECH REPRESENTATION LEARNING WITH SPEAKER AWARE PRE-TRAINING](https://arxiv.org/abs/2110.05752) 由 Sanyuan Chen, Yu Wu, Chengyi Wang, Zhengyang Chen, Zhuo Chen, Shujie Liu, Jian Wu, Yao Qian, Furu Wei, Jinyu Li, Xiangzhan Yu 发布。 1. **[UnivNet](https://huggingface.co/docs/transformers/model_doc/univnet)** (from Kakao Corporation) released with the paper [UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation](https://arxiv.org/abs/2106.07889) by Won Jang, Dan Lim, Jaesam Yoon, Bongwan Kim, and Juntae Kim. 1. **[UPerNet](https://huggingface.co/docs/transformers/model_doc/upernet)** (来自 Peking University) 伴随论文 [Unified Perceptual Parsing for Scene Understanding](https://arxiv.org/abs/1807.10221) 由 Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, Jian Sun 发布。 1. **[VAN](https://huggingface.co/docs/transformers/model_doc/van)** (来自 Tsinghua University and Nankai University) 伴随论文 [Visual Attention Network](https://arxiv.org/pdf/2202.09741.pdf) 由 Meng-Hao Guo, Cheng-Ze Lu, Zheng-Ning Liu, Ming-Ming Cheng, Shi-Min Hu 发布。 1. **[VideoMAE](https://huggingface.co/docs/transformers/model_doc/videomae)** (来自 Multimedia Computing Group, Nanjing University) 伴随论文 [VideoMAE: Masked Autoencoders are Data-Efficient Learners for Self-Supervised Video Pre-Training](https://arxiv.org/abs/2203.12602) 由 Zhan Tong, Yibing Song, Jue Wang, Limin Wang 发布。 1. **[ViLT](https://huggingface.co/docs/transformers/model_doc/vilt)** (来自 NAVER AI Lab/Kakao Enterprise/Kakao Brain) 伴随论文 [ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision](https://arxiv.org/abs/2102.03334) 由 Wonjae Kim, Bokyung Son, Ildoo Kim 发布。 1. **[VipLlava](https://huggingface.co/docs/transformers/model_doc/vipllava)** (来自 University of Wisconsin–Madison) 伴随论文 [Making Large Multimodal Models Understand Arbitrary Visual Prompts](https://arxiv.org/abs/2312.00784) 由 Mu Cai, Haotian Liu, Siva Karthik Mustikovela, Gregory P. Meyer, Yuning Chai, Dennis Park, Yong Jae Lee 发布。 1. **[Vision Transformer (ViT)](https://huggingface.co/docs/transformers/model_doc/vit)** (来自 Google AI) 伴随论文 [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) 由 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby 发布。 1. **[VisualBERT](https://huggingface.co/docs/transformers/model_doc/visual_bert)** (来自 UCLA NLP) 伴随论文 [VisualBERT: A Simple and Performant Baseline for Vision and Language](https://arxiv.org/pdf/1908.03557) 由 Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang 发布。 1. **[ViT Hybrid](https://huggingface.co/docs/transformers/model_doc/vit_hybrid)** (来自 Google AI) 伴随论文 [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) 由 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby 发布。 1. **[VitDet](https://huggingface.co/docs/transformers/model_doc/vitdet)** (来自 Meta AI) 伴随论文 [Exploring Plain Vision Transformer Backbones for Object Detection](https://arxiv.org/abs/2203.16527) 由 Yanghao Li, Hanzi Mao, Ross Girshick, Kaiming He 发布。 1. **[ViTMAE](https://huggingface.co/docs/transformers/model_doc/vit_mae)** (来自 Meta AI) 伴随论文 [Masked Autoencoders Are Scalable Vision Learners](https://arxiv.org/abs/2111.06377) 由 Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick 发布。 1. **[ViTMatte](https://huggingface.co/docs/transformers/model_doc/vitmatte)** (来自 HUST-VL) 伴随论文 [ViTMatte: Boosting Image Matting with Pretrained Plain Vision Transformers](https://arxiv.org/abs/2305.15272) 由 Jingfeng Yao, Xinggang Wang, Shusheng Yang, Baoyuan Wang 发布。 1. **[ViTMSN](https://huggingface.co/docs/transformers/model_doc/vit_msn)** (来自 Meta AI) 伴随论文 [Masked Siamese Networks for Label-Efficient Learning](https://arxiv.org/abs/2204.07141) by Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bojanowski, Florian Bordes, Pascal Vincent, Armand Joulin, Michael Rabbat, Nicolas Ballas 发布. 1. **[VITS](https://huggingface.co/docs/transformers/model_doc/vits)** (来自 Kakao Enterprise) 伴随论文 [Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech](https://arxiv.org/abs/2106.06103) 由 Jaehyeon Kim, Jungil Kong, Juhee Son 发布。 1. **[ViViT](https://huggingface.co/docs/transformers/model_doc/vivit)** (来自 Google Research) released with the paper [ViViT: A Video Vision Transformer](https://arxiv.org/abs/2103.15691) 由 Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lučić, Cordelia Schmid. 1. **[Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/wav2vec2)** (来自 Facebook AI) 伴随论文 [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations](https://arxiv.org/abs/2006.11477) 由 Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli 发布。 1. **[Wav2Vec2-Conformer](https://huggingface.co/docs/transformers/model_doc/wav2vec2-conformer)** (来自 Facebook AI) 伴随论文 [FAIRSEQ S2T: Fast Speech-to-Text Modeling with FAIRSEQ](https://arxiv.org/abs/2010.05171) 由 Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Sravya Popuri, Dmytro Okhonko, Juan Pino 发布。 1. **[Wav2Vec2Phoneme](https://huggingface.co/docs/transformers/model_doc/wav2vec2_phoneme)** (来自 Facebook AI) 伴随论文 [Simple and Effective Zero-shot Cross-lingual Phoneme Recognition](https://arxiv.org/abs/2109.11680) 由 Qiantong Xu, Alexei Baevski, Michael Auli 发布。 1. **[WavLM](https://huggingface.co/docs/transformers/model_doc/wavlm)** (from Microsoft Research) released with the paper [WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing](https://arxiv.org/abs/2110.13900) by Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki Kanda, Takuya Yoshioka, Xiong Xiao, Jian Wu, Long Zhou, Shuo Ren, Yanmin Qian, Yao Qian, Jian Wu, Michael Zeng, Furu Wei. 1. **[Whisper](https://huggingface.co/docs/transformers/model_doc/whisper)** (来自 OpenAI) 伴随论文 [Robust Speech Recognition via Large-Scale Weak Supervision](https://cdn.openai.com/papers/whisper.pdf) 由 Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, Ilya Sutskever 发布。 1. **[X-CLIP](https://huggingface.co/docs/transformers/model_doc/xclip)** (来自 Microsoft Research) 伴随论文 [Expanding Language-Image Pretrained Models for General Video Recognition](https://arxiv.org/abs/2208.02816) 由 Bolin Ni, Houwen Peng, Minghao Chen, Songyang Zhang, Gaofeng Meng, Jianlong Fu, Shiming Xiang, Haibin Ling 发布。 1. **[X-MOD](https://huggingface.co/docs/transformers/model_doc/xmod)** (来自 Meta AI) 伴随论文 [Lifting the Curse of Multilinguality by Pre-training Modular Transformers](http://dx.doi.org/10.18653/v1/2022.naacl-main.255) 由 Jonas Pfeiffer, Naman Goyal, Xi Lin, Xian Li, James Cross, Sebastian Riedel, Mikel Artetxe 发布。 1. **[XGLM](https://huggingface.co/docs/transformers/model_doc/xglm)** (From Facebook AI) released with the paper [Few-shot Learning with Multilingual Language Models](https://arxiv.org/abs/2112.10668) by Xi Victoria Lin, Todor Mihaylov, Mikel Artetxe, Tianlu Wang, Shuohui Chen, Daniel Simig, Myle Ott, Naman Goyal, Shruti Bhosale, Jingfei Du, Ramakanth Pasunuru, Sam Shleifer, Punit Singh Koura, Vishrav Chaudhary, Brian O'Horo, Jeff Wang, Luke Zettlemoyer, Zornitsa Kozareva, Mona Diab, Veselin Stoyanov, Xian Li. 1. **[XLM](https://huggingface.co/docs/transformers/model_doc/xlm)** (来自 Facebook) 伴随论文 [Cross-lingual Language Model Pretraining](https://arxiv.org/abs/1901.07291) 由 Guillaume Lample and Alexis Conneau 发布。 1. **[XLM-ProphetNet](https://huggingface.co/docs/transformers/model_doc/xlm-prophetnet)** (来自 Microsoft Research) 伴随论文 [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) 由 Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou 发布。 1. **[XLM-RoBERTa](https://huggingface.co/docs/transformers/model_doc/xlm-roberta)** (来自 Facebook AI), 伴随论文 [Unsupervised Cross-lingual Representation Learning at Scale](https://arxiv.org/abs/1911.02116) 由 Alexis Conneau*, Kartikay Khandelwal*, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer and Veselin Stoyanov 发布。 1. **[XLM-RoBERTa-XL](https://huggingface.co/docs/transformers/model_doc/xlm-roberta-xl)** (来自 Facebook AI) 伴随论文 [Larger-Scale Transformers for Multilingual Masked Language Modeling](https://arxiv.org/abs/2105.00572) 由 Naman Goyal, Jingfei Du, Myle Ott, Giri Anantharaman, Alexis Conneau 发布。 1. **[XLM-V](https://huggingface.co/docs/transformers/model_doc/xlm-v)** (来自 Meta AI) 伴随论文 [XLM-V: Overcoming the Vocabulary Bottleneck in Multilingual Masked Language Models](https://arxiv.org/abs/2301.10472) 由 Davis Liang, Hila Gonen, Yuning Mao, Rui Hou, Naman Goyal, Marjan Ghazvininejad, Luke Zettlemoyer, Madian Khabsa 发布。 1. **[XLNet](https://huggingface.co/docs/transformers/model_doc/xlnet)** (来自 Google/CMU) 伴随论文 [XLNet: Generalized Autoregressive Pretraining for Language Understanding](https://arxiv.org/abs/1906.08237) 由 Zhilin Yang*, Zihang Dai*, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le 发布。 1. **[XLS-R](https://huggingface.co/docs/transformers/model_doc/xls_r)** (来自 Facebook AI) 伴随论文 [XLS-R: Self-supervised Cross-lingual Speech Representation Learning at Scale](https://arxiv.org/abs/2111.09296) 由 Arun Babu, Changhan Wang, Andros Tjandra, Kushal Lakhotia, Qiantong Xu, Naman Goyal, Kritika Singh, Patrick von Platen, Yatharth Saraf, Juan Pino, Alexei Baevski, Alexis Conneau, Michael Auli 发布。 1. **[XLSR-Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/xlsr_wav2vec2)** (来自 Facebook AI) 伴随论文 [Unsupervised Cross-Lingual Representation Learning For Speech Recognition](https://arxiv.org/abs/2006.13979) 由 Alexis Conneau, Alexei Baevski, Ronan Collobert, Abdelrahman Mohamed, Michael Auli 发布。 1. **[YOLOS](https://huggingface.co/docs/transformers/model_doc/yolos)** (来自 Huazhong University of Science & Technology) 伴随论文 [You Only Look at One Sequence: Rethinking Transformer in Vision through Object Detection](https://arxiv.org/abs/2106.00666) 由 Yuxin Fang, Bencheng Liao, Xinggang Wang, Jiemin Fang, Jiyang Qi, Rui Wu, Jianwei Niu, Wenyu Liu 发布。 1. **[YOSO](https://huggingface.co/docs/transformers/model_doc/yoso)** (来自 the University of Wisconsin - Madison) 伴随论文 [You Only Sample (Almost) Once: Linear Cost Self-Attention Via Bernoulli Sampling](https://arxiv.org/abs/2111.09714) 由 Zhanpeng Zeng, Yunyang Xiong, Sathya N. Ravi, Shailesh Acharya, Glenn Fung, Vikas Singh 发布。 1. 想要贡献新的模型?我们这里有一份**详细指引和模板**来引导你添加新的模型。你可以在 [`templates`](./templates) 目录中找到他们。记得查看 [贡献指南](./CONTRIBUTING.md) 并在开始写 PR 前联系维护人员或开一个新的 issue 来获得反馈。 要检查某个模型是否已有 Flax、PyTorch 或 TensorFlow 的实现,或其是否在 🤗 Tokenizers 库中有对应词符化器(tokenizer),敬请参阅[此表](https://huggingface.co/docs/transformers/index#supported-frameworks)。 这些实现均已于多个数据集测试(请参看用例脚本)并应于原版实现表现相当。你可以在用例文档的[此节](https://huggingface.co/docs/transformers/examples)中了解表现的细节。 ## 了解更多 | 章节 | 描述 | |-|-| | [文档](https://huggingface.co/docs/transformers/) | 完整的 API 文档和教程 | | [任务总结](https://huggingface.co/docs/transformers/task_summary) | 🤗 Transformers 支持的任务 | | [预处理教程](https://huggingface.co/docs/transformers/preprocessing) | 使用 `Tokenizer` 来为模型准备数据 | | [训练和微调](https://huggingface.co/docs/transformers/training) | 在 PyTorch/TensorFlow 的训练循环或 `Trainer` API 中使用 🤗 Transformers 提供的模型 | | [快速上手:微调和用例脚本](https://github.com/huggingface/transformers/tree/main/examples) | 为各种任务提供的用例脚本 | | [模型分享和上传](https://huggingface.co/docs/transformers/model_sharing) | 和社区上传和分享你微调的模型 | | [迁移](https://huggingface.co/docs/transformers/migration) | 从 `pytorch-transformers` 或 `pytorch-pretrained-bert` 迁移到 🤗 Transformers | ## 引用 我们已将此库的[论文](https://www.aclweb.org/anthology/2020.emnlp-demos.6/)正式发表,如果你使用了 🤗 Transformers 库,请引用: ```bibtex @inproceedings{wolf-etal-2020-transformers, title = "Transformers: State-of-the-Art Natural Language Processing", author = "Thomas Wolf and Lysandre Debut and Victor Sanh and Julien Chaumond and Clement Delangue and Anthony Moi and Pierric Cistac and Tim Rault and Rémi Louf and Morgan Funtowicz and Joe Davison and Sam Shleifer and Patrick von Platen and Clara Ma and Yacine Jernite and Julien Plu and Canwen Xu and Teven Le Scao and Sylvain Gugger and Mariama Drame and Quentin Lhoest and Alexander M. Rush", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations", month = oct, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.emnlp-demos.6", pages = "38--45" } ```
huggingface/transformers/blob/main/README_zh-hans.md
!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Quantization Quantization techniques focus on representing data with less information while also trying to not lose too much accuracy. This often means converting a data type to represent the same information with fewer bits. For example, if your model weights are stored as 32-bit floating points and they're quantized to 16-bit floating points, this halves the model size which makes it easier to store and reduces memory-usage. Lower precision can also speedup inference because it takes less time to perform calculations with fewer bits. Transformers supports several quantization schemes to help you run inference with large language models (LLMs) and finetune adapters on quantized models. This guide will show you how to use Activation-aware Weight Quantization (AWQ), AutoGPTQ, and bitsandbytes. ## AWQ <Tip> Try AWQ quantization with this [notebook](https://colab.research.google.com/drive/1HzZH89yAXJaZgwJDhQj9LqSBux932BvY)! </Tip> [Activation-aware Weight Quantization (AWQ)](https://hf.co/papers/2306.00978) doesn't quantize all the weights in a model, and instead, it preserves a small percentage of weights that are important for LLM performance. This significantly reduces quantization loss such that you can run models in 4-bit precision without experiencing any performance degradation. There are several libraries for quantizing models with the AWQ algorithm, such as [llm-awq](https://github.com/mit-han-lab/llm-awq), [autoawq](https://github.com/casper-hansen/AutoAWQ) or [optimum-intel](https://huggingface.co/docs/optimum/main/en/intel/optimization_inc). Transformers supports loading models quantized with the llm-awq and autoawq libraries. This guide will show you how to load models quantized with autoawq, but the processs is similar for llm-awq quantized models. Make sure you have autoawq installed: ```bash pip install autoawq ``` AWQ-quantized models can be identified by checking the `quantization_config` attribute in the model's [config.json](https://huggingface.co/TheBloke/zephyr-7B-alpha-AWQ/blob/main/config.json) file: ```json { "_name_or_path": "/workspace/process/huggingfaceh4_zephyr-7b-alpha/source", "architectures": [ "MistralForCausalLM" ], ... ... ... "quantization_config": { "quant_method": "awq", "zero_point": true, "group_size": 128, "bits": 4, "version": "gemm" } } ``` A quantized model is loaded with the [`~PreTrainedModel.from_pretrained`] method. If you loaded your model on the CPU, make sure to move it to a GPU device first. Use the `device_map` parameter to specify where to place the model: ```py from transformers import AutoModelForCausalLM, AutoTokenizer model_id = "TheBloke/zephyr-7B-alpha-AWQ" model = AutoModelForCausalLM.from_pretrained(model_id, device_map="cuda:0") ``` Loading an AWQ-quantized model automatically sets other weights to fp16 by default for performance reasons. If you want to load these other weights in a different format, use the `torch_dtype` parameter: ```py from transformers import AutoModelForCausalLM, AutoTokenizer model_id = "TheBloke/zephyr-7B-alpha-AWQ" model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float32) ``` AWQ quantization can also be combined with [FlashAttention-2](perf_infer_gpu_one#flashattention-2) to further accelerate inference: ```py from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("TheBloke/zephyr-7B-alpha-AWQ", attn_implementation="flash_attention_2", device_map="cuda:0") ``` ### Fused modules Fused modules offers improved accuracy and performance and it is supported out-of-the-box for AWQ modules for [Llama](https://huggingface.co/meta-llama) and [Mistral](https://huggingface.co/mistralai/Mistral-7B-v0.1) architectures, but you can also fuse AWQ modules for unsupported architectures. <Tip warning={true}> Fused modules cannot be combined with other optimization techniques such as FlashAttention-2. </Tip> <hfoptions id="fuse"> <hfoption id="supported architectures"> To enable fused modules for supported architectures, create an [`AwqConfig`] and set the parameters `fuse_max_seq_len` and `do_fuse=True`. The `fuse_max_seq_len` parameter is the total sequence length and it should include the context length and the expected generation length. You can set it to a larger value to be safe. For example, to fuse the AWQ modules of the [TheBloke/Mistral-7B-OpenOrca-AWQ](https://huggingface.co/TheBloke/Mistral-7B-OpenOrca-AWQ) model. ```python import torch from transformers import AwqConfig, AutoModelForCausalLM model_id = "TheBloke/Mistral-7B-OpenOrca-AWQ" quantization_config = AwqConfig( bits=4, fuse_max_seq_len=512, do_fuse=True, ) model = AutoModelForCausalLM.from_pretrained(model_id, quantization_config=quantization_config).to(0) ``` </hfoption> <hfoption id="unsupported architectures"> For architectures that don't support fused modules yet, you need to create a custom fusing mapping to define which modules need to be fused with the `modules_to_fuse` parameter. For example, to fuse the AWQ modules of the [TheBloke/Yi-34B-AWQ](https://huggingface.co/TheBloke/Yi-34B-AWQ) model. ```python import torch from transformers import AwqConfig, AutoModelForCausalLM model_id = "TheBloke/Yi-34B-AWQ" quantization_config = AwqConfig( bits=4, fuse_max_seq_len=512, modules_to_fuse={ "attention": ["q_proj", "k_proj", "v_proj", "o_proj"], "layernorm": ["ln1", "ln2", "norm"], "mlp": ["gate_proj", "up_proj", "down_proj"], "use_alibi": False, "num_attention_heads": 56, "num_key_value_heads": 8, "hidden_size": 7168 } ) model = AutoModelForCausalLM.from_pretrained(model_id, quantization_config=quantization_config).to(0) ``` The parameter `modules_to_fuse` should include: - `"attention"`: The names of the attention layers to fuse in the following order: query, key, value and output projection layer. If you don't want to fuse these layers, pass an empty list. - `"layernorm"`: The names of all the LayerNorm layers you want to replace with a custom fused LayerNorm. If you don't want to fuse these layers, pass an empty list. - `"mlp"`: The names of the MLP layers you want to fuse into a single MLP layer in the order: (gate (dense, layer, post-attention) / up / down layers). - `"use_alibi"`: If your model uses ALiBi positional embedding. - `"num_attention_heads"`: The number of attention heads. - `"num_key_value_heads"`: The number of key value heads that should be used to implement Grouped Query Attention (GQA). If `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if `num_key_value_heads=1` the model will use Multi Query Attention (MQA), otherwise GQA is used. - `"hidden_size"`: The dimension of the hidden representations. </hfoption> </hfoptions> ## AutoGPTQ <Tip> Try GPTQ quantization with PEFT in this [notebook](https://colab.research.google.com/drive/1_TIrmuKOFhuRRiTWN94iLKUFu6ZX4ceb?usp=sharing) and learn more about it's details in this [blog post](https://huggingface.co/blog/gptq-integration)! </Tip> The [AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ) library implements the GPTQ algorithm, a post-training quantization technique where each row of the weight matrix is quantized independently to find a version of the weights that minimizes the error. These weights are quantized to int4, but they're restored to fp16 on the fly during inference. This can save your memory-usage by 4x because the int4 weights are dequantized in a fused kernel rather than a GPU's global memory, and you can also expect a speedup in inference because using a lower bitwidth takes less time to communicate. Before you begin, make sure the following libraries are installed: ```bash pip install auto-gptq pip install git+https://github.com/huggingface/optimum.git pip install git+https://github.com/huggingface/transformers.git pip install --upgrade accelerate ``` To quantize a model (currently only supported for text models), you need to create a [`GPTQConfig`] class and set the number of bits to quantize to, a dataset to calibrate the weights for quantization, and a tokenizer to prepare the dataset. ```py from transformers import AutoModelForCausalLM, AutoTokenizer, GPTQConfig model_id = "facebook/opt-125m" tokenizer = AutoTokenizer.from_pretrained(model_id) gptq_config = GPTQConfig(bits=4, dataset="c4", tokenizer=tokenizer) ``` You could also pass your own dataset as a list of strings, but it is highly recommended to use the same dataset from the GPTQ paper. ```py dataset = ["auto-gptq is an easy-to-use model quantization library with user-friendly apis, based on GPTQ algorithm."] gptq_config = GPTQConfig(bits=4, dataset=dataset, tokenizer=tokenizer) ``` Load a model to quantize and pass the `gptq_config` to the [`~AutoModelForCausalLM.from_pretrained`] method. Set `device_map="auto"` to automatically offload the model to a CPU to help fit the model in memory, and allow the model modules to be moved between the CPU and GPU for quantization. ```py quantized_model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", quantization_config=gptq_config) ``` If you're running out of memory because a dataset is too large, disk offloading is not supported. If this is the case, try passing the `max_memory` parameter to allocate the amount of memory to use on your device (GPU and CPU): ```py quantized_model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", max_memory={0: "30GiB", 1: "46GiB", "cpu": "30GiB"}, quantization_config=gptq_config) ``` <Tip warning={true}> Depending on your hardware, it can take some time to quantize a model from scratch. It can take ~5 minutes to quantize the [faceboook/opt-350m]() model on a free-tier Google Colab GPU, but it'll take ~4 hours to quantize a 175B parameter model on a NVIDIA A100. Before you quantize a model, it is a good idea to check the Hub if a GPTQ-quantized version of the model already exists. </Tip> Once your model is quantized, you can push the model and tokenizer to the Hub where it can be easily shared and accessed. Use the [`~PreTrainedModel.push_to_hub`] method to save the [`GPTQConfig`]: ```py quantized_model.push_to_hub("opt-125m-gptq") tokenizer.push_to_hub("opt-125m-gptq") ``` You could also save your quantized model locally with the [`~PreTrainedModel.save_pretrained`] method. If the model was quantized with the `device_map` parameter, make sure to move the entire model to a GPU or CPU before saving it. For example, to save the model on a CPU: ```py quantized_model.save_pretrained("opt-125m-gptq") tokenizer.save_pretrained("opt-125m-gptq") # if quantized with device_map set quantized_model.to("cpu") quantized_model.save_pretrained("opt-125m-gptq") ``` Reload a quantized model with the [`~PreTrainedModel.from_pretrained`] method, and set `device_map="auto"` to automatically distribute the model on all available GPUs to load the model faster without using more memory than needed. ```py from transformers import AutoModelForCausalLM model = AutoModelForCausalLM.from_pretrained("{your_username}/opt-125m-gptq", device_map="auto") ``` ### ExLlama [ExLlama](https://github.com/turboderp/exllama) is a Python/C++/CUDA implementation of the [Llama](model_doc/llama) model that is designed for faster inference with 4-bit GPTQ weights (check out these [benchmarks](https://github.com/huggingface/optimum/tree/main/tests/benchmark#gptq-benchmark)). The ExLlama kernel is activated by default when you create a [`GPTQConfig`] object. To boost inference speed even further, use the [ExLlamaV2](https://github.com/turboderp/exllamav2) kernels by configuring the `exllama_config` parameter: ```py import torch from transformers import AutoModelForCausalLM, GPTQConfig gptq_config = GPTQConfig(bits=4, exllama_config={"version":2}) model = AutoModelForCausalLM.from_pretrained("{your_username}/opt-125m-gptq", device_map="auto", quantization_config=gptq_config) ``` <Tip warning={true}> Only 4-bit models are supported, and we recommend deactivating the ExLlama kernels if you're finetuning a quantized model with PEFT. </Tip> The ExLlama kernels are only supported when the entire model is on the GPU. If you're doing inference on a CPU with AutoGPTQ (version > 0.4.2), then you'll need to disable the ExLlama kernel. This overwrites the attributes related to the ExLlama kernels in the quantization config of the config.json file. ```py import torch from transformers import AutoModelForCausalLM, GPTQConfig gptq_config = GPTQConfig(bits=4, use_exllama=False) model = AutoModelForCausalLM.from_pretrained("{your_username}/opt-125m-gptq", device_map="cpu", quantization_config=gptq_config) ``` ## bitsandbytes [bitsandbytes](https://github.com/TimDettmers/bitsandbytes) is the easiest option for quantizing a model to 8 and 4-bit. 8-bit quantization multiplies outliers in fp16 with non-outliers in int8, converts the non-outlier values back to fp16, and then adds them together to return the weights in fp16. This reduces the degradative effect outlier values have on a model's performance. 4-bit quantization compresses a model even further, and it is commonly used with [QLoRA](https://hf.co/papers/2305.14314) to finetune quantized LLMs. To use bitsandbytes, make sure you have the following libraries installed: <hfoptions id="bnb"> <hfoption id="8-bit"> ```bash pip install transformers accelerate bitsandbytes>0.37.0 ``` </hfoption> <hfoption id="4-bit"> ```bash pip install bitsandbytes>=0.39.0 pip install --upgrade accelerate pip install --upgrade transformers ``` </hfoption> </hfoptions> Now you can quantize a model with the `load_in_8bit` or `load_in_4bit` parameters in the [`~PreTrainedModel.from_pretrained`] method. This works for any model in any modality, as long as it supports loading with Accelerate and contains `torch.nn.Linear` layers. <hfoptions id="bnb"> <hfoption id="8-bit"> Quantizing a model in 8-bit halves the memory-usage, and for large models, set `device_map="auto"` to efficiently use the GPUs available: ```py from transformers import AutoModelForCausalLM model_8bit = AutoModelForCausalLM.from_pretrained("bigscience/bloom-1b7", device_map="auto", load_in_8bit=True) ``` By default, all the other modules such as `torch.nn.LayerNorm` are converted to `torch.float16`. You can change the data type of these modules with the `torch_dtype` parameter if you want: ```py import torch from transformers import AutoModelForCausalLM model_8bit = AutoModelForCausalLM.from_pretrained("facebook/opt-350m", load_in_8bit=True, torch_dtype=torch.float32) model_8bit.model.decoder.layers[-1].final_layer_norm.weight.dtype ``` Once a model is quantized to 8-bit, you can't push the quantized weights to the Hub unless you're using the latest version of Transformers and bitsandbytes. If you have the latest versions, then you can push the 8-bit model to the Hub with the [`~PreTrainedModel.push_to_hub`] method. The quantization config.json file is pushed first, followed by the quantized model weights. ```py from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("bigscience/bloom-560m", device_map="auto", load_in_8bit=True) tokenizer = AutoTokenizer.from_pretrained("bigscience/bloom-560m") model.push_to_hub("bloom-560m-8bit") ``` </hfoption> <hfoption id="4-bit"> Quantizing a model in 4-bit reduces your memory-usage by 4x, and for large models, set `device_map="auto"` to efficiently use the GPUs available: ```py from transformers import AutoModelForCausalLM model_4bit = AutoModelForCausalLM.from_pretrained("bigscience/bloom-1b7", device_map="auto", load_in_4bit=True) ``` By default, all the other modules such as `torch.nn.LayerNorm` are converted to `torch.float16`. You can change the data type of these modules with the `torch_dtype` parameter if you want: ```py import torch from transformers import AutoModelForCausalLM model_4bit = AutoModelForCausalLM.from_pretrained("facebook/opt-350m", load_in_4bit=True, torch_dtype=torch.float32) model_4bit.model.decoder.layers[-1].final_layer_norm.weight.dtype ``` Once a model is quantized to 4-bit, you can't push the quantized weights to the Hub. </hfoption> </hfoptions> <Tip warning={true}> Training with 8-bit and 4-bit weights are only supported for training *extra* parameters. </Tip> You can check your memory footprint with the `get_memory_footprint` method: ```py print(model.get_memory_footprint()) ``` Quantized models can be loaded from the [`~PreTrainedModel.from_pretrained`] method without needing to specify the `load_in_8bit` or `load_in_4bit` parameters: ```py from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("{your_username}/bloom-560m-8bit", device_map="auto") ``` ### 8-bit <Tip> Learn more about the details of 8-bit quantization in this [blog post](https://huggingface.co/blog/hf-bitsandbytes-integration)! </Tip> This section explores some of the specific features of 8-bit models, such as offloading, outlier thresholds, skipping module conversion, and finetuning. #### Offloading 8-bit models can offload weights between the CPU and GPU to support fitting very large models into memory. The weights dispatched to the CPU are actually stored in **float32**, and aren't converted to 8-bit. For example, to enable offloading for the [bigscience/bloom-1b7](https://huggingface.co/bigscience/bloom-1b7) model, start by creating a [`BitsAndBytesConfig`]: ```py from transformers import AutoModelForCausalLM, BitsAndBytesConfig quantization_config = BitsAndBytesConfig(llm_int8_enable_fp32_cpu_offload=True) ``` Design a custom device map to fit everything on your GPU except for the `lm_head`, which you'll dispatch to the CPU: ```py device_map = { "transformer.word_embeddings": 0, "transformer.word_embeddings_layernorm": 0, "lm_head": "cpu", "transformer.h": 0, "transformer.ln_f": 0, } ``` Now load your model with the custom `device_map` and `quantization_config`: ```py model_8bit = AutoModelForCausalLM.from_pretrained( "bigscience/bloom-1b7", device_map=device_map, quantization_config=quantization_config, ) ``` #### Outlier threshold An "outlier" is a hidden state value greater than a certain threshold, and these values are computed in fp16. While the values are usually normally distributed ([-3.5, 3.5]), this distribution can be very different for large models ([-60, 6] or [6, 60]). 8-bit quantization works well for values ~5, but beyond that, there is a significant performance penalty. A good default threshold value is 6, but a lower threshold may be needed for more unstable models (small models or finetuning). To find the best threshold for your model, we recommend experimenting with the `llm_int8_threshold` parameter in [`BitsAndBytesConfig`]: ```py from transformers import AutoModelForCausalLM, BitsAndBytesConfig model_id = "bigscience/bloom-1b7" quantization_config = BitsAndBytesConfig( llm_int8_threshold=10, ) model_8bit = AutoModelForCausalLM.from_pretrained( model_id, device_map=device_map, quantization_config=quantization_config, ) ``` #### Skip module conversion For some models, like [Jukebox](model_doc/jukebox), you don't need to quantize every module to 8-bit which can actually cause instability. With Jukebox, there are several `lm_head` modules that should be skipped using the `llm_int8_skip_modules` parameter in [`BitsAndBytesConfig`]: ```py from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig model_id = "bigscience/bloom-1b7" quantization_config = BitsAndBytesConfig( llm_int8_skip_modules=["lm_head"], ) model_8bit = AutoModelForCausalLM.from_pretrained( model_id, device_map="auto", quantization_config=quantization_config, ) ``` #### Finetuning With the [PEFT](https://github.com/huggingface/peft) library, you can finetune large models like [flan-t5-large](https://huggingface.co/google/flan-t5-large) and [facebook/opt-6.7b](https://huggingface.co/facebook/opt-6.7b) with 8-bit quantization. You don't need to pass the `device_map` parameter for training because it'll automatically load your model on a GPU. However, you can still customize the device map with the `device_map` parameter if you want to (`device_map="auto"` should only be used for inference). ### 4-bit <Tip> Try 4-bit quantization in this [notebook](https://colab.research.google.com/drive/1ge2F1QSK8Q7h0hn3YKuBCOAS0bK8E0wf) and learn more about it's details in this [blog post](https://huggingface.co/blog/4bit-transformers-bitsandbytes). </Tip> This section explores some of the specific features of 4-bit models, such as changing the compute data type, using the Normal Float 4 (NF4) data type, and using nested quantization. #### Compute data type To speedup computation, you can change the data type from float32 (the default value) to bf16 using the `bnb_4bit_compute_dtype` parameter in [`BitsAndBytesConfig`]: ```py import torch from transformers import BitsAndBytesConfig quantization_config = BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_compute_dtype=torch.bfloat16) ``` #### Normal Float 4 (NF4) NF4 is a 4-bit data type from the [QLoRA](https://hf.co/papers/2305.14314) paper, adapted for weights initialized from a normal distribution. You should use NF4 for training 4-bit base models. This can be configured with the `bnb_4bit_quant_type` parameter in the [`BitsAndBytesConfig`]: ```py from transformers import BitsAndBytesConfig nf4_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type="nf4", ) model_nf4 = AutoModelForCausalLM.from_pretrained(model_id, quantization_config=nf4_config) ``` For inference, the `bnb_4bit_quant_type` does not have a huge impact on performance. However, to remain consistent with the model weights, you should use the `bnb_4bit_compute_dtype` and `torch_dtype` values. #### Nested quantization Nested quantization is a technique that can save additional memory at no additional performance cost. This feature performs a second quantization of the already quantized weights to save an addition 0.4 bits/parameter. For example, with nested quantization, you can finetune a [Llama-13b](https://huggingface.co/meta-llama/Llama-2-13b) model on a 16GB NVIDIA T4 GPU with a sequence length of 1024, a batch size of 1, and enabling gradient accumulation with 4 steps. ```py from transformers import BitsAndBytesConfig double_quant_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_use_double_quant=True, ) model_double_quant = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-13b", quantization_config=double_quant_config) ``` ## Optimum The [Optimum](https://huggingface.co/docs/optimum/index) library supports quantization for Intel, Furiosa, ONNX Runtime, GPTQ, and lower-level PyTorch quantization functions. Consider using Optimum for quantization if you're using specific and optimized hardware like Intel CPUs, Furiosa NPUs or a model accelerator like ONNX Runtime. ## Benchmarks To compare the speed, throughput, and latency of each quantization scheme, check the following benchmarks obtained from the [optimum-benchmark](https://github.com/huggingface/optimum-benchmark) library. The benchmark was run on a NVIDIA A1000 for the [TheBloke/Mistral-7B-v0.1-AWQ](https://huggingface.co/TheBloke/Mistral-7B-v0.1-AWQ) and [TheBloke/Mistral-7B-v0.1-GPTQ](https://huggingface.co/TheBloke/Mistral-7B-v0.1-GPTQ) models. These were also tested against the bitsandbytes quantization methods as well as a native fp16 model. <div class="flex gap-4"> <div> <img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/quantization/forward_memory_plot.png" alt="forward peak memory per batch size" /> <figcaption class="mt-2 text-center text-sm text-gray-500">forward peak memory/batch size</figcaption> </div> <div> <img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/quantization/generate_memory_plot.png" alt="generate peak memory per batch size" /> <figcaption class="mt-2 text-center text-sm text-gray-500">generate peak memory/batch size</figcaption> </div> </div> <div class="flex gap-4"> <div> <img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/quantization/generate_throughput_plot.png" alt="generate throughput per batch size" /> <figcaption class="mt-2 text-center text-sm text-gray-500">generate throughput/batch size</figcaption> </div> <div> <img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/quantization/forward_latency_plot.png" alt="forward latency per batch size" /> <figcaption class="mt-2 text-center text-sm text-gray-500">forward latency/batch size</figcaption> </div> </div> The benchmarks indicate AWQ quantization is the fastest for inference, text generation, and has the lowest peak memory for text generation. However, AWQ has the largest forward latency per batch size. For a more detailed discussion about the pros and cons of each quantization method, read the [Overview of natively supported quantization schemes in 🤗 Transformers](https://huggingface.co/blog/overview-quantization-transformers) blog post. ### Fused AWQ modules The [TheBloke/Mistral-7B-OpenOrca-AWQ](https://huggingface.co/TheBloke/Mistral-7B-OpenOrca-AWQ) model was benchmarked with `batch_size=1` with and without fused modules. <figcaption class="text-center text-gray-500 text-lg">Unfused module</figcaption> | Batch Size | Prefill Length | Decode Length | Prefill tokens/s | Decode tokens/s | Memory (VRAM) | |-------------:|-----------------:|----------------:|-------------------:|------------------:|:----------------| | 1 | 32 | 32 | 60.0984 | 38.4537 | 4.50 GB (5.68%) | | 1 | 64 | 64 | 1333.67 | 31.6604 | 4.50 GB (5.68%) | | 1 | 128 | 128 | 2434.06 | 31.6272 | 4.50 GB (5.68%) | | 1 | 256 | 256 | 3072.26 | 38.1731 | 4.50 GB (5.68%) | | 1 | 512 | 512 | 3184.74 | 31.6819 | 4.59 GB (5.80%) | | 1 | 1024 | 1024 | 3148.18 | 36.8031 | 4.81 GB (6.07%) | | 1 | 2048 | 2048 | 2927.33 | 35.2676 | 5.73 GB (7.23%) | <figcaption class="text-center text-gray-500 text-lg">Fused module</figcaption> | Batch Size | Prefill Length | Decode Length | Prefill tokens/s | Decode tokens/s | Memory (VRAM) | |-------------:|-----------------:|----------------:|-------------------:|------------------:|:----------------| | 1 | 32 | 32 | 81.4899 | 80.2569 | 4.00 GB (5.05%) | | 1 | 64 | 64 | 1756.1 | 106.26 | 4.00 GB (5.05%) | | 1 | 128 | 128 | 2479.32 | 105.631 | 4.00 GB (5.06%) | | 1 | 256 | 256 | 1813.6 | 85.7485 | 4.01 GB (5.06%) | | 1 | 512 | 512 | 2848.9 | 97.701 | 4.11 GB (5.19%) | | 1 | 1024 | 1024 | 3044.35 | 87.7323 | 4.41 GB (5.57%) | | 1 | 2048 | 2048 | 2715.11 | 89.4709 | 5.57 GB (7.04%) | The speed and throughput of fused and unfused modules were also tested with the [optimum-benchmark](https://github.com/huggingface/optimum-benchmark) library. <div class="flex gap-4"> <div> <img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/quantization/fused_forward_memory_plot.png" alt="generate throughput per batch size" /> <figcaption class="mt-2 text-center text-sm text-gray-500">foward peak memory/batch size</figcaption> </div> <div> <img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/quantization/fused_generate_throughput_plot.png" alt="forward latency per batch size" /> <figcaption class="mt-2 text-center text-sm text-gray-500">generate throughput/batch size</figcaption> </div> </div>
huggingface/transformers/blob/main/docs/source/en/quantization.md
!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> # VITS ## Overview The VITS model was proposed in [Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech](https://arxiv.org/abs/2106.06103) by Jaehyeon Kim, Jungil Kong, Juhee Son. VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. The abstract from the paper is the following: *Several recent end-to-end text-to-speech (TTS) models enabling single-stage training and parallel sampling have been proposed, but their sample quality does not match that of two-stage TTS systems. In this work, we present a parallel end-to-end TTS method that generates more natural sounding audio than current two-stage models. Our method adopts variational inference augmented with normalizing flows and an adversarial training process, which improves the expressive power of generative modeling. We also propose a stochastic duration predictor to synthesize speech with diverse rhythms from input text. With the uncertainty modeling over latent variables and the stochastic duration predictor, our method expresses the natural one-to-many relationship in which a text input can be spoken in multiple ways with different pitches and rhythms. A subjective human evaluation (mean opinion score, or MOS) on the LJ Speech, a single speaker dataset, shows that our method outperforms the best publicly available TTS systems and achieves a MOS comparable to ground truth.* This model can also be used with TTS checkpoints from [Massively Multilingual Speech (MMS)](https://arxiv.org/abs/2305.13516) as these checkpoints use the same architecture and a slightly modified tokenizer. This model was contributed by [Matthijs](https://huggingface.co/Matthijs) and [sanchit-gandhi](https://huggingface.co/sanchit-gandhi). The original code can be found [here](https://github.com/jaywalnut310/vits). ## Usage examples Both the VITS and MMS-TTS checkpoints can be used with the same API. Since the flow-based model is non-deterministic, it is good practice to set a seed to ensure reproducibility of the outputs. For languages with a Roman alphabet, such as English or French, the tokenizer can be used directly to pre-process the text inputs. The following code example runs a forward pass using the MMS-TTS English checkpoint: ```python import torch from transformers import VitsTokenizer, VitsModel, set_seed tokenizer = VitsTokenizer.from_pretrained("facebook/mms-tts-eng") model = VitsModel.from_pretrained("facebook/mms-tts-eng") inputs = tokenizer(text="Hello - my dog is cute", return_tensors="pt") set_seed(555) # make deterministic with torch.no_grad(): outputs = model(**inputs) waveform = outputs.waveform[0] ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=waveform) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(waveform, rate=model.config.sampling_rate) ``` For certain languages with a non-Roman alphabet, such as Arabic, Mandarin or Hindi, the [`uroman`](https://github.com/isi-nlp/uroman) perl package is required to pre-process the text inputs to the Roman alphabet. You can check whether you require the `uroman` package for your language by inspecting the `is_uroman` attribute of the pre-trained `tokenizer`: ```python from transformers import VitsTokenizer tokenizer = VitsTokenizer.from_pretrained("facebook/mms-tts-eng") print(tokenizer.is_uroman) ``` If required, you should apply the uroman package to your text inputs **prior** to passing them to the `VitsTokenizer`, since currently the tokenizer does not support performing the pre-processing itself. To do this, first clone the uroman repository to your local machine and set the bash variable `UROMAN` to the local path: ```bash git clone https://github.com/isi-nlp/uroman.git cd uroman export UROMAN=$(pwd) ``` You can then pre-process the text input using the following code snippet. You can either rely on using the bash variable `UROMAN` to point to the uroman repository, or you can pass the uroman directory as an argument to the `uromaize` function: ```python import torch from transformers import VitsTokenizer, VitsModel, set_seed import os import subprocess tokenizer = VitsTokenizer.from_pretrained("facebook/mms-tts-kor") model = VitsModel.from_pretrained("facebook/mms-tts-kor") def uromanize(input_string, uroman_path): """Convert non-Roman strings to Roman using the `uroman` perl package.""" script_path = os.path.join(uroman_path, "bin", "uroman.pl") command = ["perl", script_path] process = subprocess.Popen(command, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE) # Execute the perl command stdout, stderr = process.communicate(input=input_string.encode()) if process.returncode != 0: raise ValueError(f"Error {process.returncode}: {stderr.decode()}") # Return the output as a string and skip the new-line character at the end return stdout.decode()[:-1] text = "이봐 무슨 일이야" uromaized_text = uromanize(text, uroman_path=os.environ["UROMAN"]) inputs = tokenizer(text=uromaized_text, return_tensors="pt") set_seed(555) # make deterministic with torch.no_grad(): outputs = model(inputs["input_ids"]) waveform = outputs.waveform[0] ``` ## VitsConfig [[autodoc]] VitsConfig ## VitsTokenizer [[autodoc]] VitsTokenizer - __call__ - save_vocabulary ## VitsModel [[autodoc]] VitsModel - forward
huggingface/transformers/blob/main/docs/source/en/model_doc/vits.md
!--Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # XLM-RoBERTa <div class="flex flex-wrap space-x-1"> <a href="https://huggingface.co/models?filter=xlm-roberta"> <img alt="Models" src="https://img.shields.io/badge/All_model_pages-xlm--roberta-blueviolet"> </a> <a href="https://huggingface.co/spaces/docs-demos/xlm-roberta-base"> <img alt="Spaces" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue"> </a> </div> ## Overview The XLM-RoBERTa model was proposed in [Unsupervised Cross-lingual Representation Learning at Scale](https://arxiv.org/abs/1911.02116) by Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer and Veselin Stoyanov. It is based on Facebook's RoBERTa model released in 2019. It is a large multi-lingual language model, trained on 2.5TB of filtered CommonCrawl data. The abstract from the paper is the following: *This paper shows that pretraining multilingual language models at scale leads to significant performance gains for a wide range of cross-lingual transfer tasks. We train a Transformer-based masked language model on one hundred languages, using more than two terabytes of filtered CommonCrawl data. Our model, dubbed XLM-R, significantly outperforms multilingual BERT (mBERT) on a variety of cross-lingual benchmarks, including +13.8% average accuracy on XNLI, +12.3% average F1 score on MLQA, and +2.1% average F1 score on NER. XLM-R performs particularly well on low-resource languages, improving 11.8% in XNLI accuracy for Swahili and 9.2% for Urdu over the previous XLM model. We also present a detailed empirical evaluation of the key factors that are required to achieve these gains, including the trade-offs between (1) positive transfer and capacity dilution and (2) the performance of high and low resource languages at scale. Finally, we show, for the first time, the possibility of multilingual modeling without sacrificing per-language performance; XLM-Ris very competitive with strong monolingual models on the GLUE and XNLI benchmarks. We will make XLM-R code, data, and models publicly available.* This model was contributed by [stefan-it](https://huggingface.co/stefan-it). The original code can be found [here](https://github.com/pytorch/fairseq/tree/master/examples/xlmr). ## Usage tips - XLM-RoBERTa is a multilingual model trained on 100 different languages. Unlike some XLM multilingual models, it does not require `lang` tensors to understand which language is used, and should be able to determine the correct language from the input ids. - Uses RoBERTa tricks on the XLM approach, but does not use the translation language modeling objective. It only uses masked language modeling on sentences coming from one language. ## Resources A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with XLM-RoBERTa. If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource. <PipelineTag pipeline="text-classification"/> - A blog post on how to [finetune XLM RoBERTa for multiclass classification with Habana Gaudi on AWS](https://www.philschmid.de/habana-distributed-training) - [`XLMRobertaForSequenceClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/text-classification) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/text_classification.ipynb). - [`TFXLMRobertaForSequenceClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/text-classification) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/text_classification-tf.ipynb). - [`FlaxXLMRobertaForSequenceClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/flax/text-classification) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/text_classification_flax.ipynb). - [Text classification](https://huggingface.co/docs/transformers/tasks/sequence_classification) chapter of the 🤗 Hugging Face Task Guides. - [Text classification task guide](../tasks/sequence_classification) <PipelineTag pipeline="token-classification"/> - [`XLMRobertaForTokenClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/token-classification) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/token_classification.ipynb). - [`TFXLMRobertaForTokenClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/token-classification) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/token_classification-tf.ipynb). - [`FlaxXLMRobertaForTokenClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/flax/token-classification). - [Token classification](https://huggingface.co/course/chapter7/2?fw=pt) chapter of the 🤗 Hugging Face Course. - [Token classification task guide](../tasks/token_classification) <PipelineTag pipeline="text-generation"/> - [`XLMRobertaForCausalLM`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/language-modeling) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling.ipynb). - [Causal language modeling](https://huggingface.co/docs/transformers/tasks/language_modeling) chapter of the 🤗 Hugging Face Task Guides. - [Causal language modeling task guide](../tasks/language_modeling) <PipelineTag pipeline="fill-mask"/> - [`XLMRobertaForMaskedLM`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/language-modeling#robertabertdistilbert-and-masked-language-modeling) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling.ipynb). - [`TFXLMRobertaForMaskedLM`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/language-modeling#run_mlmpy) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling-tf.ipynb). - [`FlaxXLMRobertaForMaskedLM`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/flax/language-modeling#masked-language-modeling) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/masked_language_modeling_flax.ipynb). - [Masked language modeling](https://huggingface.co/course/chapter7/3?fw=pt) chapter of the 🤗 Hugging Face Course. - [Masked language modeling](../tasks/masked_language_modeling) <PipelineTag pipeline="question-answering"/> - [`XLMRobertaForQuestionAnswering`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/question-answering) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/question_answering.ipynb). - [`TFXLMRobertaForQuestionAnswering`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/question-answering) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/question_answering-tf.ipynb). - [`FlaxXLMRobertaForQuestionAnswering`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/flax/question-answering). - [Question answering](https://huggingface.co/course/chapter7/7?fw=pt) chapter of the 🤗 Hugging Face Course. - [Question answering task guide](../tasks/question_answering) **Multiple choice** - [`XLMRobertaForMultipleChoice`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/multiple-choice) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/multiple_choice.ipynb). - [`TFXLMRobertaForMultipleChoice`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/multiple-choice) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/multiple_choice-tf.ipynb). - [Multiple choice task guide](../tasks/multiple_choice) 🚀 Deploy - A blog post on how to [Deploy Serverless XLM RoBERTa on AWS Lambda](https://www.philschmid.de/multilingual-serverless-xlm-roberta-with-huggingface). <Tip> This implementation is the same as RoBERTa. Refer to the [documentation of RoBERTa](roberta) for usage examples as well as the information relative to the inputs and outputs. </Tip> ## XLMRobertaConfig [[autodoc]] XLMRobertaConfig ## XLMRobertaTokenizer [[autodoc]] XLMRobertaTokenizer - build_inputs_with_special_tokens - get_special_tokens_mask - create_token_type_ids_from_sequences - save_vocabulary ## XLMRobertaTokenizerFast [[autodoc]] XLMRobertaTokenizerFast <frameworkcontent> <pt> ## XLMRobertaModel [[autodoc]] XLMRobertaModel - forward ## XLMRobertaForCausalLM [[autodoc]] XLMRobertaForCausalLM - forward ## XLMRobertaForMaskedLM [[autodoc]] XLMRobertaForMaskedLM - forward ## XLMRobertaForSequenceClassification [[autodoc]] XLMRobertaForSequenceClassification - forward ## XLMRobertaForMultipleChoice [[autodoc]] XLMRobertaForMultipleChoice - forward ## XLMRobertaForTokenClassification [[autodoc]] XLMRobertaForTokenClassification - forward ## XLMRobertaForQuestionAnswering [[autodoc]] XLMRobertaForQuestionAnswering - forward </pt> <tf> ## TFXLMRobertaModel [[autodoc]] TFXLMRobertaModel - call ## TFXLMRobertaForCausalLM [[autodoc]] TFXLMRobertaForCausalLM - call ## TFXLMRobertaForMaskedLM [[autodoc]] TFXLMRobertaForMaskedLM - call ## TFXLMRobertaForSequenceClassification [[autodoc]] TFXLMRobertaForSequenceClassification - call ## TFXLMRobertaForMultipleChoice [[autodoc]] TFXLMRobertaForMultipleChoice - call ## TFXLMRobertaForTokenClassification [[autodoc]] TFXLMRobertaForTokenClassification - call ## TFXLMRobertaForQuestionAnswering [[autodoc]] TFXLMRobertaForQuestionAnswering - call </tf> <jax> ## FlaxXLMRobertaModel [[autodoc]] FlaxXLMRobertaModel - __call__ ## FlaxXLMRobertaForCausalLM [[autodoc]] FlaxXLMRobertaForCausalLM - __call__ ## FlaxXLMRobertaForMaskedLM [[autodoc]] FlaxXLMRobertaForMaskedLM - __call__ ## FlaxXLMRobertaForSequenceClassification [[autodoc]] FlaxXLMRobertaForSequenceClassification - __call__ ## FlaxXLMRobertaForMultipleChoice [[autodoc]] FlaxXLMRobertaForMultipleChoice - __call__ ## FlaxXLMRobertaForTokenClassification [[autodoc]] FlaxXLMRobertaForTokenClassification - __call__ ## FlaxXLMRobertaForQuestionAnswering [[autodoc]] FlaxXLMRobertaForQuestionAnswering - __call__ </jax> </frameworkcontent>
huggingface/transformers/blob/main/docs/source/en/model_doc/xlm-roberta.md
!--Copyright 2021 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. specific language governing permissions and limitations under the License. --> # ImageGPT ## Overview The ImageGPT model was proposed in [Generative Pretraining from Pixels](https://openai.com/blog/image-gpt) by Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, Ilya Sutskever. ImageGPT (iGPT) is a GPT-2-like model trained to predict the next pixel value, allowing for both unconditional and conditional image generation. The abstract from the paper is the following: *Inspired by progress in unsupervised representation learning for natural language, we examine whether similar models can learn useful representations for images. We train a sequence Transformer to auto-regressively predict pixels, without incorporating knowledge of the 2D input structure. Despite training on low-resolution ImageNet without labels, we find that a GPT-2 scale model learns strong image representations as measured by linear probing, fine-tuning, and low-data classification. On CIFAR-10, we achieve 96.3% accuracy with a linear probe, outperforming a supervised Wide ResNet, and 99.0% accuracy with full fine-tuning, matching the top supervised pre-trained models. We are also competitive with self-supervised benchmarks on ImageNet when substituting pixels for a VQVAE encoding, achieving 69.0% top-1 accuracy on a linear probe of our features.* <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/imagegpt_architecture.png" alt="drawing" width="600"/> <small> Summary of the approach. Taken from the [original paper](https://cdn.openai.com/papers/Generative_Pretraining_from_Pixels_V2.pdf). </small> This model was contributed by [nielsr](https://huggingface.co/nielsr), based on [this issue](https://github.com/openai/image-gpt/issues/7). The original code can be found [here](https://github.com/openai/image-gpt). ## Usage tips - ImageGPT is almost exactly the same as [GPT-2](gpt2), with the exception that a different activation function is used (namely "quick gelu"), and the layer normalization layers don't mean center the inputs. ImageGPT also doesn't have tied input- and output embeddings. - As the time- and memory requirements of the attention mechanism of Transformers scales quadratically in the sequence length, the authors pre-trained ImageGPT on smaller input resolutions, such as 32x32 and 64x64. However, feeding a sequence of 32x32x3=3072 tokens from 0..255 into a Transformer is still prohibitively large. Therefore, the authors applied k-means clustering to the (R,G,B) pixel values with k=512. This way, we only have a 32*32 = 1024-long sequence, but now of integers in the range 0..511. So we are shrinking the sequence length at the cost of a bigger embedding matrix. In other words, the vocabulary size of ImageGPT is 512, + 1 for a special "start of sentence" (SOS) token, used at the beginning of every sequence. One can use [`ImageGPTImageProcessor`] to prepare images for the model. - Despite being pre-trained entirely unsupervised (i.e. without the use of any labels), ImageGPT produces fairly performant image features useful for downstream tasks, such as image classification. The authors showed that the features in the middle of the network are the most performant, and can be used as-is to train a linear model (such as a sklearn logistic regression model for example). This is also referred to as "linear probing". Features can be easily obtained by first forwarding the image through the model, then specifying `output_hidden_states=True`, and then average-pool the hidden states at whatever layer you like. - Alternatively, one can further fine-tune the entire model on a downstream dataset, similar to BERT. For this, you can use [`ImageGPTForImageClassification`]. - ImageGPT comes in different sizes: there's ImageGPT-small, ImageGPT-medium and ImageGPT-large. The authors did also train an XL variant, which they didn't release. The differences in size are summarized in the following table: | **Model variant** | **Depths** | **Hidden sizes** | **Decoder hidden size** | **Params (M)** | **ImageNet-1k Top 1** | |---|---|---|---|---|---| | MiT-b0 | [2, 2, 2, 2] | [32, 64, 160, 256] | 256 | 3.7 | 70.5 | | MiT-b1 | [2, 2, 2, 2] | [64, 128, 320, 512] | 256 | 14.0 | 78.7 | | MiT-b2 | [3, 4, 6, 3] | [64, 128, 320, 512] | 768 | 25.4 | 81.6 | | MiT-b3 | [3, 4, 18, 3] | [64, 128, 320, 512] | 768 | 45.2 | 83.1 | | MiT-b4 | [3, 8, 27, 3] | [64, 128, 320, 512] | 768 | 62.6 | 83.6 | | MiT-b5 | [3, 6, 40, 3] | [64, 128, 320, 512] | 768 | 82.0 | 83.8 | ## Resources A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with ImageGPT. <PipelineTag pipeline="image-classification"/> - Demo notebooks for ImageGPT can be found [here](https://github.com/NielsRogge/Transformers-Tutorials/tree/master/ImageGPT). - [`ImageGPTForImageClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/image-classification) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/image_classification.ipynb). - See also: [Image classification task guide](../tasks/image_classification) If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource. ## ImageGPTConfig [[autodoc]] ImageGPTConfig ## ImageGPTFeatureExtractor [[autodoc]] ImageGPTFeatureExtractor - __call__ ## ImageGPTImageProcessor [[autodoc]] ImageGPTImageProcessor - preprocess ## ImageGPTModel [[autodoc]] ImageGPTModel - forward ## ImageGPTForCausalImageModeling [[autodoc]] ImageGPTForCausalImageModeling - forward ## ImageGPTForImageClassification [[autodoc]] ImageGPTForImageClassification - forward
huggingface/transformers/blob/main/docs/source/en/model_doc/imagegpt.md
!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> # Pop2Piano <div class="flex flex-wrap space-x-1"> <a href="https://huggingface.co/spaces/sweetcocoa/pop2piano"> <img alt="Spaces" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue"> </a> </div> ## Overview The Pop2Piano model was proposed in [Pop2Piano : Pop Audio-based Piano Cover Generation](https://arxiv.org/abs/2211.00895) by Jongho Choi and Kyogu Lee. Piano covers of pop music are widely enjoyed, but generating them from music is not a trivial task. It requires great expertise with playing piano as well as knowing different characteristics and melodies of a song. With Pop2Piano you can directly generate a cover from a song's audio waveform. It is the first model to directly generate a piano cover from pop audio without melody and chord extraction modules. Pop2Piano is an encoder-decoder Transformer model based on [T5](https://arxiv.org/pdf/1910.10683.pdf). The input audio is transformed to its waveform and passed to the encoder, which transforms it to a latent representation. The decoder uses these latent representations to generate token ids in an autoregressive way. Each token id corresponds to one of four different token types: time, velocity, note and 'special'. The token ids are then decoded to their equivalent MIDI file. The abstract from the paper is the following: *Piano covers of pop music are enjoyed by many people. However, the task of automatically generating piano covers of pop music is still understudied. This is partly due to the lack of synchronized {Pop, Piano Cover} data pairs, which made it challenging to apply the latest data-intensive deep learning-based methods. To leverage the power of the data-driven approach, we make a large amount of paired and synchronized {Pop, Piano Cover} data using an automated pipeline. In this paper, we present Pop2Piano, a Transformer network that generates piano covers given waveforms of pop music. To the best of our knowledge, this is the first model to generate a piano cover directly from pop audio without using melody and chord extraction modules. We show that Pop2Piano, trained with our dataset, is capable of producing plausible piano covers.* This model was contributed by [Susnato Dhar](https://huggingface.co/susnato). The original code can be found [here](https://github.com/sweetcocoa/pop2piano). ## Usage tips * To use Pop2Piano, you will need to install the 🤗 Transformers library, as well as the following third party modules: ``` pip install pretty-midi==0.2.9 essentia==2.1b6.dev1034 librosa scipy ``` Please note that you may need to restart your runtime after installation. * Pop2Piano is an Encoder-Decoder based model like T5. * Pop2Piano can be used to generate midi-audio files for a given audio sequence. * Choosing different composers in `Pop2PianoForConditionalGeneration.generate()` can lead to variety of different results. * Setting the sampling rate to 44.1 kHz when loading the audio file can give good performance. * Though Pop2Piano was mainly trained on Korean Pop music, it also does pretty well on other Western Pop or Hip Hop songs. ## Examples - Example using HuggingFace Dataset: ```python >>> from datasets import load_dataset >>> from transformers import Pop2PianoForConditionalGeneration, Pop2PianoProcessor >>> model = Pop2PianoForConditionalGeneration.from_pretrained("sweetcocoa/pop2piano") >>> processor = Pop2PianoProcessor.from_pretrained("sweetcocoa/pop2piano") >>> ds = load_dataset("sweetcocoa/pop2piano_ci", split="test") >>> inputs = processor( ... audio=ds["audio"][0]["array"], sampling_rate=ds["audio"][0]["sampling_rate"], return_tensors="pt" ... ) >>> model_output = model.generate(input_features=inputs["input_features"], composer="composer1") >>> tokenizer_output = processor.batch_decode( ... token_ids=model_output, feature_extractor_output=inputs ... )["pretty_midi_objects"][0] >>> tokenizer_output.write("./Outputs/midi_output.mid") ``` - Example using your own audio file: ```python >>> import librosa >>> from transformers import Pop2PianoForConditionalGeneration, Pop2PianoProcessor >>> audio, sr = librosa.load("<your_audio_file_here>", sr=44100) # feel free to change the sr to a suitable value. >>> model = Pop2PianoForConditionalGeneration.from_pretrained("sweetcocoa/pop2piano") >>> processor = Pop2PianoProcessor.from_pretrained("sweetcocoa/pop2piano") >>> inputs = processor(audio=audio, sampling_rate=sr, return_tensors="pt") >>> model_output = model.generate(input_features=inputs["input_features"], composer="composer1") >>> tokenizer_output = processor.batch_decode( ... token_ids=model_output, feature_extractor_output=inputs ... )["pretty_midi_objects"][0] >>> tokenizer_output.write("./Outputs/midi_output.mid") ``` - Example of processing multiple audio files in batch: ```python >>> import librosa >>> from transformers import Pop2PianoForConditionalGeneration, Pop2PianoProcessor >>> # feel free to change the sr to a suitable value. >>> audio1, sr1 = librosa.load("<your_first_audio_file_here>", sr=44100) >>> audio2, sr2 = librosa.load("<your_second_audio_file_here>", sr=44100) >>> model = Pop2PianoForConditionalGeneration.from_pretrained("sweetcocoa/pop2piano") >>> processor = Pop2PianoProcessor.from_pretrained("sweetcocoa/pop2piano") >>> inputs = processor(audio=[audio1, audio2], sampling_rate=[sr1, sr2], return_attention_mask=True, return_tensors="pt") >>> # Since we now generating in batch(2 audios) we must pass the attention_mask >>> model_output = model.generate( ... input_features=inputs["input_features"], ... attention_mask=inputs["attention_mask"], ... composer="composer1", ... ) >>> tokenizer_output = processor.batch_decode( ... token_ids=model_output, feature_extractor_output=inputs ... )["pretty_midi_objects"] >>> # Since we now have 2 generated MIDI files >>> tokenizer_output[0].write("./Outputs/midi_output1.mid") >>> tokenizer_output[1].write("./Outputs/midi_output2.mid") ``` - Example of processing multiple audio files in batch (Using `Pop2PianoFeatureExtractor` and `Pop2PianoTokenizer`): ```python >>> import librosa >>> from transformers import Pop2PianoForConditionalGeneration, Pop2PianoFeatureExtractor, Pop2PianoTokenizer >>> # feel free to change the sr to a suitable value. >>> audio1, sr1 = librosa.load("<your_first_audio_file_here>", sr=44100) >>> audio2, sr2 = librosa.load("<your_second_audio_file_here>", sr=44100) >>> model = Pop2PianoForConditionalGeneration.from_pretrained("sweetcocoa/pop2piano") >>> feature_extractor = Pop2PianoFeatureExtractor.from_pretrained("sweetcocoa/pop2piano") >>> tokenizer = Pop2PianoTokenizer.from_pretrained("sweetcocoa/pop2piano") >>> inputs = feature_extractor( ... audio=[audio1, audio2], ... sampling_rate=[sr1, sr2], ... return_attention_mask=True, ... return_tensors="pt", ... ) >>> # Since we now generating in batch(2 audios) we must pass the attention_mask >>> model_output = model.generate( ... input_features=inputs["input_features"], ... attention_mask=inputs["attention_mask"], ... composer="composer1", ... ) >>> tokenizer_output = tokenizer.batch_decode( ... token_ids=model_output, feature_extractor_output=inputs ... )["pretty_midi_objects"] >>> # Since we now have 2 generated MIDI files >>> tokenizer_output[0].write("./Outputs/midi_output1.mid") >>> tokenizer_output[1].write("./Outputs/midi_output2.mid") ``` ## Pop2PianoConfig [[autodoc]] Pop2PianoConfig ## Pop2PianoFeatureExtractor [[autodoc]] Pop2PianoFeatureExtractor - __call__ ## Pop2PianoForConditionalGeneration [[autodoc]] Pop2PianoForConditionalGeneration - forward - generate ## Pop2PianoTokenizer [[autodoc]] Pop2PianoTokenizer - __call__ ## Pop2PianoProcessor [[autodoc]] Pop2PianoProcessor - __call__
huggingface/transformers/blob/main/docs/source/en/model_doc/pop2piano.md
!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Deformable DETR ## Overview The Deformable DETR model was proposed in [Deformable DETR: Deformable Transformers for End-to-End Object Detection](https://arxiv.org/abs/2010.04159) by Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, Jifeng Dai. Deformable DETR mitigates the slow convergence issues and limited feature spatial resolution of the original [DETR](detr) by leveraging a new deformable attention module which only attends to a small set of key sampling points around a reference. The abstract from the paper is the following: *DETR has been recently proposed to eliminate the need for many hand-designed components in object detection while demonstrating good performance. However, it suffers from slow convergence and limited feature spatial resolution, due to the limitation of Transformer attention modules in processing image feature maps. To mitigate these issues, we proposed Deformable DETR, whose attention modules only attend to a small set of key sampling points around a reference. Deformable DETR can achieve better performance than DETR (especially on small objects) with 10 times less training epochs. Extensive experiments on the COCO benchmark demonstrate the effectiveness of our approach.* <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/deformable_detr_architecture.png" alt="drawing" width="600"/> <small> Deformable DETR architecture. Taken from the <a href="https://arxiv.org/abs/2010.04159">original paper</a>.</small> This model was contributed by [nielsr](https://huggingface.co/nielsr). The original code can be found [here](https://github.com/fundamentalvision/Deformable-DETR). ## Usage tips - Training Deformable DETR is equivalent to training the original [DETR](detr) model. See the [resources](#resources) section below for demo notebooks. ## Resources A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with Deformable DETR. <PipelineTag pipeline="object-detection"/> - Demo notebooks regarding inference + fine-tuning on a custom dataset for [`DeformableDetrForObjectDetection`] can be found [here](https://github.com/NielsRogge/Transformers-Tutorials/tree/master/Deformable-DETR). - See also: [Object detection task guide](../tasks/object_detection). If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource. ## DeformableDetrImageProcessor [[autodoc]] DeformableDetrImageProcessor - preprocess - post_process_object_detection ## DeformableDetrFeatureExtractor [[autodoc]] DeformableDetrFeatureExtractor - __call__ - post_process_object_detection ## DeformableDetrConfig [[autodoc]] DeformableDetrConfig ## DeformableDetrModel [[autodoc]] DeformableDetrModel - forward ## DeformableDetrForObjectDetection [[autodoc]] DeformableDetrForObjectDetection - forward
huggingface/transformers/blob/main/docs/source/en/model_doc/deformable_detr.md
### Fine-tuning BERT on SQuAD1.0 with relative position embeddings The following examples show how to fine-tune BERT models with different relative position embeddings. The BERT model `bert-base-uncased` was pretrained with default absolute position embeddings. We provide the following pretrained models which were pre-trained on the same training data (BooksCorpus and English Wikipedia) as in the BERT model training, but with different relative position embeddings. * `zhiheng-huang/bert-base-uncased-embedding-relative-key`, trained from scratch with relative embedding proposed by Shaw et al., [Self-Attention with Relative Position Representations](https://arxiv.org/abs/1803.02155) * `zhiheng-huang/bert-base-uncased-embedding-relative-key-query`, trained from scratch with relative embedding method 4 in Huang et al. [Improve Transformer Models with Better Relative Position Embeddings](https://arxiv.org/abs/2009.13658) * `zhiheng-huang/bert-large-uncased-whole-word-masking-embedding-relative-key-query`, fine-tuned from model `bert-large-uncased-whole-word-masking` with 3 additional epochs with relative embedding method 4 in Huang et al. [Improve Transformer Models with Better Relative Position Embeddings](https://arxiv.org/abs/2009.13658) ##### Base models fine-tuning ```bash export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 torchrun --nproc_per_node=8 ./examples/question-answering/run_squad.py \ --model_name_or_path zhiheng-huang/bert-base-uncased-embedding-relative-key-query \ --dataset_name squad \ --do_train \ --do_eval \ --learning_rate 3e-5 \ --num_train_epochs 2 \ --max_seq_length 512 \ --doc_stride 128 \ --output_dir relative_squad \ --per_device_eval_batch_size=60 \ --per_device_train_batch_size=6 ``` Training with the above command leads to the following results. It boosts the BERT default from f1 score of 88.52 to 90.54. ```bash 'exact': 83.6802270577105, 'f1': 90.54772098174814 ``` The change of `max_seq_length` from 512 to 384 in the above command leads to the f1 score of 90.34. Replacing the above model `zhiheng-huang/bert-base-uncased-embedding-relative-key-query` with `zhiheng-huang/bert-base-uncased-embedding-relative-key` leads to the f1 score of 89.51. The changing of 8 gpus to one gpu training leads to the f1 score of 90.71. ##### Large models fine-tuning ```bash export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 torchrun --nproc_per_node=8 ./examples/question-answering/run_squad.py \ --model_name_or_path zhiheng-huang/bert-large-uncased-whole-word-masking-embedding-relative-key-query \ --dataset_name squad \ --do_train \ --do_eval \ --learning_rate 3e-5 \ --num_train_epochs 2 \ --max_seq_length 512 \ --doc_stride 128 \ --output_dir relative_squad \ --per_gpu_eval_batch_size=6 \ --per_gpu_train_batch_size=2 \ --gradient_accumulation_steps 3 ``` Training with the above command leads to the f1 score of 93.52, which is slightly better than the f1 score of 93.15 for `bert-large-uncased-whole-word-masking`. #### Distributed training Here is an example using distributed training on 8 V100 GPUs and Bert Whole Word Masking uncased model to reach a F1 > 93 on SQuAD1.1: ```bash torchrun --nproc_per_node=8 ./examples/question-answering/run_squad.py \ --model_name_or_path bert-large-uncased-whole-word-masking \ --dataset_name squad \ --do_train \ --do_eval \ --learning_rate 3e-5 \ --num_train_epochs 2 \ --max_seq_length 384 \ --doc_stride 128 \ --output_dir ./examples/models/wwm_uncased_finetuned_squad/ \ --per_device_eval_batch_size=3 \ --per_device_train_batch_size=3 \ ``` Training with the previously defined hyper-parameters yields the following results: ```bash f1 = 93.15 exact_match = 86.91 ``` This fine-tuned model is available as a checkpoint under the reference [`bert-large-uncased-whole-word-masking-finetuned-squad`](https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad). ## Results Larger batch size may improve the performance while costing more memory. ##### Results for SQuAD1.0 with the previously defined hyper-parameters: ```python { "exact": 85.45884578997162, "f1": 92.5974600601065, "total": 10570, "HasAns_exact": 85.45884578997162, "HasAns_f1": 92.59746006010651, "HasAns_total": 10570 } ``` ##### Results for SQuAD2.0 with the previously defined hyper-parameters: ```python { "exact": 80.4177545691906, "f1": 84.07154997729623, "total": 11873, "HasAns_exact": 76.73751686909581, "HasAns_f1": 84.05558584352873, "HasAns_total": 5928, "NoAns_exact": 84.0874684608915, "NoAns_f1": 84.0874684608915, "NoAns_total": 5945 } ```
huggingface/transformers/blob/main/examples/legacy/question-answering/README.md
!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # DETA ## Overview The DETA model was proposed in [NMS Strikes Back](https://arxiv.org/abs/2212.06137) by Jeffrey Ouyang-Zhang, Jang Hyun Cho, Xingyi Zhou, Philipp Krähenbühl. DETA (short for Detection Transformers with Assignment) improves [Deformable DETR](deformable_detr) by replacing the one-to-one bipartite Hungarian matching loss with one-to-many label assignments used in traditional detectors with non-maximum suppression (NMS). This leads to significant gains of up to 2.5 mAP. The abstract from the paper is the following: *Detection Transformer (DETR) directly transforms queries to unique objects by using one-to-one bipartite matching during training and enables end-to-end object detection. Recently, these models have surpassed traditional detectors on COCO with undeniable elegance. However, they differ from traditional detectors in multiple designs, including model architecture and training schedules, and thus the effectiveness of one-to-one matching is not fully understood. In this work, we conduct a strict comparison between the one-to-one Hungarian matching in DETRs and the one-to-many label assignments in traditional detectors with non-maximum supervision (NMS). Surprisingly, we observe one-to-many assignments with NMS consistently outperform standard one-to-one matching under the same setting, with a significant gain of up to 2.5 mAP. Our detector that trains Deformable-DETR with traditional IoU-based label assignment achieved 50.2 COCO mAP within 12 epochs (1x schedule) with ResNet50 backbone, outperforming all existing traditional or transformer-based detectors in this setting. On multiple datasets, schedules, and architectures, we consistently show bipartite matching is unnecessary for performant detection transformers. Furthermore, we attribute the success of detection transformers to their expressive transformer architecture.* <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/deta_architecture.jpg" alt="drawing" width="600"/> <small> DETA overview. Taken from the <a href="https://arxiv.org/abs/2212.06137">original paper</a>. </small> This model was contributed by [nielsr](https://huggingface.co/nielsr). The original code can be found [here](https://github.com/jozhang97/DETA). ## Resources A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with DETA. - Demo notebooks for DETA can be found [here](https://github.com/NielsRogge/Transformers-Tutorials/tree/master/DETA). - See also: [Object detection task guide](../tasks/object_detection) If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource. ## DetaConfig [[autodoc]] DetaConfig ## DetaImageProcessor [[autodoc]] DetaImageProcessor - preprocess - post_process_object_detection ## DetaModel [[autodoc]] DetaModel - forward ## DetaForObjectDetection [[autodoc]] DetaForObjectDetection - forward
huggingface/transformers/blob/main/docs/source/en/model_doc/deta.md
!--Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Reformer <div class="flex flex-wrap space-x-1"> <a href="https://huggingface.co/models?filter=reformer"> <img alt="Models" src="https://img.shields.io/badge/All_model_pages-reformer-blueviolet"> </a> <a href="https://huggingface.co/spaces/docs-demos/reformer-crime-and-punishment"> <img alt="Spaces" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue"> </a> </div> ## Overview The Reformer model was proposed in the paper [Reformer: The Efficient Transformer](https://arxiv.org/abs/2001.04451.pdf) by Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya. The abstract from the paper is the following: *Large Transformer models routinely achieve state-of-the-art results on a number of tasks but training these models can be prohibitively costly, especially on long sequences. We introduce two techniques to improve the efficiency of Transformers. For one, we replace dot-product attention by one that uses locality-sensitive hashing, changing its complexity from O(L^2) to O(Llog(L)), where L is the length of the sequence. Furthermore, we use reversible residual layers instead of the standard residuals, which allows storing activations only once in the training process instead of N times, where N is the number of layers. The resulting model, the Reformer, performs on par with Transformer models while being much more memory-efficient and much faster on long sequences.* This model was contributed by [patrickvonplaten](https://huggingface.co/patrickvonplaten). The Authors' code can be found [here](https://github.com/google/trax/tree/master/trax/models/reformer). ## Usage tips - Reformer does **not** work with *torch.nn.DataParallel* due to a bug in PyTorch, see [issue #36035](https://github.com/pytorch/pytorch/issues/36035). - Use Axial position encoding (see below for more details). It’s a mechanism to avoid having a huge positional encoding matrix (when the sequence length is very big) by factorizing it into smaller matrices. - Replace traditional attention by LSH (local-sensitive hashing) attention (see below for more details). It’s a technique to avoid computing the full product query-key in the attention layers. - Avoid storing the intermediate results of each layer by using reversible transformer layers to obtain them during the backward pass (subtracting the residuals from the input of the next layer gives them back) or recomputing them for results inside a given layer (less efficient than storing them but saves memory). - Compute the feedforward operations by chunks and not on the whole batch. ### Axial Positional Encodings Axial Positional Encodings were first implemented in Google's [trax library](https://github.com/google/trax/blob/4d99ad4965bab1deba227539758d59f0df0fef48/trax/layers/research/position_encodings.py#L29) and developed by the authors of this model's paper. In models that are treating very long input sequences, the conventional position id encodings store an embedings vector of size \\(d\\) being the `config.hidden_size` for every position \\(i, \ldots, n_s\\), with \\(n_s\\) being `config.max_embedding_size`. This means that having a sequence length of \\(n_s = 2^{19} \approx 0.5M\\) and a `config.hidden_size` of \\(d = 2^{10} \approx 1000\\) would result in a position encoding matrix: $$X_{i,j}, \text{ with } i \in \left[1,\ldots, d\right] \text{ and } j \in \left[1,\ldots, n_s\right]$$ which alone has over 500M parameters to store. Axial positional encodings factorize \\(X_{i,j}\\) into two matrices: $$X^{1}_{i,j}, \text{ with } i \in \left[1,\ldots, d^1\right] \text{ and } j \in \left[1,\ldots, n_s^1\right]$$ and $$X^{2}_{i,j}, \text{ with } i \in \left[1,\ldots, d^2\right] \text{ and } j \in \left[1,\ldots, n_s^2\right]$$ with: $$d = d^1 + d^2 \text{ and } n_s = n_s^1 \times n_s^2 .$$ Therefore the following holds: $$X_{i,j} = \begin{cases} X^{1}_{i, k}, & \text{if }\ i < d^1 \text{ with } k = j \mod n_s^1 \\ X^{2}_{i - d^1, l}, & \text{if } i \ge d^1 \text{ with } l = \lfloor\frac{j}{n_s^1}\rfloor \end{cases}$$ Intuitively, this means that a position embedding vector \\(x_j \in \mathbb{R}^{d}\\) is now the composition of two factorized embedding vectors: \\(x^1_{k, l} + x^2_{l, k}\\), where as the `config.max_embedding_size` dimension \\(j\\) is factorized into \\(k \text{ and } l\\). This design ensures that each position embedding vector \\(x_j\\) is unique. Using the above example again, axial position encoding with \\(d^1 = 2^9, d^2 = 2^9, n_s^1 = 2^9, n_s^2 = 2^{10}\\) can drastically reduced the number of parameters from 500 000 000 to \\(2^{18} + 2^{19} \approx 780 000\\) parameters, this means 85% less memory usage. In practice, the parameter `config.axial_pos_embds_dim` is set to a tuple \\((d^1, d^2)\\) which sum has to be equal to `config.hidden_size` and `config.axial_pos_shape` is set to a tuple \\((n_s^1, n_s^2)\\) which product has to be equal to `config.max_embedding_size`, which during training has to be equal to the *sequence length* of the `input_ids`. ### LSH Self Attention In Locality sensitive hashing (LSH) self attention the key and query projection weights are tied. Therefore, the key query embedding vectors are also tied. LSH self attention uses the locality sensitive hashing mechanism proposed in [Practical and Optimal LSH for Angular Distance](https://arxiv.org/abs/1509.02897) to assign each of the tied key query embedding vectors to one of `config.num_buckets` possible buckets. The premise is that the more "similar" key query embedding vectors (in terms of *cosine similarity*) are to each other, the more likely they are assigned to the same bucket. The accuracy of the LSH mechanism can be improved by increasing `config.num_hashes` or directly the argument `num_hashes` of the forward function so that the output of the LSH self attention better approximates the output of the "normal" full self attention. The buckets are then sorted and chunked into query key embedding vector chunks each of length `config.lsh_chunk_length`. For each chunk, the query embedding vectors attend to its key vectors (which are tied to themselves) and to the key embedding vectors of `config.lsh_num_chunks_before` previous neighboring chunks and `config.lsh_num_chunks_after` following neighboring chunks. For more information, see the [original Paper](https://arxiv.org/abs/2001.04451) or this great [blog post](https://www.pragmatic.ml/reformer-deep-dive/). Note that `config.num_buckets` can also be factorized into a list \\((n_{\text{buckets}}^1, n_{\text{buckets}}^2)\\). This way instead of assigning the query key embedding vectors to one of \\((1,\ldots, n_{\text{buckets}})\\) they are assigned to one of \\((1-1,\ldots, n_{\text{buckets}}^1-1, \ldots, 1-n_{\text{buckets}}^2, \ldots, n_{\text{buckets}}^1-n_{\text{buckets}}^2)\\). This is crucial for very long sequences to save memory. When training a model from scratch, it is recommended to leave `config.num_buckets=None`, so that depending on the sequence length a good value for `num_buckets` is calculated on the fly. This value will then automatically be saved in the config and should be reused for inference. Using LSH self attention, the memory and time complexity of the query-key matmul operation can be reduced from \\(\mathcal{O}(n_s \times n_s)\\) to \\(\mathcal{O}(n_s \times \log(n_s))\\), which usually represents the memory and time bottleneck in a transformer model, with \\(n_s\\) being the sequence length. ### Local Self Attention Local self attention is essentially a "normal" self attention layer with key, query and value projections, but is chunked so that in each chunk of length `config.local_chunk_length` the query embedding vectors only attends to the key embedding vectors in its chunk and to the key embedding vectors of `config.local_num_chunks_before` previous neighboring chunks and `config.local_num_chunks_after` following neighboring chunks. Using Local self attention, the memory and time complexity of the query-key matmul operation can be reduced from \\(\mathcal{O}(n_s \times n_s)\\) to \\(\mathcal{O}(n_s \times \log(n_s))\\), which usually represents the memory and time bottleneck in a transformer model, with \\(n_s\\) being the sequence length. ### Training During training, we must ensure that the sequence length is set to a value that can be divided by the least common multiple of `config.lsh_chunk_length` and `config.local_chunk_length` and that the parameters of the Axial Positional Encodings are correctly set as described above. Reformer is very memory efficient so that the model can easily be trained on sequences as long as 64000 tokens. For training, the [`ReformerModelWithLMHead`] should be used as follows: ```python input_ids = tokenizer.encode("This is a sentence from the training data", return_tensors="pt") loss = model(input_ids, labels=input_ids)[0] ``` ## Resources - [Text classification task guide](../tasks/sequence_classification) - [Question answering task guide](../tasks/question_answering) - [Causal language modeling task guide](../tasks/language_modeling) - [Masked language modeling task guide](../tasks/masked_language_modeling) ## ReformerConfig [[autodoc]] ReformerConfig ## ReformerTokenizer [[autodoc]] ReformerTokenizer - save_vocabulary ## ReformerTokenizerFast [[autodoc]] ReformerTokenizerFast ## ReformerModel [[autodoc]] ReformerModel - forward ## ReformerModelWithLMHead [[autodoc]] ReformerModelWithLMHead - forward ## ReformerForMaskedLM [[autodoc]] ReformerForMaskedLM - forward ## ReformerForSequenceClassification [[autodoc]] ReformerForSequenceClassification - forward ## ReformerForQuestionAnswering [[autodoc]] ReformerForQuestionAnswering - forward
huggingface/transformers/blob/main/docs/source/en/model_doc/reformer.md
!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> # {{cookiecutter.modelname}} ## Overview The {{cookiecutter.modelname}} model was proposed in [<INSERT PAPER NAME HERE>](<INSERT PAPER LINK HERE>) by <INSERT AUTHORS HERE>. <INSERT SHORT SUMMARY HERE> The abstract from the paper is the following: *<INSERT PAPER ABSTRACT HERE>* Tips: <INSERT TIPS ABOUT MODEL HERE> This model was contributed by [INSERT YOUR HF USERNAME HERE](<https://huggingface.co/<INSERT YOUR HF USERNAME HERE>). The original code can be found [here](<INSERT LINK TO GITHUB REPO HERE>). ## {{cookiecutter.camelcase_modelname}}Config [[autodoc]] {{cookiecutter.camelcase_modelname}}Config ## {{cookiecutter.camelcase_modelname}}Tokenizer [[autodoc]] {{cookiecutter.camelcase_modelname}}Tokenizer - build_inputs_with_special_tokens - get_special_tokens_mask - create_token_type_ids_from_sequences - save_vocabulary ## {{cookiecutter.camelcase_modelname}}TokenizerFast [[autodoc]] {{cookiecutter.camelcase_modelname}}TokenizerFast {% if "PyTorch" in cookiecutter.generate_tensorflow_pytorch_and_flax -%} ## {{cookiecutter.camelcase_modelname}}Model [[autodoc]] {{cookiecutter.camelcase_modelname}}Model - forward {% if cookiecutter.is_encoder_decoder_model == "False" %} ## {{cookiecutter.camelcase_modelname}}ForCausalLM [[autodoc]] {{cookiecutter.camelcase_modelname}}ForCausalLM - forward ## {{cookiecutter.camelcase_modelname}}ForMaskedLM [[autodoc]] {{cookiecutter.camelcase_modelname}}ForMaskedLM - forward ## {{cookiecutter.camelcase_modelname}}ForSequenceClassification [[autodoc]] transformers.{{cookiecutter.camelcase_modelname}}ForSequenceClassification - forward ## {{cookiecutter.camelcase_modelname}}ForMultipleChoice [[autodoc]] transformers.{{cookiecutter.camelcase_modelname}}ForMultipleChoice - forward ## {{cookiecutter.camelcase_modelname}}ForTokenClassification [[autodoc]] transformers.{{cookiecutter.camelcase_modelname}}ForTokenClassification - forward ## {{cookiecutter.camelcase_modelname}}ForQuestionAnswering [[autodoc]] {{cookiecutter.camelcase_modelname}}ForQuestionAnswering - forward {%- else %} ## {{cookiecutter.camelcase_modelname}}ForConditionalGeneration [[autodoc]] {{cookiecutter.camelcase_modelname}}ForConditionalGeneration - forward ## {{cookiecutter.camelcase_modelname}}ForSequenceClassification [[autodoc]] {{cookiecutter.camelcase_modelname}}ForSequenceClassification - forward ## {{cookiecutter.camelcase_modelname}}ForQuestionAnswering [[autodoc]] {{cookiecutter.camelcase_modelname}}ForQuestionAnswering - forward ## {{cookiecutter.camelcase_modelname}}ForCausalLM [[autodoc]] {{cookiecutter.camelcase_modelname}}ForCausalLM - forward {% endif -%} {% endif -%} {% if "TensorFlow" in cookiecutter.generate_tensorflow_pytorch_and_flax -%} ## TF{{cookiecutter.camelcase_modelname}}Model [[autodoc]] TF{{cookiecutter.camelcase_modelname}}Model - call {% if cookiecutter.is_encoder_decoder_model == "False" %} ## TF{{cookiecutter.camelcase_modelname}}ForMaskedLM [[autodoc]] TF{{cookiecutter.camelcase_modelname}}ForMaskedLM - call ## TF{{cookiecutter.camelcase_modelname}}ForCausalLM [[autodoc]] TF{{cookiecutter.camelcase_modelname}}ForCausalLM - call ## TF{{cookiecutter.camelcase_modelname}}ForSequenceClassification [[autodoc]] TF{{cookiecutter.camelcase_modelname}}ForSequenceClassification - call ## TF{{cookiecutter.camelcase_modelname}}ForMultipleChoice [[autodoc]] TF{{cookiecutter.camelcase_modelname}}ForMultipleChoice - call ## TF{{cookiecutter.camelcase_modelname}}ForTokenClassification [[autodoc]] TF{{cookiecutter.camelcase_modelname}}ForTokenClassification - call ## TF{{cookiecutter.camelcase_modelname}}ForQuestionAnswering [[autodoc]] TF{{cookiecutter.camelcase_modelname}}ForQuestionAnswering - call {%- else %} ## TF{{cookiecutter.camelcase_modelname}}ForConditionalGeneration [[autodoc]] TF{{cookiecutter.camelcase_modelname}}ForConditionalGeneration - call {% endif -%} {% endif -%} {% if "Flax" in cookiecutter.generate_tensorflow_pytorch_and_flax -%} ## Flax{{cookiecutter.camelcase_modelname}}Model [[autodoc]] Flax{{cookiecutter.camelcase_modelname}}Model - call {% if cookiecutter.is_encoder_decoder_model == "False" %} ## Flax{{cookiecutter.camelcase_modelname}}ForMaskedLM [[autodoc]] Flax{{cookiecutter.camelcase_modelname}}ForMaskedLM - call ## Flax{{cookiecutter.camelcase_modelname}}ForCausalLM [[autodoc]] Flax{{cookiecutter.camelcase_modelname}}ForCausalLM - call ## Flax{{cookiecutter.camelcase_modelname}}ForSequenceClassification [[autodoc]] Flax{{cookiecutter.camelcase_modelname}}ForSequenceClassification - call ## Flax{{cookiecutter.camelcase_modelname}}ForMultipleChoice [[autodoc]] Flax{{cookiecutter.camelcase_modelname}}ForMultipleChoice - call ## Flax{{cookiecutter.camelcase_modelname}}ForTokenClassification [[autodoc]] Flax{{cookiecutter.camelcase_modelname}}ForTokenClassification - call ## Flax{{cookiecutter.camelcase_modelname}}ForQuestionAnswering [[autodoc]] Flax{{cookiecutter.camelcase_modelname}}ForQuestionAnswering - call {%- else %} ## Flax{{cookiecutter.camelcase_modelname}}ForSequenceClassification [[autodoc]] Flax{{cookiecutter.camelcase_modelname}}ForSequenceClassification - call ## Flax{{cookiecutter.camelcase_modelname}}ForQuestionAnswering [[autodoc]] Flax{{cookiecutter.camelcase_modelname}}ForQuestionAnswering - call ## Flax{{cookiecutter.camelcase_modelname}}ForConditionalGeneration [[autodoc]] Flax{{cookiecutter.camelcase_modelname}}ForConditionalGeneration - call {% endif -%} {% endif -%}
huggingface/transformers/blob/main/templates/adding_a_new_model/cookiecutter-template-{{cookiecutter.modelname}}/{{cookiecutter.lowercase_modelname}}.md
!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # BioGPT ## Overview The BioGPT model was proposed in [BioGPT: generative pre-trained transformer for biomedical text generation and mining](https://academic.oup.com/bib/advance-article/doi/10.1093/bib/bbac409/6713511?guestAccessKey=a66d9b5d-4f83-4017-bb52-405815c907b9) by Renqian Luo, Liai Sun, Yingce Xia, Tao Qin, Sheng Zhang, Hoifung Poon and Tie-Yan Liu. BioGPT is a domain-specific generative pre-trained Transformer language model for biomedical text generation and mining. BioGPT follows the Transformer language model backbone, and is pre-trained on 15M PubMed abstracts from scratch. The abstract from the paper is the following: *Pre-trained language models have attracted increasing attention in the biomedical domain, inspired by their great success in the general natural language domain. Among the two main branches of pre-trained language models in the general language domain, i.e. BERT (and its variants) and GPT (and its variants), the first one has been extensively studied in the biomedical domain, such as BioBERT and PubMedBERT. While they have achieved great success on a variety of discriminative downstream biomedical tasks, the lack of generation ability constrains their application scope. In this paper, we propose BioGPT, a domain-specific generative Transformer language model pre-trained on large-scale biomedical literature. We evaluate BioGPT on six biomedical natural language processing tasks and demonstrate that our model outperforms previous models on most tasks. Especially, we get 44.98%, 38.42% and 40.76% F1 score on BC5CDR, KD-DTI and DDI end-to-end relation extraction tasks, respectively, and 78.2% accuracy on PubMedQA, creating a new record. Our case study on text generation further demonstrates the advantage of BioGPT on biomedical literature to generate fluent descriptions for biomedical terms.* This model was contributed by [kamalkraj](https://huggingface.co/kamalkraj). The original code can be found [here](https://github.com/microsoft/BioGPT). ## Usage tips - BioGPT is a model with absolute position embeddings so it's usually advised to pad the inputs on the right rather than the left. - BioGPT was trained with a causal language modeling (CLM) objective and is therefore powerful at predicting the next token in a sequence. Leveraging this feature allows BioGPT to generate syntactically coherent text as it can be observed in the run_generation.py example script. - The model can take the `past_key_values` (for PyTorch) as input, which is the previously computed key/value attention pairs. Using this (past_key_values or past) value prevents the model from re-computing pre-computed values in the context of text generation. For PyTorch, see past_key_values argument of the BioGptForCausalLM.forward() method for more information on its usage. ## Resources - [Causal language modeling task guide](../tasks/language_modeling) ## BioGptConfig [[autodoc]] BioGptConfig ## BioGptTokenizer [[autodoc]] BioGptTokenizer - save_vocabulary ## BioGptModel [[autodoc]] BioGptModel - forward ## BioGptForCausalLM [[autodoc]] BioGptForCausalLM - forward ## BioGptForTokenClassification [[autodoc]] BioGptForTokenClassification - forward ## BioGptForSequenceClassification [[autodoc]] BioGptForSequenceClassification - forward
huggingface/transformers/blob/main/docs/source/en/model_doc/biogpt.md
!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> # ViTMatte ## Overview The ViTMatte model was proposed in [Boosting Image Matting with Pretrained Plain Vision Transformers](https://arxiv.org/abs/2305.15272) by Jingfeng Yao, Xinggang Wang, Shusheng Yang, Baoyuan Wang. ViTMatte leverages plain [Vision Transformers](vit) for the task of image matting, which is the process of accurately estimating the foreground object in images and videos. The abstract from the paper is the following: *Recently, plain vision Transformers (ViTs) have shown impressive performance on various computer vision tasks, thanks to their strong modeling capacity and large-scale pretraining. However, they have not yet conquered the problem of image matting. We hypothesize that image matting could also be boosted by ViTs and present a new efficient and robust ViT-based matting system, named ViTMatte. Our method utilizes (i) a hybrid attention mechanism combined with a convolution neck to help ViTs achieve an excellent performance-computation trade-off in matting tasks. (ii) Additionally, we introduce the detail capture module, which just consists of simple lightweight convolutions to complement the detailed information required by matting. To the best of our knowledge, ViTMatte is the first work to unleash the potential of ViT on image matting with concise adaptation. It inherits many superior properties from ViT to matting, including various pretraining strategies, concise architecture design, and flexible inference strategies. We evaluate ViTMatte on Composition-1k and Distinctions-646, the most commonly used benchmark for image matting, our method achieves state-of-the-art performance and outperforms prior matting works by a large margin.* This model was contributed by [nielsr](https://huggingface.co/nielsr). The original code can be found [here](https://github.com/hustvl/ViTMatte). <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/vitmatte_architecture.png" alt="drawing" width="600"/> <small> ViTMatte high-level overview. Taken from the <a href="https://arxiv.org/abs/2305.15272">original paper.</a> </small> ## Resources A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with ViTMatte. - A demo notebook regarding inference with [`VitMatteForImageMatting`], including background replacement, can be found [here](https://github.com/NielsRogge/Transformers-Tutorials/tree/master/ViTMatte). <Tip> The model expects both the image and trimap (concatenated) as input. Use [`ViTMatteImageProcessor`] for this purpose. </Tip> ## VitMatteConfig [[autodoc]] VitMatteConfig ## VitMatteImageProcessor [[autodoc]] VitMatteImageProcessor - preprocess ## VitMatteForImageMatting [[autodoc]] VitMatteForImageMatting - forward
huggingface/transformers/blob/main/docs/source/en/model_doc/vitmatte.md
!--Copyright 2021 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Speech Encoder Decoder Models The [`SpeechEncoderDecoderModel`] can be used to initialize a speech-to-text model with any pretrained speech autoencoding model as the encoder (*e.g.* [Wav2Vec2](wav2vec2), [Hubert](hubert)) and any pretrained autoregressive model as the decoder. The effectiveness of initializing speech-sequence-to-text-sequence models with pretrained checkpoints for speech recognition and speech translation has *e.g.* been shown in [Large-Scale Self- and Semi-Supervised Learning for Speech Translation](https://arxiv.org/abs/2104.06678) by Changhan Wang, Anne Wu, Juan Pino, Alexei Baevski, Michael Auli, Alexis Conneau. An example of how to use a [`SpeechEncoderDecoderModel`] for inference can be seen in [Speech2Text2](speech_to_text_2). ## Randomly initializing `SpeechEncoderDecoderModel` from model configurations. [`SpeechEncoderDecoderModel`] can be randomly initialized from an encoder and a decoder config. In the following example, we show how to do this using the default [`Wav2Vec2Model`] configuration for the encoder and the default [`BertForCausalLM`] configuration for the decoder. ```python >>> from transformers import BertConfig, Wav2Vec2Config, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel >>> config_encoder = Wav2Vec2Config() >>> config_decoder = BertConfig() >>> config = SpeechEncoderDecoderConfig.from_encoder_decoder_configs(config_encoder, config_decoder) >>> model = SpeechEncoderDecoderModel(config=config) ``` ## Initialising `SpeechEncoderDecoderModel` from a pretrained encoder and a pretrained decoder. [`SpeechEncoderDecoderModel`] can be initialized from a pretrained encoder checkpoint and a pretrained decoder checkpoint. Note that any pretrained Transformer-based speech model, *e.g.* [Wav2Vec2](wav2vec2), [Hubert](hubert) can serve as the encoder and both pretrained auto-encoding models, *e.g.* BERT, pretrained causal language models, *e.g.* GPT2, as well as the pretrained decoder part of sequence-to-sequence models, *e.g.* decoder of BART, can be used as the decoder. Depending on which architecture you choose as the decoder, the cross-attention layers might be randomly initialized. Initializing [`SpeechEncoderDecoderModel`] from a pretrained encoder and decoder checkpoint requires the model to be fine-tuned on a downstream task, as has been shown in [the *Warm-starting-encoder-decoder blog post*](https://huggingface.co/blog/warm-starting-encoder-decoder). To do so, the `SpeechEncoderDecoderModel` class provides a [`SpeechEncoderDecoderModel.from_encoder_decoder_pretrained`] method. ```python >>> from transformers import SpeechEncoderDecoderModel >>> model = SpeechEncoderDecoderModel.from_encoder_decoder_pretrained( ... "facebook/hubert-large-ll60k", "bert-base-uncased" ... ) ``` ## Loading an existing `SpeechEncoderDecoderModel` checkpoint and perform inference. To load fine-tuned checkpoints of the `SpeechEncoderDecoderModel` class, [`SpeechEncoderDecoderModel`] provides the `from_pretrained(...)` method just like any other model architecture in Transformers. To perform inference, one uses the [`generate`] method, which allows to autoregressively generate text. This method supports various forms of decoding, such as greedy, beam search and multinomial sampling. ```python >>> from transformers import Wav2Vec2Processor, SpeechEncoderDecoderModel >>> from datasets import load_dataset >>> import torch >>> # load a fine-tuned speech translation model and corresponding processor >>> model = SpeechEncoderDecoderModel.from_pretrained("facebook/wav2vec2-xls-r-300m-en-to-15") >>> processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-xls-r-300m-en-to-15") >>> # let's perform inference on a piece of English speech (which we'll translate to German) >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") >>> input_values = processor(ds[0]["audio"]["array"], return_tensors="pt").input_values >>> # autoregressively generate transcription (uses greedy decoding by default) >>> generated_ids = model.generate(input_values) >>> generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] >>> print(generated_text) Mr. Quilter ist der Apostel der Mittelschicht und wir freuen uns, sein Evangelium willkommen heißen zu können. ``` ## Training Once the model is created, it can be fine-tuned similar to BART, T5 or any other encoder-decoder model on a dataset of (speech, text) pairs. As you can see, only 2 inputs are required for the model in order to compute a loss: `input_values` (which are the speech inputs) and `labels` (which are the `input_ids` of the encoded target sequence). ```python >>> from transformers import AutoTokenizer, AutoFeatureExtractor, SpeechEncoderDecoderModel >>> from datasets import load_dataset >>> encoder_id = "facebook/wav2vec2-base-960h" # acoustic model encoder >>> decoder_id = "bert-base-uncased" # text decoder >>> feature_extractor = AutoFeatureExtractor.from_pretrained(encoder_id) >>> tokenizer = AutoTokenizer.from_pretrained(decoder_id) >>> # Combine pre-trained encoder and pre-trained decoder to form a Seq2Seq model >>> model = SpeechEncoderDecoderModel.from_encoder_decoder_pretrained(encoder_id, decoder_id) >>> model.config.decoder_start_token_id = tokenizer.cls_token_id >>> model.config.pad_token_id = tokenizer.pad_token_id >>> # load an audio input and pre-process (normalise mean/std to 0/1) >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") >>> input_values = feature_extractor(ds[0]["audio"]["array"], return_tensors="pt").input_values >>> # load its corresponding transcription and tokenize to generate labels >>> labels = tokenizer(ds[0]["text"], return_tensors="pt").input_ids >>> # the forward function automatically creates the correct decoder_input_ids >>> loss = model(input_values=input_values, labels=labels).loss >>> loss.backward() ``` ## SpeechEncoderDecoderConfig [[autodoc]] SpeechEncoderDecoderConfig ## SpeechEncoderDecoderModel [[autodoc]] SpeechEncoderDecoderModel - forward - from_encoder_decoder_pretrained ## FlaxSpeechEncoderDecoderModel [[autodoc]] FlaxSpeechEncoderDecoderModel - __call__ - from_encoder_decoder_pretrained
huggingface/transformers/blob/main/docs/source/en/model_doc/speech-encoder-decoder.md
!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Distributed training with 🤗 Accelerate As models get bigger, parallelism has emerged as a strategy for training larger models on limited hardware and accelerating training speed by several orders of magnitude. At Hugging Face, we created the [🤗 Accelerate](https://huggingface.co/docs/accelerate) library to help users easily train a 🤗 Transformers model on any type of distributed setup, whether it is multiple GPU's on one machine or multiple GPU's across several machines. In this tutorial, learn how to customize your native PyTorch training loop to enable training in a distributed environment. ## Setup Get started by installing 🤗 Accelerate: ```bash pip install accelerate ``` Then import and create an [`~accelerate.Accelerator`] object. The [`~accelerate.Accelerator`] will automatically detect your type of distributed setup and initialize all the necessary components for training. You don't need to explicitly place your model on a device. ```py >>> from accelerate import Accelerator >>> accelerator = Accelerator() ``` ## Prepare to accelerate The next step is to pass all the relevant training objects to the [`~accelerate.Accelerator.prepare`] method. This includes your training and evaluation DataLoaders, a model and an optimizer: ```py >>> train_dataloader, eval_dataloader, model, optimizer = accelerator.prepare( ... train_dataloader, eval_dataloader, model, optimizer ... ) ``` ## Backward The last addition is to replace the typical `loss.backward()` in your training loop with 🤗 Accelerate's [`~accelerate.Accelerator.backward`]method: ```py >>> for epoch in range(num_epochs): ... for batch in train_dataloader: ... outputs = model(**batch) ... loss = outputs.loss ... accelerator.backward(loss) ... optimizer.step() ... lr_scheduler.step() ... optimizer.zero_grad() ... progress_bar.update(1) ``` As you can see in the following code, you only need to add four additional lines of code to your training loop to enable distributed training! ```diff + from accelerate import Accelerator from transformers import AdamW, AutoModelForSequenceClassification, get_scheduler + accelerator = Accelerator() model = AutoModelForSequenceClassification.from_pretrained(checkpoint, num_labels=2) optimizer = AdamW(model.parameters(), lr=3e-5) - device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") - model.to(device) + train_dataloader, eval_dataloader, model, optimizer = accelerator.prepare( + train_dataloader, eval_dataloader, model, optimizer + ) num_epochs = 3 num_training_steps = num_epochs * len(train_dataloader) lr_scheduler = get_scheduler( "linear", optimizer=optimizer, num_warmup_steps=0, num_training_steps=num_training_steps ) progress_bar = tqdm(range(num_training_steps)) model.train() for epoch in range(num_epochs): for batch in train_dataloader: - batch = {k: v.to(device) for k, v in batch.items()} outputs = model(**batch) loss = outputs.loss - loss.backward() + accelerator.backward(loss) optimizer.step() lr_scheduler.step() optimizer.zero_grad() progress_bar.update(1) ``` ## Train Once you've added the relevant lines of code, launch your training in a script or a notebook like Colaboratory. ### Train with a script If you are running your training from a script, run the following command to create and save a configuration file: ```bash accelerate config ``` Then launch your training with: ```bash accelerate launch train.py ``` ### Train with a notebook 🤗 Accelerate can also run in a notebook if you're planning on using Colaboratory's TPUs. Wrap all the code responsible for training in a function, and pass it to [`~accelerate.notebook_launcher`]: ```py >>> from accelerate import notebook_launcher >>> notebook_launcher(training_function) ``` For more information about 🤗 Accelerate and its rich features, refer to the [documentation](https://huggingface.co/docs/accelerate).
huggingface/transformers/blob/main/docs/source/en/accelerate.md
!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # FocalNet ## Overview The FocalNet model was proposed in [Focal Modulation Networks](https://arxiv.org/abs/2203.11926) by Jianwei Yang, Chunyuan Li, Xiyang Dai, Lu Yuan, Jianfeng Gao. FocalNets completely replace self-attention (used in models like [ViT](vit) and [Swin](swin)) by a focal modulation mechanism for modeling token interactions in vision. The authors claim that FocalNets outperform self-attention based models with similar computational costs on the tasks of image classification, object detection, and segmentation. The abstract from the paper is the following: *We propose focal modulation networks (FocalNets in short), where self-attention (SA) is completely replaced by a focal modulation mechanism for modeling token interactions in vision. Focal modulation comprises three components: (i) hierarchical contextualization, implemented using a stack of depth-wise convolutional layers, to encode visual contexts from short to long ranges, (ii) gated aggregation to selectively gather contexts for each query token based on its content, and (iii) element-wise modulation or affine transformation to inject the aggregated context into the query. Extensive experiments show FocalNets outperform the state-of-the-art SA counterparts (e.g., Swin and Focal Transformers) with similar computational costs on the tasks of image classification, object detection, and segmentation. Specifically, FocalNets with tiny and base size achieve 82.3% and 83.9% top-1 accuracy on ImageNet-1K. After pretrained on ImageNet-22K in 224 resolution, it attains 86.5% and 87.3% top-1 accuracy when finetuned with resolution 224 and 384, respectively. When transferred to downstream tasks, FocalNets exhibit clear superiority. For object detection with Mask R-CNN, FocalNet base trained with 1\times outperforms the Swin counterpart by 2.1 points and already surpasses Swin trained with 3\times schedule (49.0 v.s. 48.5). For semantic segmentation with UPerNet, FocalNet base at single-scale outperforms Swin by 2.4, and beats Swin at multi-scale (50.5 v.s. 49.7). Using large FocalNet and Mask2former, we achieve 58.5 mIoU for ADE20K semantic segmentation, and 57.9 PQ for COCO Panoptic Segmentation. Using huge FocalNet and DINO, we achieved 64.3 and 64.4 mAP on COCO minival and test-dev, respectively, establishing new SoTA on top of much larger attention-based models like Swinv2-G and BEIT-3.* This model was contributed by [nielsr](https://huggingface.co/nielsr). The original code can be found [here](https://github.com/microsoft/FocalNet). ## FocalNetConfig [[autodoc]] FocalNetConfig ## FocalNetModel [[autodoc]] FocalNetModel - forward ## FocalNetForMaskedImageModeling [[autodoc]] FocalNetForMaskedImageModeling - forward ## FocalNetForImageClassification [[autodoc]] FocalNetForImageClassification - forward
huggingface/transformers/blob/main/docs/source/en/model_doc/focalnet.md
!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Quick tour [[open-in-colab]] Get up and running with 🤗 Transformers! Whether you're a developer or an everyday user, this quick tour will help you get started and show you how to use the [`pipeline`] for inference, load a pretrained model and preprocessor with an [AutoClass](./model_doc/auto), and quickly train a model with PyTorch or TensorFlow. If you're a beginner, we recommend checking out our tutorials or [course](https://huggingface.co/course/chapter1/1) next for more in-depth explanations of the concepts introduced here. Before you begin, make sure you have all the necessary libraries installed: ```bash !pip install transformers datasets ``` You'll also need to install your preferred machine learning framework: <frameworkcontent> <pt> ```bash pip install torch ``` </pt> <tf> ```bash pip install tensorflow ``` </tf> </frameworkcontent> ## Pipeline <Youtube id="tiZFewofSLM"/> The [`pipeline`] is the easiest and fastest way to use a pretrained model for inference. You can use the [`pipeline`] out-of-the-box for many tasks across different modalities, some of which are shown in the table below: <Tip> For a complete list of available tasks, check out the [pipeline API reference](./main_classes/pipelines). </Tip> | **Task** | **Description** | **Modality** | **Pipeline identifier** | |------------------------------|--------------------------------------------------------------------------------------------------------------|-----------------|-----------------------------------------------| | Text classification | assign a label to a given sequence of text | NLP | pipeline(task=“sentiment-analysis”) | | Text generation | generate text given a prompt | NLP | pipeline(task=“text-generation”) | | Summarization | generate a summary of a sequence of text or document | NLP | pipeline(task=“summarization”) | | Image classification | assign a label to an image | Computer vision | pipeline(task=“image-classification”) | | Image segmentation | assign a label to each individual pixel of an image (supports semantic, panoptic, and instance segmentation) | Computer vision | pipeline(task=“image-segmentation”) | | Object detection | predict the bounding boxes and classes of objects in an image | Computer vision | pipeline(task=“object-detection”) | | Audio classification | assign a label to some audio data | Audio | pipeline(task=“audio-classification”) | | Automatic speech recognition | transcribe speech into text | Audio | pipeline(task=“automatic-speech-recognition”) | | Visual question answering | answer a question about the image, given an image and a question | Multimodal | pipeline(task=“vqa”) | | Document question answering | answer a question about the document, given a document and a question | Multimodal | pipeline(task="document-question-answering") | | Image captioning | generate a caption for a given image | Multimodal | pipeline(task="image-to-text") | Start by creating an instance of [`pipeline`] and specifying a task you want to use it for. In this guide, you'll use the [`pipeline`] for sentiment analysis as an example: ```py >>> from transformers import pipeline >>> classifier = pipeline("sentiment-analysis") ``` The [`pipeline`] downloads and caches a default [pretrained model](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) and tokenizer for sentiment analysis. Now you can use the `classifier` on your target text: ```py >>> classifier("We are very happy to show you the 🤗 Transformers library.") [{'label': 'POSITIVE', 'score': 0.9998}] ``` If you have more than one input, pass your inputs as a list to the [`pipeline`] to return a list of dictionaries: ```py >>> results = classifier(["We are very happy to show you the 🤗 Transformers library.", "We hope you don't hate it."]) >>> for result in results: ... print(f"label: {result['label']}, with score: {round(result['score'], 4)}") label: POSITIVE, with score: 0.9998 label: NEGATIVE, with score: 0.5309 ``` The [`pipeline`] can also iterate over an entire dataset for any task you like. For this example, let's choose automatic speech recognition as our task: ```py >>> import torch >>> from transformers import pipeline >>> speech_recognizer = pipeline("automatic-speech-recognition", model="facebook/wav2vec2-base-960h") ``` Load an audio dataset (see the 🤗 Datasets [Quick Start](https://huggingface.co/docs/datasets/quickstart#audio) for more details) you'd like to iterate over. For example, load the [MInDS-14](https://huggingface.co/datasets/PolyAI/minds14) dataset: ```py >>> from datasets import load_dataset, Audio >>> dataset = load_dataset("PolyAI/minds14", name="en-US", split="train") # doctest: +IGNORE_RESULT ``` You need to make sure the sampling rate of the dataset matches the sampling rate [`facebook/wav2vec2-base-960h`](https://huggingface.co/facebook/wav2vec2-base-960h) was trained on: ```py >>> dataset = dataset.cast_column("audio", Audio(sampling_rate=speech_recognizer.feature_extractor.sampling_rate)) ``` The audio files are automatically loaded and resampled when calling the `"audio"` column. Extract the raw waveform arrays from the first 4 samples and pass it as a list to the pipeline: ```py >>> result = speech_recognizer(dataset[:4]["audio"]) >>> print([d["text"] for d in result]) ['I WOULD LIKE TO SET UP A JOINT ACCOUNT WITH MY PARTNER HOW DO I PROCEED WITH DOING THAT', "FONDERING HOW I'D SET UP A JOIN TO HELL T WITH MY WIFE AND WHERE THE AP MIGHT BE", "I I'D LIKE TOY SET UP A JOINT ACCOUNT WITH MY PARTNER I'M NOT SEEING THE OPTION TO DO IT ON THE APSO I CALLED IN TO GET SOME HELP CAN I JUST DO IT OVER THE PHONE WITH YOU AND GIVE YOU THE INFORMATION OR SHOULD I DO IT IN THE AP AN I'M MISSING SOMETHING UQUETTE HAD PREFERRED TO JUST DO IT OVER THE PHONE OF POSSIBLE THINGS", 'HOW DO I FURN A JOINA COUT'] ``` For larger datasets where the inputs are big (like in speech or vision), you'll want to pass a generator instead of a list to load all the inputs in memory. Take a look at the [pipeline API reference](./main_classes/pipelines) for more information. ### Use another model and tokenizer in the pipeline The [`pipeline`] can accommodate any model from the [Hub](https://huggingface.co/models), making it easy to adapt the [`pipeline`] for other use-cases. For example, if you'd like a model capable of handling French text, use the tags on the Hub to filter for an appropriate model. The top filtered result returns a multilingual [BERT model](https://huggingface.co/nlptown/bert-base-multilingual-uncased-sentiment) finetuned for sentiment analysis you can use for French text: ```py >>> model_name = "nlptown/bert-base-multilingual-uncased-sentiment" ``` <frameworkcontent> <pt> Use [`AutoModelForSequenceClassification`] and [`AutoTokenizer`] to load the pretrained model and it's associated tokenizer (more on an `AutoClass` in the next section): ```py >>> from transformers import AutoTokenizer, AutoModelForSequenceClassification >>> model = AutoModelForSequenceClassification.from_pretrained(model_name) >>> tokenizer = AutoTokenizer.from_pretrained(model_name) ``` </pt> <tf> Use [`TFAutoModelForSequenceClassification`] and [`AutoTokenizer`] to load the pretrained model and it's associated tokenizer (more on an `TFAutoClass` in the next section): ```py >>> from transformers import AutoTokenizer, TFAutoModelForSequenceClassification >>> model = TFAutoModelForSequenceClassification.from_pretrained(model_name) >>> tokenizer = AutoTokenizer.from_pretrained(model_name) ``` </tf> </frameworkcontent> Specify the model and tokenizer in the [`pipeline`], and now you can apply the `classifier` on French text: ```py >>> classifier = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer) >>> classifier("Nous sommes très heureux de vous présenter la bibliothèque 🤗 Transformers.") [{'label': '5 stars', 'score': 0.7273}] ``` If you can't find a model for your use-case, you'll need to finetune a pretrained model on your data. Take a look at our [finetuning tutorial](./training) to learn how. Finally, after you've finetuned your pretrained model, please consider [sharing](./model_sharing) the model with the community on the Hub to democratize machine learning for everyone! 🤗 ## AutoClass <Youtube id="AhChOFRegn4"/> Under the hood, the [`AutoModelForSequenceClassification`] and [`AutoTokenizer`] classes work together to power the [`pipeline`] you used above. An [AutoClass](./model_doc/auto) is a shortcut that automatically retrieves the architecture of a pretrained model from its name or path. You only need to select the appropriate `AutoClass` for your task and it's associated preprocessing class. Let's return to the example from the previous section and see how you can use the `AutoClass` to replicate the results of the [`pipeline`]. ### AutoTokenizer A tokenizer is responsible for preprocessing text into an array of numbers as inputs to a model. There are multiple rules that govern the tokenization process, including how to split a word and at what level words should be split (learn more about tokenization in the [tokenizer summary](./tokenizer_summary)). The most important thing to remember is you need to instantiate a tokenizer with the same model name to ensure you're using the same tokenization rules a model was pretrained with. Load a tokenizer with [`AutoTokenizer`]: ```py >>> from transformers import AutoTokenizer >>> model_name = "nlptown/bert-base-multilingual-uncased-sentiment" >>> tokenizer = AutoTokenizer.from_pretrained(model_name) ``` Pass your text to the tokenizer: ```py >>> encoding = tokenizer("We are very happy to show you the 🤗 Transformers library.") >>> print(encoding) {'input_ids': [101, 11312, 10320, 12495, 19308, 10114, 11391, 10855, 10103, 100, 58263, 13299, 119, 102], 'token_type_ids': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]} ``` The tokenizer returns a dictionary containing: * [input_ids](./glossary#input-ids): numerical representations of your tokens. * [attention_mask](.glossary#attention-mask): indicates which tokens should be attended to. A tokenizer can also accept a list of inputs, and pad and truncate the text to return a batch with uniform length: <frameworkcontent> <pt> ```py >>> pt_batch = tokenizer( ... ["We are very happy to show you the 🤗 Transformers library.", "We hope you don't hate it."], ... padding=True, ... truncation=True, ... max_length=512, ... return_tensors="pt", ... ) ``` </pt> <tf> ```py >>> tf_batch = tokenizer( ... ["We are very happy to show you the 🤗 Transformers library.", "We hope you don't hate it."], ... padding=True, ... truncation=True, ... max_length=512, ... return_tensors="tf", ... ) ``` </tf> </frameworkcontent> <Tip> Check out the [preprocess](./preprocessing) tutorial for more details about tokenization, and how to use an [`AutoImageProcessor`], [`AutoFeatureExtractor`] and [`AutoProcessor`] to preprocess image, audio, and multimodal inputs. </Tip> ### AutoModel <frameworkcontent> <pt> 🤗 Transformers provides a simple and unified way to load pretrained instances. This means you can load an [`AutoModel`] like you would load an [`AutoTokenizer`]. The only difference is selecting the correct [`AutoModel`] for the task. For text (or sequence) classification, you should load [`AutoModelForSequenceClassification`]: ```py >>> from transformers import AutoModelForSequenceClassification >>> model_name = "nlptown/bert-base-multilingual-uncased-sentiment" >>> pt_model = AutoModelForSequenceClassification.from_pretrained(model_name) ``` <Tip> See the [task summary](./task_summary) for tasks supported by an [`AutoModel`] class. </Tip> Now pass your preprocessed batch of inputs directly to the model. You just have to unpack the dictionary by adding `**`: ```py >>> pt_outputs = pt_model(**pt_batch) ``` The model outputs the final activations in the `logits` attribute. Apply the softmax function to the `logits` to retrieve the probabilities: ```py >>> from torch import nn >>> pt_predictions = nn.functional.softmax(pt_outputs.logits, dim=-1) >>> print(pt_predictions) tensor([[0.0021, 0.0018, 0.0115, 0.2121, 0.7725], [0.2084, 0.1826, 0.1969, 0.1755, 0.2365]], grad_fn=<SoftmaxBackward0>) ``` </pt> <tf> 🤗 Transformers provides a simple and unified way to load pretrained instances. This means you can load an [`TFAutoModel`] like you would load an [`AutoTokenizer`]. The only difference is selecting the correct [`TFAutoModel`] for the task. For text (or sequence) classification, you should load [`TFAutoModelForSequenceClassification`]: ```py >>> from transformers import TFAutoModelForSequenceClassification >>> model_name = "nlptown/bert-base-multilingual-uncased-sentiment" >>> tf_model = TFAutoModelForSequenceClassification.from_pretrained(model_name) ``` <Tip> See the [task summary](./task_summary) for tasks supported by an [`AutoModel`] class. </Tip> Now pass your preprocessed batch of inputs directly to the model. You can pass the tensors as-is: ```py >>> tf_outputs = tf_model(tf_batch) ``` The model outputs the final activations in the `logits` attribute. Apply the softmax function to the `logits` to retrieve the probabilities: ```py >>> import tensorflow as tf >>> tf_predictions = tf.nn.softmax(tf_outputs.logits, axis=-1) >>> tf_predictions # doctest: +IGNORE_RESULT ``` </tf> </frameworkcontent> <Tip> All 🤗 Transformers models (PyTorch or TensorFlow) output the tensors *before* the final activation function (like softmax) because the final activation function is often fused with the loss. Model outputs are special dataclasses so their attributes are autocompleted in an IDE. The model outputs behave like a tuple or a dictionary (you can index with an integer, a slice or a string) in which case, attributes that are None are ignored. </Tip> ### Save a model <frameworkcontent> <pt> Once your model is fine-tuned, you can save it with its tokenizer using [`PreTrainedModel.save_pretrained`]: ```py >>> pt_save_directory = "./pt_save_pretrained" >>> tokenizer.save_pretrained(pt_save_directory) # doctest: +IGNORE_RESULT >>> pt_model.save_pretrained(pt_save_directory) ``` When you are ready to use the model again, reload it with [`PreTrainedModel.from_pretrained`]: ```py >>> pt_model = AutoModelForSequenceClassification.from_pretrained("./pt_save_pretrained") ``` </pt> <tf> Once your model is fine-tuned, you can save it with its tokenizer using [`TFPreTrainedModel.save_pretrained`]: ```py >>> tf_save_directory = "./tf_save_pretrained" >>> tokenizer.save_pretrained(tf_save_directory) # doctest: +IGNORE_RESULT >>> tf_model.save_pretrained(tf_save_directory) ``` When you are ready to use the model again, reload it with [`TFPreTrainedModel.from_pretrained`]: ```py >>> tf_model = TFAutoModelForSequenceClassification.from_pretrained("./tf_save_pretrained") ``` </tf> </frameworkcontent> One particularly cool 🤗 Transformers feature is the ability to save a model and reload it as either a PyTorch or TensorFlow model. The `from_pt` or `from_tf` parameter can convert the model from one framework to the other: <frameworkcontent> <pt> ```py >>> from transformers import AutoModel >>> tokenizer = AutoTokenizer.from_pretrained(tf_save_directory) >>> pt_model = AutoModelForSequenceClassification.from_pretrained(tf_save_directory, from_tf=True) ``` </pt> <tf> ```py >>> from transformers import TFAutoModel >>> tokenizer = AutoTokenizer.from_pretrained(pt_save_directory) >>> tf_model = TFAutoModelForSequenceClassification.from_pretrained(pt_save_directory, from_pt=True) ``` </tf> </frameworkcontent> ## Custom model builds You can modify the model's configuration class to change how a model is built. The configuration specifies a model's attributes, such as the number of hidden layers or attention heads. You start from scratch when you initialize a model from a custom configuration class. The model attributes are randomly initialized, and you'll need to train the model before you can use it to get meaningful results. Start by importing [`AutoConfig`], and then load the pretrained model you want to modify. Within [`AutoConfig.from_pretrained`], you can specify the attribute you want to change, such as the number of attention heads: ```py >>> from transformers import AutoConfig >>> my_config = AutoConfig.from_pretrained("distilbert-base-uncased", n_heads=12) ``` <frameworkcontent> <pt> Create a model from your custom configuration with [`AutoModel.from_config`]: ```py >>> from transformers import AutoModel >>> my_model = AutoModel.from_config(my_config) ``` </pt> <tf> Create a model from your custom configuration with [`TFAutoModel.from_config`]: ```py >>> from transformers import TFAutoModel >>> my_model = TFAutoModel.from_config(my_config) ``` </tf> </frameworkcontent> Take a look at the [Create a custom architecture](./create_a_model) guide for more information about building custom configurations. ## Trainer - a PyTorch optimized training loop All models are a standard [`torch.nn.Module`](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) so you can use them in any typical training loop. While you can write your own training loop, 🤗 Transformers provides a [`Trainer`] class for PyTorch, which contains the basic training loop and adds additional functionality for features like distributed training, mixed precision, and more. Depending on your task, you'll typically pass the following parameters to [`Trainer`]: 1. You'll start with a [`PreTrainedModel`] or a [`torch.nn.Module`](https://pytorch.org/docs/stable/nn.html#torch.nn.Module): ```py >>> from transformers import AutoModelForSequenceClassification >>> model = AutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased") ``` 2. [`TrainingArguments`] contains the model hyperparameters you can change like learning rate, batch size, and the number of epochs to train for. The default values are used if you don't specify any training arguments: ```py >>> from transformers import TrainingArguments >>> training_args = TrainingArguments( ... output_dir="path/to/save/folder/", ... learning_rate=2e-5, ... per_device_train_batch_size=8, ... per_device_eval_batch_size=8, ... num_train_epochs=2, ... ) ``` 3. Load a preprocessing class like a tokenizer, image processor, feature extractor, or processor: ```py >>> from transformers import AutoTokenizer >>> tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased") ``` 4. Load a dataset: ```py >>> from datasets import load_dataset >>> dataset = load_dataset("rotten_tomatoes") # doctest: +IGNORE_RESULT ``` 5. Create a function to tokenize the dataset: ```py >>> def tokenize_dataset(dataset): ... return tokenizer(dataset["text"]) ``` Then apply it over the entire dataset with [`~datasets.Dataset.map`]: ```py >>> dataset = dataset.map(tokenize_dataset, batched=True) ``` 6. A [`DataCollatorWithPadding`] to create a batch of examples from your dataset: ```py >>> from transformers import DataCollatorWithPadding >>> data_collator = DataCollatorWithPadding(tokenizer=tokenizer) ``` Now gather all these classes in [`Trainer`]: ```py >>> from transformers import Trainer >>> trainer = Trainer( ... model=model, ... args=training_args, ... train_dataset=dataset["train"], ... eval_dataset=dataset["test"], ... tokenizer=tokenizer, ... data_collator=data_collator, ... ) # doctest: +SKIP ``` When you're ready, call [`~Trainer.train`] to start training: ```py >>> trainer.train() # doctest: +SKIP ``` <Tip> For tasks - like translation or summarization - that use a sequence-to-sequence model, use the [`Seq2SeqTrainer`] and [`Seq2SeqTrainingArguments`] classes instead. </Tip> You can customize the training loop behavior by subclassing the methods inside [`Trainer`]. This allows you to customize features such as the loss function, optimizer, and scheduler. Take a look at the [`Trainer`] reference for which methods can be subclassed. The other way to customize the training loop is by using [Callbacks](./main_classes/callbacks). You can use callbacks to integrate with other libraries and inspect the training loop to report on progress or stop the training early. Callbacks do not modify anything in the training loop itself. To customize something like the loss function, you need to subclass the [`Trainer`] instead. ## Train with TensorFlow All models are a standard [`tf.keras.Model`](https://www.tensorflow.org/api_docs/python/tf/keras/Model) so they can be trained in TensorFlow with the [Keras](https://keras.io/) API. 🤗 Transformers provides the [`~TFPreTrainedModel.prepare_tf_dataset`] method to easily load your dataset as a `tf.data.Dataset` so you can start training right away with Keras' [`compile`](https://keras.io/api/models/model_training_apis/#compile-method) and [`fit`](https://keras.io/api/models/model_training_apis/#fit-method) methods. 1. You'll start with a [`TFPreTrainedModel`] or a [`tf.keras.Model`](https://www.tensorflow.org/api_docs/python/tf/keras/Model): ```py >>> from transformers import TFAutoModelForSequenceClassification >>> model = TFAutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased") ``` 2. Load a preprocessing class like a tokenizer, image processor, feature extractor, or processor: ```py >>> from transformers import AutoTokenizer >>> tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased") ``` 3. Create a function to tokenize the dataset: ```py >>> def tokenize_dataset(dataset): ... return tokenizer(dataset["text"]) # doctest: +SKIP ``` 4. Apply the tokenizer over the entire dataset with [`~datasets.Dataset.map`] and then pass the dataset and tokenizer to [`~TFPreTrainedModel.prepare_tf_dataset`]. You can also change the batch size and shuffle the dataset here if you'd like: ```py >>> dataset = dataset.map(tokenize_dataset) # doctest: +SKIP >>> tf_dataset = model.prepare_tf_dataset( ... dataset["train"], batch_size=16, shuffle=True, tokenizer=tokenizer ... ) # doctest: +SKIP ``` 5. When you're ready, you can call `compile` and `fit` to start training. Note that Transformers models all have a default task-relevant loss function, so you don't need to specify one unless you want to: ```py >>> from tensorflow.keras.optimizers import Adam >>> model.compile(optimizer=Adam(3e-5)) # No loss argument! >>> model.fit(tf_dataset) # doctest: +SKIP ``` ## What's next? Now that you've completed the 🤗 Transformers quick tour, check out our guides and learn how to do more specific things like writing a custom model, fine-tuning a model for a task, and how to train a model with a script. If you're interested in learning more about 🤗 Transformers core concepts, grab a cup of coffee and take a look at our Conceptual Guides!
huggingface/transformers/blob/main/docs/source/en/quicktour.md
!--Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Encoder Decoder Models ## Overview The [`EncoderDecoderModel`] can be used to initialize a sequence-to-sequence model with any pretrained autoencoding model as the encoder and any pretrained autoregressive model as the decoder. The effectiveness of initializing sequence-to-sequence models with pretrained checkpoints for sequence generation tasks was shown in [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn. After such an [`EncoderDecoderModel`] has been trained/fine-tuned, it can be saved/loaded just like any other models (see the examples for more information). An application of this architecture could be to leverage two pretrained [`BertModel`] as the encoder and decoder for a summarization model as was shown in: [Text Summarization with Pretrained Encoders](https://arxiv.org/abs/1908.08345) by Yang Liu and Mirella Lapata. ## Randomly initializing `EncoderDecoderModel` from model configurations. [`EncoderDecoderModel`] can be randomly initialized from an encoder and a decoder config. In the following example, we show how to do this using the default [`BertModel`] configuration for the encoder and the default [`BertForCausalLM`] configuration for the decoder. ```python >>> from transformers import BertConfig, EncoderDecoderConfig, EncoderDecoderModel >>> config_encoder = BertConfig() >>> config_decoder = BertConfig() >>> config = EncoderDecoderConfig.from_encoder_decoder_configs(config_encoder, config_decoder) >>> model = EncoderDecoderModel(config=config) ``` ## Initialising `EncoderDecoderModel` from a pretrained encoder and a pretrained decoder. [`EncoderDecoderModel`] can be initialized from a pretrained encoder checkpoint and a pretrained decoder checkpoint. Note that any pretrained auto-encoding model, *e.g.* BERT, can serve as the encoder and both pretrained auto-encoding models, *e.g.* BERT, pretrained causal language models, *e.g.* GPT2, as well as the pretrained decoder part of sequence-to-sequence models, *e.g.* decoder of BART, can be used as the decoder. Depending on which architecture you choose as the decoder, the cross-attention layers might be randomly initialized. Initializing [`EncoderDecoderModel`] from a pretrained encoder and decoder checkpoint requires the model to be fine-tuned on a downstream task, as has been shown in [the *Warm-starting-encoder-decoder blog post*](https://huggingface.co/blog/warm-starting-encoder-decoder). To do so, the `EncoderDecoderModel` class provides a [`EncoderDecoderModel.from_encoder_decoder_pretrained`] method. ```python >>> from transformers import EncoderDecoderModel, BertTokenizer >>> tokenizer = BertTokenizer.from_pretrained("bert-base-uncased") >>> model = EncoderDecoderModel.from_encoder_decoder_pretrained("bert-base-uncased", "bert-base-uncased") ``` ## Loading an existing `EncoderDecoderModel` checkpoint and perform inference. To load fine-tuned checkpoints of the `EncoderDecoderModel` class, [`EncoderDecoderModel`] provides the `from_pretrained(...)` method just like any other model architecture in Transformers. To perform inference, one uses the [`generate`] method, which allows to autoregressively generate text. This method supports various forms of decoding, such as greedy, beam search and multinomial sampling. ```python >>> from transformers import AutoTokenizer, EncoderDecoderModel >>> # load a fine-tuned seq2seq model and corresponding tokenizer >>> model = EncoderDecoderModel.from_pretrained("patrickvonplaten/bert2bert_cnn_daily_mail") >>> tokenizer = AutoTokenizer.from_pretrained("patrickvonplaten/bert2bert_cnn_daily_mail") >>> # let's perform inference on a long piece of text >>> ARTICLE_TO_SUMMARIZE = ( ... "PG&E stated it scheduled the blackouts in response to forecasts for high winds " ... "amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were " ... "scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow." ... ) >>> input_ids = tokenizer(ARTICLE_TO_SUMMARIZE, return_tensors="pt").input_ids >>> # autoregressively generate summary (uses greedy decoding by default) >>> generated_ids = model.generate(input_ids) >>> generated_text = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] >>> print(generated_text) nearly 800 thousand customers were affected by the shutoffs. the aim is to reduce the risk of wildfires. nearly 800, 000 customers were expected to be affected by high winds amid dry conditions. pg & e said it scheduled the blackouts to last through at least midday tomorrow. ``` ## Loading a PyTorch checkpoint into `TFEncoderDecoderModel`. [`TFEncoderDecoderModel.from_pretrained`] currently doesn't support initializing the model from a pytorch checkpoint. Passing `from_pt=True` to this method will throw an exception. If there are only pytorch checkpoints for a particular encoder-decoder model, a workaround is: ```python >>> # a workaround to load from pytorch checkpoint >>> from transformers import EncoderDecoderModel, TFEncoderDecoderModel >>> _model = EncoderDecoderModel.from_pretrained("patrickvonplaten/bert2bert-cnn_dailymail-fp16") >>> _model.encoder.save_pretrained("./encoder") >>> _model.decoder.save_pretrained("./decoder") >>> model = TFEncoderDecoderModel.from_encoder_decoder_pretrained( ... "./encoder", "./decoder", encoder_from_pt=True, decoder_from_pt=True ... ) >>> # This is only for copying some specific attributes of this particular model. >>> model.config = _model.config ``` ## Training Once the model is created, it can be fine-tuned similar to BART, T5 or any other encoder-decoder model. As you can see, only 2 inputs are required for the model in order to compute a loss: `input_ids` (which are the `input_ids` of the encoded input sequence) and `labels` (which are the `input_ids` of the encoded target sequence). ```python >>> from transformers import BertTokenizer, EncoderDecoderModel >>> tokenizer = BertTokenizer.from_pretrained("bert-base-uncased") >>> model = EncoderDecoderModel.from_encoder_decoder_pretrained("bert-base-uncased", "bert-base-uncased") >>> model.config.decoder_start_token_id = tokenizer.cls_token_id >>> model.config.pad_token_id = tokenizer.pad_token_id >>> input_ids = tokenizer( ... "The tower is 324 metres (1,063 ft) tall, about the same height as an 81-storey building, and the tallest structure in Paris. Its base is square, measuring 125 metres (410 ft) on each side.During its construction, the Eiffel Tower surpassed the Washington Monument to become the tallest man-made structure in the world, a title it held for 41 years until the Chrysler Building in New York City was finished in 1930. It was the first structure to reach a height of 300 metres. Due to the addition of a broadcasting aerial at the top of the tower in 1957, it is now taller than the Chrysler Building by 5.2 metres (17 ft).Excluding transmitters, the Eiffel Tower is the second tallest free-standing structure in France after the Millau Viaduct.", ... return_tensors="pt", ... ).input_ids >>> labels = tokenizer( ... "the eiffel tower surpassed the washington monument to become the tallest structure in the world. it was the first structure to reach a height of 300 metres in paris in 1930. it is now taller than the chrysler building by 5. 2 metres ( 17 ft ) and is the second tallest free - standing structure in paris.", ... return_tensors="pt", ... ).input_ids >>> # the forward function automatically creates the correct decoder_input_ids >>> loss = model(input_ids=input_ids, labels=labels).loss ``` Detailed [colab](https://colab.research.google.com/drive/1WIk2bxglElfZewOHboPFNj8H44_VAyKE?usp=sharing#scrollTo=ZwQIEhKOrJpl) for training. This model was contributed by [thomwolf](https://github.com/thomwolf). This model's TensorFlow and Flax versions were contributed by [ydshieh](https://github.com/ydshieh). ## EncoderDecoderConfig [[autodoc]] EncoderDecoderConfig <frameworkcontent> <pt> ## EncoderDecoderModel [[autodoc]] EncoderDecoderModel - forward - from_encoder_decoder_pretrained </pt> <tf> ## TFEncoderDecoderModel [[autodoc]] TFEncoderDecoderModel - call - from_encoder_decoder_pretrained </tf> <jax> ## FlaxEncoderDecoderModel [[autodoc]] FlaxEncoderDecoderModel - __call__ - from_encoder_decoder_pretrained </jax> </frameworkcontent>
huggingface/transformers/blob/main/docs/source/en/model_doc/encoder-decoder.md
!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # SwiftFormer ## Overview The SwiftFormer model was proposed in [SwiftFormer: Efficient Additive Attention for Transformer-based Real-time Mobile Vision Applications](https://arxiv.org/abs/2303.15446) by Abdelrahman Shaker, Muhammad Maaz, Hanoona Rasheed, Salman Khan, Ming-Hsuan Yang, Fahad Shahbaz Khan. The SwiftFormer paper introduces a novel efficient additive attention mechanism that effectively replaces the quadratic matrix multiplication operations in the self-attention computation with linear element-wise multiplications. A series of models called 'SwiftFormer' is built based on this, which achieves state-of-the-art performance in terms of both accuracy and mobile inference speed. Even their small variant achieves 78.5% top-1 ImageNet1K accuracy with only 0.8 ms latency on iPhone 14, which is more accurate and 2× faster compared to MobileViT-v2. The abstract from the paper is the following: *Self-attention has become a defacto choice for capturing global context in various vision applications. However, its quadratic computational complexity with respect to image resolution limits its use in real-time applications, especially for deployment on resource-constrained mobile devices. Although hybrid approaches have been proposed to combine the advantages of convolutions and self-attention for a better speed-accuracy trade-off, the expensive matrix multiplication operations in self-attention remain a bottleneck. In this work, we introduce a novel efficient additive attention mechanism that effectively replaces the quadratic matrix multiplication operations with linear element-wise multiplications. Our design shows that the key-value interaction can be replaced with a linear layer without sacrificing any accuracy. Unlike previous state-of-the-art methods, our efficient formulation of self-attention enables its usage at all stages of the network. Using our proposed efficient additive attention, we build a series of models called "SwiftFormer" which achieves state-of-the-art performance in terms of both accuracy and mobile inference speed. Our small variant achieves 78.5% top-1 ImageNet-1K accuracy with only 0.8 ms latency on iPhone 14, which is more accurate and 2x faster compared to MobileViT-v2.* This model was contributed by [shehan97](https://huggingface.co/shehan97). The original code can be found [here](https://github.com/Amshaker/SwiftFormer). ## SwiftFormerConfig [[autodoc]] SwiftFormerConfig ## SwiftFormerModel [[autodoc]] SwiftFormerModel - forward ## SwiftFormerForImageClassification [[autodoc]] SwiftFormerForImageClassification - forward
huggingface/transformers/blob/main/docs/source/en/model_doc/swiftformer.md
!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contains specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Llama2 ## Overview The Llama2 model was proposed in [LLaMA: Open Foundation and Fine-Tuned Chat Models](https://ai.meta.com/research/publications/llama-2-open-foundation-and-fine-tuned-chat-models/) by Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushka rMishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing EllenTan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, Sergey Edunov, Thomas Scialom. It is a collection of foundation language models ranging from 7B to 70B parameters, with checkpoints finetuned for chat application! The abstract from the paper is the following: *In this work, we develop and release Llama 2, a collection of pretrained and fine-tuned large language models (LLMs) ranging in scale from 7 billion to 70 billion parameters. Our fine-tuned LLMs, called Llama 2-Chat, are optimized for dialogue use cases. Our models outperform open-source chat models on most benchmarks we tested, and based on our human evaluations for helpfulness and safety, may be a suitable substitute for closed-source models. We provide a detailed description of our approach to fine-tuning and safety improvements of Llama 2-Chat in order to enable the community to build on our work and contribute to the responsible development of LLMs.* Checkout all Llama2 model checkpoints [here](https://huggingface.co/models?search=llama2). This model was contributed by [Arthur Zucker](https://huggingface.co/ArthurZ) with contributions from [Lysandre Debut](https://huggingface.co/lysandre). The code of the implementation in Hugging Face is based on GPT-NeoX [here](https://github.com/EleutherAI/gpt-neox). The original code of the authors can be found [here](https://github.com/facebookresearch/llama). ## Usage tips <Tip warning={true}> The `Llama2` models were trained using `bfloat16`, but the original inference uses `float16`. The checkpoints uploaded on the Hub use `torch_dtype = 'float16'`, which will be used by the `AutoModel` API to cast the checkpoints from `torch.float32` to `torch.float16`. The `dtype` of the online weights is mostly irrelevant unless you are using `torch_dtype="auto"` when initializing a model using `model = AutoModelForCausalLM.from_pretrained("path", torch_dtype = "auto")`. The reason is that the model will first be downloaded ( using the `dtype` of the checkpoints online), then it will be casted to the default `dtype` of `torch` (becomes `torch.float32`), and finally, if there is a `torch_dtype` provided in the config, it will be used. Training the model in `float16` is not recommended and is known to produce `nan`; as such, the model should be trained in `bfloat16`. </Tip> Tips: - Weights for the Llama2 models can be obtained by filling out [this form](https://ai.meta.com/resources/models-and-libraries/llama-downloads/) - The architecture is very similar to the first Llama, with the addition of Grouped Query Attention (GQA) following this [paper](https://arxiv.org/pdf/2305.13245.pdf) - Setting `config.pretraining_tp` to a value different than 1 will activate the more accurate but slower computation of the linear layers, which should better match the original logits. - The original model uses `pad_id = -1` which means that there is no padding token. We can't have the same logic, make sure to add a padding token using `tokenizer.add_special_tokens({"pad_token":"<pad>"})` and resize the token embedding accordingly. You should also set the `model.config.pad_token_id`. The `embed_tokens` layer of the model is initialized with `self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.config.padding_idx)`, which makes sure that encoding the padding token will output zeros, so passing it when initializing is recommended. - After filling out the form and gaining access to the model checkpoints, you should be able to use the already converted checkpoints. Otherwise, if you are converting your own model, feel free to use the [conversion script](https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/convert_llama_weights_to_hf.py). The script can be called with the following (example) command: ```bash python src/transformers/models/llama/convert_llama_weights_to_hf.py \ --input_dir /path/to/downloaded/llama/weights --model_size 7B --output_dir /output/path ``` - After conversion, the model and tokenizer can be loaded via: ```python from transformers import LlamaForCausalLM, LlamaTokenizer tokenizer = LlamaTokenizer.from_pretrained("/output/path") model = LlamaForCausalLM.from_pretrained("/output/path") ``` Note that executing the script requires enough CPU RAM to host the whole model in float16 precision (even if the biggest versions come in several checkpoints they each contain a part of each weight of the model, so we need to load them all in RAM). For the 75B model, it's thus 145GB of RAM needed. - The LLaMA tokenizer is a BPE model based on [sentencepiece](https://github.com/google/sentencepiece). One quirk of sentencepiece is that when decoding a sequence, if the first token is the start of the word (e.g. "Banana"), the tokenizer does not prepend the prefix space to the string. - When using Flash Attention 2 via `attn_implementation="flash_attention_2"`, don't pass `torch_dtype` to the `from_pretrained` class method and use Automatic Mixed-Precision training. When using `Trainer`, it is simply specifying either `fp16` or `bf16` to `True`. Otherwise, make sure you are using `torch.autocast`. This is required because the Flash Attention only support `fp16` and `bf16` data type. ## Resources A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with LLaMA2. If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource. - [Llama 2 is here - get it on Hugging Face](https://huggingface.co/blog/llama2), a blog post about Llama 2 and how to use it with 🤗 Transformers and 🤗 PEFT. - [LLaMA 2 - Every Resource you need](https://www.philschmid.de/llama-2), a compilation of relevant resources to learn about LLaMA 2 and how to get started quickly. <PipelineTag pipeline="text-generation"/> - A [notebook](https://colab.research.google.com/drive/1PEQyJO1-f6j0S_XJ8DV50NkpzasXkrzd?usp=sharing) on how to fine-tune Llama 2 in Google Colab using QLoRA and 4-bit precision. 🌎 - A [notebook](https://colab.research.google.com/drive/134o_cXcMe_lsvl15ZE_4Y75Kstepsntu?usp=sharing) on how to fine-tune the "Llama-v2-7b-guanaco" model with 4-bit QLoRA and generate Q&A datasets from PDFs. 🌎 <PipelineTag pipeline="text-classification"/> - A [notebook](https://colab.research.google.com/drive/1ggaa2oRFphdBmqIjSEbnb_HGkcIRC2ZB?usp=sharing) on how to fine-tune the Llama 2 model with QLoRa, TRL, and Korean text classification dataset. 🌎🇰🇷 ⚗️ Optimization - [Fine-tune Llama 2 with DPO](https://huggingface.co/blog/dpo-trl), a guide to using the TRL library's DPO method to fine tune Llama 2 on a specific dataset. - [Extended Guide: Instruction-tune Llama 2](https://www.philschmid.de/instruction-tune-llama-2), a guide to training Llama 2 to generate instructions from inputs, transforming the model from instruction-following to instruction-giving. - A [notebook](https://colab.research.google.com/drive/1SYpgFpcmtIUzdE7pxqknrM4ArCASfkFQ?usp=sharing) on how to fine-tune the Llama 2 model on a personal computer using QLoRa and TRL. 🌎 ⚡️ Inference - A [notebook](https://colab.research.google.com/drive/1TC56ArKerXUpbgRy5vM3woRsbTEVNq7h?usp=sharing) on how to quantize the Llama 2 model using GPTQ from the AutoGPTQ library. 🌎 - A [notebook](https://colab.research.google.com/drive/1X1z9Q6domMKl2CnEM0QGHNwidLfR4dW2?usp=sharing) on how to run the Llama 2 Chat Model with 4-bit quantization on a local computer or Google Colab. 🌎 🚀 Deploy - [Fine-tune LLaMA 2 (7-70B) on Amazon SageMaker](https://www.philschmid.de/sagemaker-llama2-qlora), a complete guide from setup to QLoRA fine-tuning and deployment on Amazon SageMaker. - [Deploy Llama 2 7B/13B/70B on Amazon SageMaker](https://www.philschmid.de/sagemaker-llama-llm), a guide on using Hugging Face's LLM DLC container for secure and scalable deployment. ## LlamaConfig [[autodoc]] LlamaConfig ## LlamaTokenizer [[autodoc]] LlamaTokenizer - build_inputs_with_special_tokens - get_special_tokens_mask - create_token_type_ids_from_sequences - save_vocabulary ## LlamaTokenizerFast [[autodoc]] LlamaTokenizerFast - build_inputs_with_special_tokens - get_special_tokens_mask - create_token_type_ids_from_sequences - update_post_processor - save_vocabulary ## LlamaModel [[autodoc]] LlamaModel - forward ## LlamaForCausalLM [[autodoc]] LlamaForCausalLM - forward ## LlamaForSequenceClassification [[autodoc]] LlamaForSequenceClassification - forward
huggingface/transformers/blob/main/docs/source/en/model_doc/llama2.md
!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # RegNet ## Overview The RegNet model was proposed in [Designing Network Design Spaces](https://arxiv.org/abs/2003.13678) by Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, Piotr Dollár. The authors design search spaces to perform Neural Architecture Search (NAS). They first start from a high dimensional search space and iteratively reduce the search space by empirically applying constraints based on the best-performing models sampled by the current search space. The abstract from the paper is the following: *In this work, we present a new network design paradigm. Our goal is to help advance the understanding of network design and discover design principles that generalize across settings. Instead of focusing on designing individual network instances, we design network design spaces that parametrize populations of networks. The overall process is analogous to classic manual design of networks, but elevated to the design space level. Using our methodology we explore the structure aspect of network design and arrive at a low-dimensional design space consisting of simple, regular networks that we call RegNet. The core insight of the RegNet parametrization is surprisingly simple: widths and depths of good networks can be explained by a quantized linear function. We analyze the RegNet design space and arrive at interesting findings that do not match the current practice of network design. The RegNet design space provides simple and fast networks that work well across a wide range of flop regimes. Under comparable training settings and flops, the RegNet models outperform the popular EfficientNet models while being up to 5x faster on GPUs.* This model was contributed by [Francesco](https://huggingface.co/Francesco). The TensorFlow version of the model was contributed by [sayakpaul](https://huggingface.co/sayakpaul) and [ariG23498](https://huggingface.co/ariG23498). The original code can be found [here](https://github.com/facebookresearch/pycls). The huge 10B model from [Self-supervised Pretraining of Visual Features in the Wild](https://arxiv.org/abs/2103.01988), trained on one billion Instagram images, is available on the [hub](https://huggingface.co/facebook/regnet-y-10b-seer) ## Resources A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with RegNet. <PipelineTag pipeline="image-classification"/> - [`RegNetForImageClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/image-classification) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/image_classification.ipynb). - See also: [Image classification task guide](../tasks/image_classification) If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource. ## RegNetConfig [[autodoc]] RegNetConfig <frameworkcontent> <pt> ## RegNetModel [[autodoc]] RegNetModel - forward ## RegNetForImageClassification [[autodoc]] RegNetForImageClassification - forward </pt> <tf> ## TFRegNetModel [[autodoc]] TFRegNetModel - call ## TFRegNetForImageClassification [[autodoc]] TFRegNetForImageClassification - call </tf> <jax> ## FlaxRegNetModel [[autodoc]] FlaxRegNetModel - __call__ ## FlaxRegNetForImageClassification [[autodoc]] FlaxRegNetForImageClassification - __call__ </jax> </frameworkcontent>
huggingface/transformers/blob/main/docs/source/en/model_doc/regnet.md
!--Copyright 2021 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # WavLM ## Overview The WavLM model was proposed in [WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing](https://arxiv.org/abs/2110.13900) by Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki Kanda, Takuya Yoshioka, Xiong Xiao, Jian Wu, Long Zhou, Shuo Ren, Yanmin Qian, Yao Qian, Jian Wu, Michael Zeng, Furu Wei. The abstract from the paper is the following: *Self-supervised learning (SSL) achieves great success in speech recognition, while limited exploration has been attempted for other speech processing tasks. As speech signal contains multi-faceted information including speaker identity, paralinguistics, spoken content, etc., learning universal representations for all speech tasks is challenging. In this paper, we propose a new pre-trained model, WavLM, to solve full-stack downstream speech tasks. WavLM is built based on the HuBERT framework, with an emphasis on both spoken content modeling and speaker identity preservation. We first equip the Transformer structure with gated relative position bias to improve its capability on recognition tasks. For better speaker discrimination, we propose an utterance mixing training strategy, where additional overlapped utterances are created unsupervisely and incorporated during model training. Lastly, we scale up the training dataset from 60k hours to 94k hours. WavLM Large achieves state-of-the-art performance on the SUPERB benchmark, and brings significant improvements for various speech processing tasks on their representative benchmarks.* Relevant checkpoints can be found under https://huggingface.co/models?other=wavlm. This model was contributed by [patrickvonplaten](https://huggingface.co/patrickvonplaten). The Authors' code can be found [here](https://github.com/microsoft/unilm/tree/master/wavlm). ## Usage tips - WavLM is a speech model that accepts a float array corresponding to the raw waveform of the speech signal. Please use [`Wav2Vec2Processor`] for the feature extraction. - WavLM model can be fine-tuned using connectionist temporal classification (CTC) so the model output has to be decoded using [`Wav2Vec2CTCTokenizer`]. - WavLM performs especially well on speaker verification, speaker identification, and speaker diarization tasks. ## Resources - [Audio classification task guide](../tasks/audio_classification) - [Automatic speech recognition task guide](../tasks/asr) ## WavLMConfig [[autodoc]] WavLMConfig ## WavLMModel [[autodoc]] WavLMModel - forward ## WavLMForCTC [[autodoc]] WavLMForCTC - forward ## WavLMForSequenceClassification [[autodoc]] WavLMForSequenceClassification - forward ## WavLMForAudioFrameClassification [[autodoc]] WavLMForAudioFrameClassification - forward ## WavLMForXVector [[autodoc]] WavLMForXVector - forward
huggingface/transformers/blob/main/docs/source/en/model_doc/wavlm.md
Performer fine-tuning Example authors: @TevenLeScao, @Patrickvonplaten Paper authors: Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane, Tamas Sarlos, Peter Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser, David Belanger, Lucy Colwell, Adrian Weller ## Requirements `datasets`, `flax` and `jax`. `wandb` integration is built-in if you want to use it. ## Examples `sanity_script.sh` will launch performer fine-tuning from the bert-base-cased checkpoint on the Simple Wikipedia dataset (a small, easy-language English Wikipedia) from `datasets`. `full_script.sh` will launch performer fine-tuning from the bert-large-cased checkpoint on the English Wikipedia dataset from `datasets`. Here are a few key arguments: - Remove the `--performer` argument to use a standard Bert model. - Add `--reinitialize` to start from a blank model rather than a Bert checkpoint. - You may change the Bert size by passing a different [checkpoint](https://huggingface.co/transformers/pretrained_models.html) to the `--model_name_or_path` argument. - Passing your user name to the `--wandb_user_name` argument will trigger weights and biases logging. - You can choose a dataset with `--dataset_name` and `--dataset_config`. Our [viewer](https://huggingface.co/datasets/viewer/) will help you find what you need.
huggingface/transformers/blob/main/examples/research_projects/performer/README.md
!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # ResNet ## Overview The ResNet model was proposed in [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) by Kaiming He, Xiangyu Zhang, Shaoqing Ren and Jian Sun. Our implementation follows the small changes made by [Nvidia](https://catalog.ngc.nvidia.com/orgs/nvidia/resources/resnet_50_v1_5_for_pytorch), we apply the `stride=2` for downsampling in bottleneck's `3x3` conv and not in the first `1x1`. This is generally known as "ResNet v1.5". ResNet introduced residual connections, they allow to train networks with an unseen number of layers (up to 1000). ResNet won the 2015 ILSVRC & COCO competition, one important milestone in deep computer vision. The abstract from the paper is the following: *Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers---8x deeper than VGG nets but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.* The figure below illustrates the architecture of ResNet. Taken from the [original paper](https://arxiv.org/abs/1512.03385). <img width="600" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/resnet_architecture.png"/> This model was contributed by [Francesco](https://huggingface.co/Francesco). The TensorFlow version of this model was added by [amyeroberts](https://huggingface.co/amyeroberts). The original code can be found [here](https://github.com/KaimingHe/deep-residual-networks). ## Resources A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with ResNet. <PipelineTag pipeline="image-classification"/> - [`ResNetForImageClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/image-classification) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/image_classification.ipynb). - See also: [Image classification task guide](../tasks/image_classification) If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource. ## ResNetConfig [[autodoc]] ResNetConfig <frameworkcontent> <pt> ## ResNetModel [[autodoc]] ResNetModel - forward ## ResNetForImageClassification [[autodoc]] ResNetForImageClassification - forward </pt> <tf> ## TFResNetModel [[autodoc]] TFResNetModel - call ## TFResNetForImageClassification [[autodoc]] TFResNetForImageClassification - call </tf> <jax> ## FlaxResNetModel [[autodoc]] FlaxResNetModel - __call__ ## FlaxResNetForImageClassification [[autodoc]] FlaxResNetForImageClassification - __call__ </jax> </frameworkcontent>
huggingface/transformers/blob/main/docs/source/en/model_doc/resnet.md
End-to-End finetuning of RAG (including DPR retriever) for Question Answering. This finetuning script is actively maintained by [Shamane Siri](https://github.com/shamanez). Feel free to ask questions on the [Forum](https://discuss.huggingface.co/) or post an issue on [GitHub](https://github.com/huggingface/transformers/issues/new/choose) and tag @shamanez. Others that helped out: Patrick von Platen (@patrickvonplaten), Quentin Lhoest (@lhoestq), and Rivindu Weerasekera (@rivinduw) The original RAG implementation is able to train the question encoder and generator end-to-end. This extension enables complete end-to-end training of RAG including the context encoder in the retriever component. Please read the [accompanying blog post](https://shamanesiri.medium.com/how-to-finetune-the-entire-rag-architecture-including-dpr-retriever-4b4385322552) for details on this implementation. The original RAG code has also been modified to work with the latest versions of pytorch lightning (version 1.2.10) and RAY (version 1.3.0). All other implementation details remain the same as the [original RAG code](https://github.com/huggingface/transformers/tree/main/examples/research_projects/rag). Read more about RAG at https://arxiv.org/abs/2005.11401. This code can be modified to experiment with other research on retrival augmented models which include training of the retriever (e.g. [REALM](https://arxiv.org/abs/2002.08909) and [MARGE](https://arxiv.org/abs/2006.15020)). To start training, use the bash script (finetune_rag_ray_end2end.sh) in this folder. This script also includes descriptions on each command-line argument used. # Latest Update ⚠️ Updated the rag-end2end-retriever to be compatible with PL==1.6.4 and RAY==1.13.0 (latest versions to the date 2022-June-11) # Note ⚠️ This project should be run with pytorch-lightning==1.3.1 which has a potential security vulnerability # Testing The following two bash scripts can be used to quickly test the implementation. 1. sh ./test_run/test_finetune.sh script - Tests the full end-to-end fine-tuning ability with a dummy knowlendge-base and dummy training dataset (check test_dir directory). - Users can replace the dummy dataset and knowledge-base with their own to do their own finetuning. - Please read the comments in the test_finetune.sh file. 2. sh ./test_run/test_rag_new_features.sh - Tests the newly added functions (set_context_encoder and set_context_encoder_tokenizer) related to modeling rag. - This is sufficient to check the model's ability to use the set functions correctly. # Comparison of end2end RAG (including DPR finetuning) VS original-RAG We conducted a simple experiment to investigate the effectiveness of this end2end training extension using the SQuAD dataset. Please execute the following steps to reproduce the results. - Create a knowledge-base using all the context passages in the SQuAD dataset with their respective titles. - Use the question-answer pairs as training data. - Train the system for 10 epochs. - Test the Exact Match (EM) score with the SQuAD dataset's validation set. - Training dataset, the knowledge-base, and hyperparameters used in experiments can be accessed from [here](https://drive.google.com/drive/folders/1qyzV-PaEARWvaU_jjpnU_NUS3U_dSjtG?usp=sharing). # Results - We train both models for 10 epochs. | Model Type | EM-Score| | --------------------| --------| | RAG-original | 28.12 | | RAG-end2end with DPR| 40.02 |
huggingface/transformers/blob/main/examples/research_projects/rag-end2end-retriever/README.md
!--Copyright 2021 NVIDIA Corporation and The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # QDQBERT ## Overview The QDQBERT model can be referenced in [Integer Quantization for Deep Learning Inference: Principles and Empirical Evaluation](https://arxiv.org/abs/2004.09602) by Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev and Paulius Micikevicius. The abstract from the paper is the following: *Quantization techniques can reduce the size of Deep Neural Networks and improve inference latency and throughput by taking advantage of high throughput integer instructions. In this paper we review the mathematical aspects of quantization parameters and evaluate their choices on a wide range of neural network models for different application domains, including vision, speech, and language. We focus on quantization techniques that are amenable to acceleration by processors with high-throughput integer math pipelines. We also present a workflow for 8-bit quantization that is able to maintain accuracy within 1% of the floating-point baseline on all networks studied, including models that are more difficult to quantize, such as MobileNets and BERT-large.* This model was contributed by [shangz](https://huggingface.co/shangz). ## Usage tips - QDQBERT model adds fake quantization operations (pair of QuantizeLinear/DequantizeLinear ops) to (i) linear layer inputs and weights, (ii) matmul inputs, (iii) residual add inputs, in BERT model. - QDQBERT requires the dependency of [Pytorch Quantization Toolkit](https://github.com/NVIDIA/TensorRT/tree/master/tools/pytorch-quantization). To install `pip install pytorch-quantization --extra-index-url https://pypi.ngc.nvidia.com` - QDQBERT model can be loaded from any checkpoint of HuggingFace BERT model (for example *bert-base-uncased*), and perform Quantization Aware Training/Post Training Quantization. - A complete example of using QDQBERT model to perform Quatization Aware Training and Post Training Quantization for SQUAD task can be found at [transformers/examples/research_projects/quantization-qdqbert/](examples/research_projects/quantization-qdqbert/). ### Set default quantizers QDQBERT model adds fake quantization operations (pair of QuantizeLinear/DequantizeLinear ops) to BERT by `TensorQuantizer` in [Pytorch Quantization Toolkit](https://github.com/NVIDIA/TensorRT/tree/master/tools/pytorch-quantization). `TensorQuantizer` is the module for quantizing tensors, with `QuantDescriptor` defining how the tensor should be quantized. Refer to [Pytorch Quantization Toolkit userguide](https://docs.nvidia.com/deeplearning/tensorrt/pytorch-quantization-toolkit/docs/userguide.html) for more details. Before creating QDQBERT model, one has to set the default `QuantDescriptor` defining default tensor quantizers. Example: ```python >>> import pytorch_quantization.nn as quant_nn >>> from pytorch_quantization.tensor_quant import QuantDescriptor >>> # The default tensor quantizer is set to use Max calibration method >>> input_desc = QuantDescriptor(num_bits=8, calib_method="max") >>> # The default tensor quantizer is set to be per-channel quantization for weights >>> weight_desc = QuantDescriptor(num_bits=8, axis=((0,))) >>> quant_nn.QuantLinear.set_default_quant_desc_input(input_desc) >>> quant_nn.QuantLinear.set_default_quant_desc_weight(weight_desc) ``` ### Calibration Calibration is the terminology of passing data samples to the quantizer and deciding the best scaling factors for tensors. After setting up the tensor quantizers, one can use the following example to calibrate the model: ```python >>> # Find the TensorQuantizer and enable calibration >>> for name, module in model.named_modules(): ... if name.endswith("_input_quantizer"): ... module.enable_calib() ... module.disable_quant() # Use full precision data to calibrate >>> # Feeding data samples >>> model(x) >>> # ... >>> # Finalize calibration >>> for name, module in model.named_modules(): ... if name.endswith("_input_quantizer"): ... module.load_calib_amax() ... module.enable_quant() >>> # If running on GPU, it needs to call .cuda() again because new tensors will be created by calibration process >>> model.cuda() >>> # Keep running the quantized model >>> # ... ``` ### Export to ONNX The goal of exporting to ONNX is to deploy inference by [TensorRT](https://developer.nvidia.com/tensorrt). Fake quantization will be broken into a pair of QuantizeLinear/DequantizeLinear ONNX ops. After setting static member of TensorQuantizer to use Pytorch’s own fake quantization functions, fake quantized model can be exported to ONNX, follow the instructions in [torch.onnx](https://pytorch.org/docs/stable/onnx.html). Example: ```python >>> from pytorch_quantization.nn import TensorQuantizer >>> TensorQuantizer.use_fb_fake_quant = True >>> # Load the calibrated model >>> ... >>> # ONNX export >>> torch.onnx.export(...) ``` ## Resources - [Text classification task guide](../tasks/sequence_classification) - [Token classification task guide](../tasks/token_classification) - [Question answering task guide](../tasks/question_answering) - [Causal language modeling task guide](../tasks/language_modeling) - [Masked language modeling task guide](../tasks/masked_language_modeling) - [Multiple choice task guide](../tasks/multiple_choice) ## QDQBertConfig [[autodoc]] QDQBertConfig ## QDQBertModel [[autodoc]] QDQBertModel - forward ## QDQBertLMHeadModel [[autodoc]] QDQBertLMHeadModel - forward ## QDQBertForMaskedLM [[autodoc]] QDQBertForMaskedLM - forward ## QDQBertForSequenceClassification [[autodoc]] QDQBertForSequenceClassification - forward ## QDQBertForNextSentencePrediction [[autodoc]] QDQBertForNextSentencePrediction - forward ## QDQBertForMultipleChoice [[autodoc]] QDQBertForMultipleChoice - forward ## QDQBertForTokenClassification [[autodoc]] QDQBertForTokenClassification - forward ## QDQBertForQuestionAnswering [[autodoc]] QDQBertForQuestionAnswering - forward
huggingface/transformers/blob/main/docs/source/en/model_doc/qdqbert.md
!--Copyright 2021 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # UniSpeech ## Overview The UniSpeech model was proposed in [UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data](https://arxiv.org/abs/2101.07597) by Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang . The abstract from the paper is the following: *In this paper, we propose a unified pre-training approach called UniSpeech to learn speech representations with both unlabeled and labeled data, in which supervised phonetic CTC learning and phonetically-aware contrastive self-supervised learning are conducted in a multi-task learning manner. The resultant representations can capture information more correlated with phonetic structures and improve the generalization across languages and domains. We evaluate the effectiveness of UniSpeech for cross-lingual representation learning on public CommonVoice corpus. The results show that UniSpeech outperforms self-supervised pretraining and supervised transfer learning for speech recognition by a maximum of 13.4% and 17.8% relative phone error rate reductions respectively (averaged over all testing languages). The transferability of UniSpeech is also demonstrated on a domain-shift speech recognition task, i.e., a relative word error rate reduction of 6% against the previous approach.* This model was contributed by [patrickvonplaten](https://huggingface.co/patrickvonplaten). The Authors' code can be found [here](https://github.com/microsoft/UniSpeech/tree/main/UniSpeech). ## Usage tips - UniSpeech is a speech model that accepts a float array corresponding to the raw waveform of the speech signal. Please use [`Wav2Vec2Processor`] for the feature extraction. - UniSpeech model can be fine-tuned using connectionist temporal classification (CTC) so the model output has to be decoded using [`Wav2Vec2CTCTokenizer`]. ## Resources - [Audio classification task guide](../tasks/audio_classification) - [Automatic speech recognition task guide](../tasks/asr) ## UniSpeechConfig [[autodoc]] UniSpeechConfig ## UniSpeech specific outputs [[autodoc]] models.unispeech.modeling_unispeech.UniSpeechForPreTrainingOutput ## UniSpeechModel [[autodoc]] UniSpeechModel - forward ## UniSpeechForCTC [[autodoc]] UniSpeechForCTC - forward ## UniSpeechForSequenceClassification [[autodoc]] UniSpeechForSequenceClassification - forward ## UniSpeechForPreTraining [[autodoc]] UniSpeechForPreTraining - forward
huggingface/transformers/blob/main/docs/source/en/model_doc/unispeech.md
!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Monocular depth estimation Monocular depth estimation is a computer vision task that involves predicting the depth information of a scene from a single image. In other words, it is the process of estimating the distance of objects in a scene from a single camera viewpoint. Monocular depth estimation has various applications, including 3D reconstruction, augmented reality, autonomous driving, and robotics. It is a challenging task as it requires the model to understand the complex relationships between objects in the scene and the corresponding depth information, which can be affected by factors such as lighting conditions, occlusion, and texture. <Tip> The task illustrated in this tutorial is supported by the following model architectures: <!--This tip is automatically generated by `make fix-copies`, do not fill manually!--> [DPT](../model_doc/dpt), [GLPN](../model_doc/glpn) <!--End of the generated tip--> </Tip> In this guide you'll learn how to: * create a depth estimation pipeline * run depth estimation inference by hand Before you begin, make sure you have all the necessary libraries installed: ```bash pip install -q transformers ``` ## Depth estimation pipeline The simplest way to try out inference with a model supporting depth estimation is to use the corresponding [`pipeline`]. Instantiate a pipeline from a [checkpoint on the Hugging Face Hub](https://huggingface.co/models?pipeline_tag=depth-estimation&sort=downloads): ```py >>> from transformers import pipeline >>> checkpoint = "vinvino02/glpn-nyu" >>> depth_estimator = pipeline("depth-estimation", model=checkpoint) ``` Next, choose an image to analyze: ```py >>> from PIL import Image >>> import requests >>> url = "https://unsplash.com/photos/HwBAsSbPBDU/download?ixid=MnwxMjA3fDB8MXxzZWFyY2h8MzR8fGNhciUyMGluJTIwdGhlJTIwc3RyZWV0fGVufDB8MHx8fDE2Nzg5MDEwODg&force=true&w=640" >>> image = Image.open(requests.get(url, stream=True).raw) >>> image ``` <div class="flex justify-center"> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/depth-estimation-example.jpg" alt="Photo of a busy street"/> </div> Pass the image to the pipeline. ```py >>> predictions = depth_estimator(image) ``` The pipeline returns a dictionary with two entries. The first one, called `predicted_depth`, is a tensor with the values being the depth expressed in meters for each pixel. The second one, `depth`, is a PIL image that visualizes the depth estimation result. Let's take a look at the visualized result: ```py >>> predictions["depth"] ``` <div class="flex justify-center"> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/depth-visualization.png" alt="Depth estimation visualization"/> </div> ## Depth estimation inference by hand Now that you've seen how to use the depth estimation pipeline, let's see how we can replicate the same result by hand. Start by loading the model and associated processor from a [checkpoint on the Hugging Face Hub](https://huggingface.co/models?pipeline_tag=depth-estimation&sort=downloads). Here we'll use the same checkpoint as before: ```py >>> from transformers import AutoImageProcessor, AutoModelForDepthEstimation >>> checkpoint = "vinvino02/glpn-nyu" >>> image_processor = AutoImageProcessor.from_pretrained(checkpoint) >>> model = AutoModelForDepthEstimation.from_pretrained(checkpoint) ``` Prepare the image input for the model using the `image_processor` that will take care of the necessary image transformations such as resizing and normalization: ```py >>> pixel_values = image_processor(image, return_tensors="pt").pixel_values ``` Pass the prepared inputs through the model: ```py >>> import torch >>> with torch.no_grad(): ... outputs = model(pixel_values) ... predicted_depth = outputs.predicted_depth ``` Visualize the results: ```py >>> import numpy as np >>> # interpolate to original size >>> prediction = torch.nn.functional.interpolate( ... predicted_depth.unsqueeze(1), ... size=image.size[::-1], ... mode="bicubic", ... align_corners=False, ... ).squeeze() >>> output = prediction.numpy() >>> formatted = (output * 255 / np.max(output)).astype("uint8") >>> depth = Image.fromarray(formatted) >>> depth ``` <div class="flex justify-center"> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/depth-visualization.png" alt="Depth estimation visualization"/> </div>
huggingface/transformers/blob/main/docs/source/en/tasks/monocular_depth_estimation.md
!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # UnivNet ## Overview The UnivNet model was proposed in [UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation](https://arxiv.org/abs/2106.07889) by Won Jang, Dan Lim, Jaesam Yoon, Bongwan Kin, and Juntae Kim. The UnivNet model is a generative adversarial network (GAN) trained to synthesize high fidelity speech waveforms. The UnivNet model shared in `transformers` is the *generator*, which maps a conditioning log-mel spectrogram and optional noise sequence to a speech waveform (e.g. a vocoder). Only the generator is required for inference. The *discriminator* used to train the `generator` is not implemented. The abstract from the paper is the following: *Most neural vocoders employ band-limited mel-spectrograms to generate waveforms. If full-band spectral features are used as the input, the vocoder can be provided with as much acoustic information as possible. However, in some models employing full-band mel-spectrograms, an over-smoothing problem occurs as part of which non-sharp spectrograms are generated. To address this problem, we propose UnivNet, a neural vocoder that synthesizes high-fidelity waveforms in real time. Inspired by works in the field of voice activity detection, we added a multi-resolution spectrogram discriminator that employs multiple linear spectrogram magnitudes computed using various parameter sets. Using full-band mel-spectrograms as input, we expect to generate high-resolution signals by adding a discriminator that employs spectrograms of multiple resolutions as the input. In an evaluation on a dataset containing information on hundreds of speakers, UnivNet obtained the best objective and subjective results among competing models for both seen and unseen speakers. These results, including the best subjective score for text-to-speech, demonstrate the potential for fast adaptation to new speakers without a need for training from scratch.* Tips: - The `noise_sequence` argument for [`UnivNetModel.forward`] should be standard Gaussian noise (such as from `torch.randn`) of shape `([batch_size], noise_length, model.config.model_in_channels)`, where `noise_length` should match the length dimension (dimension 1) of the `input_features` argument. If not supplied, it will be randomly generated; a `torch.Generator` can be supplied to the `generator` argument so that the forward pass can be reproduced. (Note that [`UnivNetFeatureExtractor`] will return generated noise by default, so it shouldn't be necessary to generate `noise_sequence` manually.) - Padding added by [`UnivNetFeatureExtractor`] can be removed from the [`UnivNetModel`] output through the [`UnivNetFeatureExtractor.batch_decode`] method, as shown in the usage example below. - Padding the end of each waveform with silence can reduce artifacts at the end of the generated audio sample. This can be done by supplying `pad_end = True` to [`UnivNetFeatureExtractor.__call__`]. See [this issue](https://github.com/seungwonpark/melgan/issues/8) for more details. Usage Example: ```python import torch from scipy.io.wavfile import write from datasets import Audio, load_dataset from transformers import UnivNetFeatureExtractor, UnivNetModel model_id_or_path = "dg845/univnet-dev" model = UnivNetModel.from_pretrained(model_id_or_path) feature_extractor = UnivNetFeatureExtractor.from_pretrained(model_id_or_path) ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") # Resample the audio to the model and feature extractor's sampling rate. ds = ds.cast_column("audio", Audio(sampling_rate=feature_extractor.sampling_rate)) # Pad the end of the converted waveforms to reduce artifacts at the end of the output audio samples. inputs = feature_extractor( ds[0]["audio"]["array"], sampling_rate=ds[0]["audio"]["sampling_rate"], pad_end=True, return_tensors="pt" ) with torch.no_grad(): audio = model(**inputs) # Remove the extra padding at the end of the output. audio = feature_extractor.batch_decode(**audio)[0] # Convert to wav file write("sample_audio.wav", feature_extractor.sampling_rate, audio) ``` This model was contributed by [dg845](https://huggingface.co/dg845). To the best of my knowledge, there is no official code release, but an unofficial implementation can be found at [maum-ai/univnet](https://github.com/maum-ai/univnet) with pretrained checkpoints [here](https://github.com/maum-ai/univnet#pre-trained-model). ## UnivNetConfig [[autodoc]] UnivNetConfig ## UnivNetFeatureExtractor [[autodoc]] UnivNetFeatureExtractor - __call__ ## UnivNetModel [[autodoc]] UnivNetModel - forward
huggingface/transformers/blob/main/docs/source/en/model_doc/univnet.md
!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. specific language governing permissions and limitations under the License. --> # Donut ## Overview The Donut model was proposed in [OCR-free Document Understanding Transformer](https://arxiv.org/abs/2111.15664) by Geewook Kim, Teakgyu Hong, Moonbin Yim, Jeongyeon Nam, Jinyoung Park, Jinyeong Yim, Wonseok Hwang, Sangdoo Yun, Dongyoon Han, Seunghyun Park. Donut consists of an image Transformer encoder and an autoregressive text Transformer decoder to perform document understanding tasks such as document image classification, form understanding and visual question answering. The abstract from the paper is the following: *Understanding document images (e.g., invoices) is a core but challenging task since it requires complex functions such as reading text and a holistic understanding of the document. Current Visual Document Understanding (VDU) methods outsource the task of reading text to off-the-shelf Optical Character Recognition (OCR) engines and focus on the understanding task with the OCR outputs. Although such OCR-based approaches have shown promising performance, they suffer from 1) high computational costs for using OCR; 2) inflexibility of OCR models on languages or types of document; 3) OCR error propagation to the subsequent process. To address these issues, in this paper, we introduce a novel OCR-free VDU model named Donut, which stands for Document understanding transformer. As the first step in OCR-free VDU research, we propose a simple architecture (i.e., Transformer) with a pre-training objective (i.e., cross-entropy loss). Donut is conceptually simple yet effective. Through extensive experiments and analyses, we show a simple OCR-free VDU model, Donut, achieves state-of-the-art performances on various VDU tasks in terms of both speed and accuracy. In addition, we offer a synthetic data generator that helps the model pre-training to be flexible in various languages and domains.* <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/donut_architecture.jpg" alt="drawing" width="600"/> <small> Donut high-level overview. Taken from the <a href="https://arxiv.org/abs/2111.15664">original paper</a>. </small> This model was contributed by [nielsr](https://huggingface.co/nielsr). The original code can be found [here](https://github.com/clovaai/donut). ## Usage tips - The quickest way to get started with Donut is by checking the [tutorial notebooks](https://github.com/NielsRogge/Transformers-Tutorials/tree/master/Donut), which show how to use the model at inference time as well as fine-tuning on custom data. - Donut is always used within the [VisionEncoderDecoder](vision-encoder-decoder) framework. ## Inference examples Donut's [`VisionEncoderDecoder`] model accepts images as input and makes use of [`~generation.GenerationMixin.generate`] to autoregressively generate text given the input image. The [`DonutImageProcessor`] class is responsible for preprocessing the input image and [`XLMRobertaTokenizer`/`XLMRobertaTokenizerFast`] decodes the generated target tokens to the target string. The [`DonutProcessor`] wraps [`DonutImageProcessor`] and [`XLMRobertaTokenizer`/`XLMRobertaTokenizerFast`] into a single instance to both extract the input features and decode the predicted token ids. - Step-by-step Document Image Classification ```py >>> import re >>> from transformers import DonutProcessor, VisionEncoderDecoderModel >>> from datasets import load_dataset >>> import torch >>> processor = DonutProcessor.from_pretrained("naver-clova-ix/donut-base-finetuned-rvlcdip") >>> model = VisionEncoderDecoderModel.from_pretrained("naver-clova-ix/donut-base-finetuned-rvlcdip") >>> device = "cuda" if torch.cuda.is_available() else "cpu" >>> model.to(device) # doctest: +IGNORE_RESULT >>> # load document image >>> dataset = load_dataset("hf-internal-testing/example-documents", split="test") >>> image = dataset[1]["image"] >>> # prepare decoder inputs >>> task_prompt = "<s_rvlcdip>" >>> decoder_input_ids = processor.tokenizer(task_prompt, add_special_tokens=False, return_tensors="pt").input_ids >>> pixel_values = processor(image, return_tensors="pt").pixel_values >>> outputs = model.generate( ... pixel_values.to(device), ... decoder_input_ids=decoder_input_ids.to(device), ... max_length=model.decoder.config.max_position_embeddings, ... pad_token_id=processor.tokenizer.pad_token_id, ... eos_token_id=processor.tokenizer.eos_token_id, ... use_cache=True, ... bad_words_ids=[[processor.tokenizer.unk_token_id]], ... return_dict_in_generate=True, ... ) >>> sequence = processor.batch_decode(outputs.sequences)[0] >>> sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "") >>> sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() # remove first task start token >>> print(processor.token2json(sequence)) {'class': 'advertisement'} ``` - Step-by-step Document Parsing ```py >>> import re >>> from transformers import DonutProcessor, VisionEncoderDecoderModel >>> from datasets import load_dataset >>> import torch >>> processor = DonutProcessor.from_pretrained("naver-clova-ix/donut-base-finetuned-cord-v2") >>> model = VisionEncoderDecoderModel.from_pretrained("naver-clova-ix/donut-base-finetuned-cord-v2") >>> device = "cuda" if torch.cuda.is_available() else "cpu" >>> model.to(device) # doctest: +IGNORE_RESULT >>> # load document image >>> dataset = load_dataset("hf-internal-testing/example-documents", split="test") >>> image = dataset[2]["image"] >>> # prepare decoder inputs >>> task_prompt = "<s_cord-v2>" >>> decoder_input_ids = processor.tokenizer(task_prompt, add_special_tokens=False, return_tensors="pt").input_ids >>> pixel_values = processor(image, return_tensors="pt").pixel_values >>> outputs = model.generate( ... pixel_values.to(device), ... decoder_input_ids=decoder_input_ids.to(device), ... max_length=model.decoder.config.max_position_embeddings, ... pad_token_id=processor.tokenizer.pad_token_id, ... eos_token_id=processor.tokenizer.eos_token_id, ... use_cache=True, ... bad_words_ids=[[processor.tokenizer.unk_token_id]], ... return_dict_in_generate=True, ... ) >>> sequence = processor.batch_decode(outputs.sequences)[0] >>> sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "") >>> sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() # remove first task start token >>> print(processor.token2json(sequence)) {'menu': {'nm': 'CINNAMON SUGAR', 'unitprice': '17,000', 'cnt': '1 x', 'price': '17,000'}, 'sub_total': {'subtotal_price': '17,000'}, 'total': {'total_price': '17,000', 'cashprice': '20,000', 'changeprice': '3,000'}} ``` - Step-by-step Document Visual Question Answering (DocVQA) ```py >>> import re >>> from transformers import DonutProcessor, VisionEncoderDecoderModel >>> from datasets import load_dataset >>> import torch >>> processor = DonutProcessor.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa") >>> model = VisionEncoderDecoderModel.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa") >>> device = "cuda" if torch.cuda.is_available() else "cpu" >>> model.to(device) # doctest: +IGNORE_RESULT >>> # load document image from the DocVQA dataset >>> dataset = load_dataset("hf-internal-testing/example-documents", split="test") >>> image = dataset[0]["image"] >>> # prepare decoder inputs >>> task_prompt = "<s_docvqa><s_question>{user_input}</s_question><s_answer>" >>> question = "When is the coffee break?" >>> prompt = task_prompt.replace("{user_input}", question) >>> decoder_input_ids = processor.tokenizer(prompt, add_special_tokens=False, return_tensors="pt").input_ids >>> pixel_values = processor(image, return_tensors="pt").pixel_values >>> outputs = model.generate( ... pixel_values.to(device), ... decoder_input_ids=decoder_input_ids.to(device), ... max_length=model.decoder.config.max_position_embeddings, ... pad_token_id=processor.tokenizer.pad_token_id, ... eos_token_id=processor.tokenizer.eos_token_id, ... use_cache=True, ... bad_words_ids=[[processor.tokenizer.unk_token_id]], ... return_dict_in_generate=True, ... ) >>> sequence = processor.batch_decode(outputs.sequences)[0] >>> sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "") >>> sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() # remove first task start token >>> print(processor.token2json(sequence)) {'question': 'When is the coffee break?', 'answer': '11-14 to 11:39 a.m.'} ``` See the [model hub](https://huggingface.co/models?filter=donut) to look for Donut checkpoints. ## Training We refer to the [tutorial notebooks](https://github.com/NielsRogge/Transformers-Tutorials/tree/master/Donut). ## DonutSwinConfig [[autodoc]] DonutSwinConfig ## DonutImageProcessor [[autodoc]] DonutImageProcessor - preprocess ## DonutFeatureExtractor [[autodoc]] DonutFeatureExtractor - __call__ ## DonutProcessor [[autodoc]] DonutProcessor - __call__ - from_pretrained - save_pretrained - batch_decode - decode ## DonutSwinModel [[autodoc]] DonutSwinModel - forward
huggingface/transformers/blob/main/docs/source/en/model_doc/donut.md
!--Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # I-BERT ## Overview The I-BERT model was proposed in [I-BERT: Integer-only BERT Quantization](https://arxiv.org/abs/2101.01321) by Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W. Mahoney and Kurt Keutzer. It's a quantized version of RoBERTa running inference up to four times faster. The abstract from the paper is the following: *Transformer based models, like BERT and RoBERTa, have achieved state-of-the-art results in many Natural Language Processing tasks. However, their memory footprint, inference latency, and power consumption are prohibitive for efficient inference at the edge, and even at the data center. While quantization can be a viable solution for this, previous work on quantizing Transformer based models use floating-point arithmetic during inference, which cannot efficiently utilize integer-only logical units such as the recent Turing Tensor Cores, or traditional integer-only ARM processors. In this work, we propose I-BERT, a novel quantization scheme for Transformer based models that quantizes the entire inference with integer-only arithmetic. Based on lightweight integer-only approximation methods for nonlinear operations, e.g., GELU, Softmax, and Layer Normalization, I-BERT performs an end-to-end integer-only BERT inference without any floating point calculation. We evaluate our approach on GLUE downstream tasks using RoBERTa-Base/Large. We show that for both cases, I-BERT achieves similar (and slightly higher) accuracy as compared to the full-precision baseline. Furthermore, our preliminary implementation of I-BERT shows a speedup of 2.4 - 4.0x for INT8 inference on a T4 GPU system as compared to FP32 inference. The framework has been developed in PyTorch and has been open-sourced.* This model was contributed by [kssteven](https://huggingface.co/kssteven). The original code can be found [here](https://github.com/kssteven418/I-BERT). ## Resources - [Text classification task guide](../tasks/sequence_classification) - [Token classification task guide](../tasks/token_classification) - [Question answering task guide](../tasks/question_answering) - [Masked language modeling task guide](../tasks/masked_language_modeling) - [Multiple choice task guide](../tasks/masked_language_modeling) ## IBertConfig [[autodoc]] IBertConfig ## IBertModel [[autodoc]] IBertModel - forward ## IBertForMaskedLM [[autodoc]] IBertForMaskedLM - forward ## IBertForSequenceClassification [[autodoc]] IBertForSequenceClassification - forward ## IBertForMultipleChoice [[autodoc]] IBertForMultipleChoice - forward ## IBertForTokenClassification [[autodoc]] IBertForTokenClassification - forward ## IBertForQuestionAnswering [[autodoc]] IBertForQuestionAnswering - forward
huggingface/transformers/blob/main/docs/source/en/model_doc/ibert.md
!--Copyright 2021 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Vision Transformer (ViT) ## Overview The Vision Transformer (ViT) model was proposed in [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby. It's the first paper that successfully trains a Transformer encoder on ImageNet, attaining very good results compared to familiar convolutional architectures. The abstract from the paper is the following: *While the Transformer architecture has become the de-facto standard for natural language processing tasks, its applications to computer vision remain limited. In vision, attention is either applied in conjunction with convolutional networks, or used to replace certain components of convolutional networks while keeping their overall structure in place. We show that this reliance on CNNs is not necessary and a pure transformer applied directly to sequences of image patches can perform very well on image classification tasks. When pre-trained on large amounts of data and transferred to multiple mid-sized or small image recognition benchmarks (ImageNet, CIFAR-100, VTAB, etc.), Vision Transformer (ViT) attains excellent results compared to state-of-the-art convolutional networks while requiring substantially fewer computational resources to train.* <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/vit_architecture.jpg" alt="drawing" width="600"/> <small> ViT architecture. Taken from the <a href="https://arxiv.org/abs/2010.11929">original paper.</a> </small> Following the original Vision Transformer, some follow-up works have been made: - [DeiT](deit) (Data-efficient Image Transformers) by Facebook AI. DeiT models are distilled vision transformers. The authors of DeiT also released more efficiently trained ViT models, which you can directly plug into [`ViTModel`] or [`ViTForImageClassification`]. There are 4 variants available (in 3 different sizes): *facebook/deit-tiny-patch16-224*, *facebook/deit-small-patch16-224*, *facebook/deit-base-patch16-224* and *facebook/deit-base-patch16-384*. Note that one should use [`DeiTImageProcessor`] in order to prepare images for the model. - [BEiT](beit) (BERT pre-training of Image Transformers) by Microsoft Research. BEiT models outperform supervised pre-trained vision transformers using a self-supervised method inspired by BERT (masked image modeling) and based on a VQ-VAE. - DINO (a method for self-supervised training of Vision Transformers) by Facebook AI. Vision Transformers trained using the DINO method show very interesting properties not seen with convolutional models. They are capable of segmenting objects, without having ever been trained to do so. DINO checkpoints can be found on the [hub](https://huggingface.co/models?other=dino). - [MAE](vit_mae) (Masked Autoencoders) by Facebook AI. By pre-training Vision Transformers to reconstruct pixel values for a high portion (75%) of masked patches (using an asymmetric encoder-decoder architecture), the authors show that this simple method outperforms supervised pre-training after fine-tuning. This model was contributed by [nielsr](https://huggingface.co/nielsr). The original code (written in JAX) can be found [here](https://github.com/google-research/vision_transformer). Note that we converted the weights from Ross Wightman's [timm library](https://github.com/rwightman/pytorch-image-models), who already converted the weights from JAX to PyTorch. Credits go to him! ## Usage tips - To feed images to the Transformer encoder, each image is split into a sequence of fixed-size non-overlapping patches, which are then linearly embedded. A [CLS] token is added to serve as representation of an entire image, which can be used for classification. The authors also add absolute position embeddings, and feed the resulting sequence of vectors to a standard Transformer encoder. - As the Vision Transformer expects each image to be of the same size (resolution), one can use [`ViTImageProcessor`] to resize (or rescale) and normalize images for the model. - Both the patch resolution and image resolution used during pre-training or fine-tuning are reflected in the name of each checkpoint. For example, `google/vit-base-patch16-224` refers to a base-sized architecture with patch resolution of 16x16 and fine-tuning resolution of 224x224. All checkpoints can be found on the [hub](https://huggingface.co/models?search=vit). - The available checkpoints are either (1) pre-trained on [ImageNet-21k](http://www.image-net.org/) (a collection of 14 million images and 21k classes) only, or (2) also fine-tuned on [ImageNet](http://www.image-net.org/challenges/LSVRC/2012/) (also referred to as ILSVRC 2012, a collection of 1.3 million images and 1,000 classes). - The Vision Transformer was pre-trained using a resolution of 224x224. During fine-tuning, it is often beneficial to use a higher resolution than pre-training [(Touvron et al., 2019)](https://arxiv.org/abs/1906.06423), [(Kolesnikov et al., 2020)](https://arxiv.org/abs/1912.11370). In order to fine-tune at higher resolution, the authors perform 2D interpolation of the pre-trained position embeddings, according to their location in the original image. - The best results are obtained with supervised pre-training, which is not the case in NLP. The authors also performed an experiment with a self-supervised pre-training objective, namely masked patched prediction (inspired by masked language modeling). With this approach, the smaller ViT-B/16 model achieves 79.9% accuracy on ImageNet, a significant improvement of 2% to training from scratch, but still 4% behind supervised pre-training. ## Resources Demo notebooks regarding inference as well as fine-tuning ViT on custom data can be found [here](https://github.com/NielsRogge/Transformers-Tutorials/tree/master/VisionTransformer). A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with ViT. If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource. `ViTForImageClassification` is supported by: <PipelineTag pipeline="image-classification"/> - A blog post on how to [Fine-Tune ViT for Image Classification with Hugging Face Transformers](https://huggingface.co/blog/fine-tune-vit) - A blog post on [Image Classification with Hugging Face Transformers and `Keras`](https://www.philschmid.de/image-classification-huggingface-transformers-keras) - A notebook on [Fine-tuning for Image Classification with Hugging Face Transformers](https://github.com/huggingface/notebooks/blob/main/examples/image_classification.ipynb) - A notebook on how to [Fine-tune the Vision Transformer on CIFAR-10 with the Hugging Face Trainer](https://github.com/NielsRogge/Transformers-Tutorials/blob/master/VisionTransformer/Fine_tuning_the_Vision_Transformer_on_CIFAR_10_with_the_%F0%9F%A4%97_Trainer.ipynb) - A notebook on how to [Fine-tune the Vision Transformer on CIFAR-10 with PyTorch Lightning](https://github.com/NielsRogge/Transformers-Tutorials/blob/master/VisionTransformer/Fine_tuning_the_Vision_Transformer_on_CIFAR_10_with_PyTorch_Lightning.ipynb) ⚗️ Optimization - A blog post on how to [Accelerate Vision Transformer (ViT) with Quantization using Optimum](https://www.philschmid.de/optimizing-vision-transformer) ⚡️ Inference - A notebook on [Quick demo: Vision Transformer (ViT) by Google Brain](https://github.com/NielsRogge/Transformers-Tutorials/blob/master/VisionTransformer/Quick_demo_of_HuggingFace_version_of_Vision_Transformer_inference.ipynb) 🚀 Deploy - A blog post on [Deploying Tensorflow Vision Models in Hugging Face with TF Serving](https://huggingface.co/blog/tf-serving-vision) - A blog post on [Deploying Hugging Face ViT on Vertex AI](https://huggingface.co/blog/deploy-vertex-ai) - A blog post on [Deploying Hugging Face ViT on Kubernetes with TF Serving](https://huggingface.co/blog/deploy-tfserving-kubernetes) ## ViTConfig [[autodoc]] ViTConfig ## ViTFeatureExtractor [[autodoc]] ViTFeatureExtractor - __call__ ## ViTImageProcessor [[autodoc]] ViTImageProcessor - preprocess <frameworkcontent> <pt> ## ViTModel [[autodoc]] ViTModel - forward ## ViTForMaskedImageModeling [[autodoc]] ViTForMaskedImageModeling - forward ## ViTForImageClassification [[autodoc]] ViTForImageClassification - forward </pt> <tf> ## TFViTModel [[autodoc]] TFViTModel - call ## TFViTForImageClassification [[autodoc]] TFViTForImageClassification - call </tf> <jax> ## FlaxVitModel [[autodoc]] FlaxViTModel - __call__ ## FlaxViTForImageClassification [[autodoc]] FlaxViTForImageClassification - __call__ </jax> </frameworkcontent>
huggingface/transformers/blob/main/docs/source/en/model_doc/vit.md
!--Copyright 2021 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Speech2Text2 ## Overview The Speech2Text2 model is used together with [Wav2Vec2](wav2vec2) for Speech Translation models proposed in [Large-Scale Self- and Semi-Supervised Learning for Speech Translation](https://arxiv.org/abs/2104.06678) by Changhan Wang, Anne Wu, Juan Pino, Alexei Baevski, Michael Auli, Alexis Conneau. Speech2Text2 is a *decoder-only* transformer model that can be used with any speech *encoder-only*, such as [Wav2Vec2](wav2vec2) or [HuBERT](hubert) for Speech-to-Text tasks. Please refer to the [SpeechEncoderDecoder](speech-encoder-decoder) class on how to combine Speech2Text2 with any speech *encoder-only* model. This model was contributed by [Patrick von Platen](https://huggingface.co/patrickvonplaten). The original code can be found [here](https://github.com/pytorch/fairseq/blob/1f7ef9ed1e1061f8c7f88f8b94c7186834398690/fairseq/models/wav2vec/wav2vec2_asr.py#L266). ## Usage tips - Speech2Text2 achieves state-of-the-art results on the CoVoST Speech Translation dataset. For more information, see the [official models](https://huggingface.co/models?other=speech2text2) . - Speech2Text2 is always used within the [SpeechEncoderDecoder](speech-encoder-decoder) framework. - Speech2Text2's tokenizer is based on [fastBPE](https://github.com/glample/fastBPE). ## Inference Speech2Text2's [`SpeechEncoderDecoderModel`] model accepts raw waveform input values from speech and makes use of [`~generation.GenerationMixin.generate`] to translate the input speech autoregressively to the target language. The [`Wav2Vec2FeatureExtractor`] class is responsible for preprocessing the input speech and [`Speech2Text2Tokenizer`] decodes the generated target tokens to the target string. The [`Speech2Text2Processor`] wraps [`Wav2Vec2FeatureExtractor`] and [`Speech2Text2Tokenizer`] into a single instance to both extract the input features and decode the predicted token ids. - Step-by-step Speech Translation ```python >>> import torch >>> from transformers import Speech2Text2Processor, SpeechEncoderDecoderModel >>> from datasets import load_dataset >>> import soundfile as sf >>> model = SpeechEncoderDecoderModel.from_pretrained("facebook/s2t-wav2vec2-large-en-de") >>> processor = Speech2Text2Processor.from_pretrained("facebook/s2t-wav2vec2-large-en-de") >>> def map_to_array(batch): ... speech, _ = sf.read(batch["file"]) ... batch["speech"] = speech ... return batch >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") >>> ds = ds.map(map_to_array) >>> inputs = processor(ds["speech"][0], sampling_rate=16_000, return_tensors="pt") >>> generated_ids = model.generate(inputs=inputs["input_values"], attention_mask=inputs["attention_mask"]) >>> transcription = processor.batch_decode(generated_ids) ``` - Speech Translation via Pipelines The automatic speech recognition pipeline can also be used to translate speech in just a couple lines of code ```python >>> from datasets import load_dataset >>> from transformers import pipeline >>> librispeech_en = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") >>> asr = pipeline( ... "automatic-speech-recognition", ... model="facebook/s2t-wav2vec2-large-en-de", ... feature_extractor="facebook/s2t-wav2vec2-large-en-de", ... ) >>> translation_de = asr(librispeech_en[0]["file"]) ``` See [model hub](https://huggingface.co/models?filter=speech2text2) to look for Speech2Text2 checkpoints. ## Resources - [Causal language modeling task guide](../tasks/language_modeling) ## Speech2Text2Config [[autodoc]] Speech2Text2Config ## Speech2TextTokenizer [[autodoc]] Speech2Text2Tokenizer - batch_decode - decode - save_vocabulary ## Speech2Text2Processor [[autodoc]] Speech2Text2Processor - __call__ - from_pretrained - save_pretrained - batch_decode - decode ## Speech2Text2ForCausalLM [[autodoc]] Speech2Text2ForCausalLM - forward
huggingface/transformers/blob/main/docs/source/en/model_doc/speech_to_text_2.md
!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Padding and truncation Batched inputs are often different lengths, so they can't be converted to fixed-size tensors. Padding and truncation are strategies for dealing with this problem, to create rectangular tensors from batches of varying lengths. Padding adds a special **padding token** to ensure shorter sequences will have the same length as either the longest sequence in a batch or the maximum length accepted by the model. Truncation works in the other direction by truncating long sequences. In most cases, padding your batch to the length of the longest sequence and truncating to the maximum length a model can accept works pretty well. However, the API supports more strategies if you need them. The three arguments you need to are: `padding`, `truncation` and `max_length`. The `padding` argument controls padding. It can be a boolean or a string: - `True` or `'longest'`: pad to the longest sequence in the batch (no padding is applied if you only provide a single sequence). - `'max_length'`: pad to a length specified by the `max_length` argument or the maximum length accepted by the model if no `max_length` is provided (`max_length=None`). Padding will still be applied if you only provide a single sequence. - `False` or `'do_not_pad'`: no padding is applied. This is the default behavior. The `truncation` argument controls truncation. It can be a boolean or a string: - `True` or `'longest_first'`: truncate to a maximum length specified by the `max_length` argument or the maximum length accepted by the model if no `max_length` is provided (`max_length=None`). This will truncate token by token, removing a token from the longest sequence in the pair until the proper length is reached. - `'only_second'`: truncate to a maximum length specified by the `max_length` argument or the maximum length accepted by the model if no `max_length` is provided (`max_length=None`). This will only truncate the second sentence of a pair if a pair of sequences (or a batch of pairs of sequences) is provided. - `'only_first'`: truncate to a maximum length specified by the `max_length` argument or the maximum length accepted by the model if no `max_length` is provided (`max_length=None`). This will only truncate the first sentence of a pair if a pair of sequences (or a batch of pairs of sequences) is provided. - `False` or `'do_not_truncate'`: no truncation is applied. This is the default behavior. The `max_length` argument controls the length of the padding and truncation. It can be an integer or `None`, in which case it will default to the maximum length the model can accept. If the model has no specific maximum input length, truncation or padding to `max_length` is deactivated. The following table summarizes the recommended way to setup padding and truncation. If you use pairs of input sequences in any of the following examples, you can replace `truncation=True` by a `STRATEGY` selected in `['only_first', 'only_second', 'longest_first']`, i.e. `truncation='only_second'` or `truncation='longest_first'` to control how both sequences in the pair are truncated as detailed before. | Truncation | Padding | Instruction | |--------------------------------------|-----------------------------------|---------------------------------------------------------------------------------------------| | no truncation | no padding | `tokenizer(batch_sentences)` | | | padding to max sequence in batch | `tokenizer(batch_sentences, padding=True)` or | | | | `tokenizer(batch_sentences, padding='longest')` | | | padding to max model input length | `tokenizer(batch_sentences, padding='max_length')` | | | padding to specific length | `tokenizer(batch_sentences, padding='max_length', max_length=42)` | | | padding to a multiple of a value | `tokenizer(batch_sentences, padding=True, pad_to_multiple_of=8)` | | truncation to max model input length | no padding | `tokenizer(batch_sentences, truncation=True)` or | | | | `tokenizer(batch_sentences, truncation=STRATEGY)` | | | padding to max sequence in batch | `tokenizer(batch_sentences, padding=True, truncation=True)` or | | | | `tokenizer(batch_sentences, padding=True, truncation=STRATEGY)` | | | padding to max model input length | `tokenizer(batch_sentences, padding='max_length', truncation=True)` or | | | | `tokenizer(batch_sentences, padding='max_length', truncation=STRATEGY)` | | | padding to specific length | Not possible | | truncation to specific length | no padding | `tokenizer(batch_sentences, truncation=True, max_length=42)` or | | | | `tokenizer(batch_sentences, truncation=STRATEGY, max_length=42)` | | | padding to max sequence in batch | `tokenizer(batch_sentences, padding=True, truncation=True, max_length=42)` or | | | | `tokenizer(batch_sentences, padding=True, truncation=STRATEGY, max_length=42)` | | | padding to max model input length | Not possible | | | padding to specific length | `tokenizer(batch_sentences, padding='max_length', truncation=True, max_length=42)` or | | | | `tokenizer(batch_sentences, padding='max_length', truncation=STRATEGY, max_length=42)` |
huggingface/transformers/blob/main/docs/source/en/pad_truncation.md
!--- Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> # Text classification examples ## GLUE tasks Based on the script [`run_glue.py`](https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py). Fine-tuning the library models for sequence classification on the GLUE benchmark: [General Language Understanding Evaluation](https://gluebenchmark.com/). This script can fine-tune any of the models on the [hub](https://huggingface.co/models) and can also be used for a dataset hosted on our [hub](https://huggingface.co/datasets) or your own data in a csv or a JSON file (the script might need some tweaks in that case, refer to the comments inside for help). GLUE is made up of a total of 9 different tasks. Here is how to run the script on one of them: ```bash export TASK_NAME=mrpc python run_glue.py \ --model_name_or_path bert-base-cased \ --task_name $TASK_NAME \ --do_train \ --do_eval \ --max_seq_length 128 \ --per_device_train_batch_size 32 \ --learning_rate 2e-5 \ --num_train_epochs 3 \ --output_dir /tmp/$TASK_NAME/ ``` where task name can be one of cola, sst2, mrpc, stsb, qqp, mnli, qnli, rte, wnli. We get the following results on the dev set of the benchmark with the previous commands (with an exception for MRPC and WNLI which are tiny and where we used 5 epochs instead of 3). Trainings are seeded so you should obtain the same results with PyTorch 1.6.0 (and close results with different versions), training times are given for information (a single Titan RTX was used): | Task | Metric | Result | Training time | |-------|------------------------------|-------------|---------------| | CoLA | Matthews corr | 56.53 | 3:17 | | SST-2 | Accuracy | 92.32 | 26:06 | | MRPC | F1/Accuracy | 88.85/84.07 | 2:21 | | STS-B | Pearson/Spearman corr. | 88.64/88.48 | 2:13 | | QQP | Accuracy/F1 | 90.71/87.49 | 2:22:26 | | MNLI | Matched acc./Mismatched acc. | 83.91/84.10 | 2:35:23 | | QNLI | Accuracy | 90.66 | 40:57 | | RTE | Accuracy | 65.70 | 57 | | WNLI | Accuracy | 56.34 | 24 | Some of these results are significantly different from the ones reported on the test set of GLUE benchmark on the website. For QQP and WNLI, please refer to [FAQ #12](https://gluebenchmark.com/faq) on the website. The following example fine-tunes BERT on the `imdb` dataset hosted on our [hub](https://huggingface.co/datasets): ```bash python run_glue.py \ --model_name_or_path bert-base-cased \ --dataset_name imdb \ --do_train \ --do_predict \ --max_seq_length 128 \ --per_device_train_batch_size 32 \ --learning_rate 2e-5 \ --num_train_epochs 3 \ --output_dir /tmp/imdb/ ``` > If your model classification head dimensions do not fit the number of labels in the dataset, you can specify `--ignore_mismatched_sizes` to adapt it. ## Text classification As an alternative, we can use the script [`run_classification.py`](./run_classification.py) to fine-tune models on a single/multi-label classification task. The following example fine-tunes BERT on the `en` subset of [`amazon_reviews_multi`](https://huggingface.co/datasets/amazon_reviews_multi) dataset. We can specify the metric, the label column and aso choose which text columns to use jointly for classification. ```bash dataset="amazon_reviews_multi" subset="en" python run_classification.py \ --model_name_or_path bert-base-uncased \ --dataset_name ${dataset} \ --dataset_config_name ${subset} \ --shuffle_train_dataset \ --metric_name accuracy \ --text_column_name "review_title,review_body,product_category" \ --text_column_delimiter "\n" \ --label_column_name stars \ --do_train \ --do_eval \ --max_seq_length 512 \ --per_device_train_batch_size 32 \ --learning_rate 2e-5 \ --num_train_epochs 1 \ --output_dir /tmp/${dataset}_${subset}/ ``` Training for 1 epoch results in acc of around 0.5958 for review_body only and 0.659 for title+body+category. The following is a multi-label classification example. It fine-tunes BERT on the `reuters21578` dataset hosted on our [hub](https://huggingface.co/datasets/reuters21578): ```bash dataset="reuters21578" subset="ModApte" python run_classification.py \ --model_name_or_path bert-base-uncased \ --dataset_name ${dataset} \ --dataset_config_name ${subset} \ --shuffle_train_dataset \ --remove_splits "unused" \ --metric_name f1 \ --text_column_name text \ --label_column_name topics \ --do_train \ --do_eval \ --max_seq_length 512 \ --per_device_train_batch_size 32 \ --learning_rate 2e-5 \ --num_train_epochs 15 \ --output_dir /tmp/${dataset}_${subset}/ ``` It results in a Micro F1 score of around 0.82 without any text and label filtering. Note that you have to explictly remove the "unused" split from the dataset, since it is not used for classification. ### Mixed precision training If you have a GPU with mixed precision capabilities (architecture Pascal or more recent), you can use mixed precision training with PyTorch 1.6.0 or latest, or by installing the [Apex](https://github.com/NVIDIA/apex) library for previous versions. Just add the flag `--fp16` to your command launching one of the scripts mentioned above! Using mixed precision training usually results in 2x-speedup for training with the same final results: | Task | Metric | Result | Training time | Result (FP16) | Training time (FP16) | |-------|------------------------------|-------------|---------------|---------------|----------------------| | CoLA | Matthews corr | 56.53 | 3:17 | 56.78 | 1:41 | | SST-2 | Accuracy | 92.32 | 26:06 | 91.74 | 13:11 | | MRPC | F1/Accuracy | 88.85/84.07 | 2:21 | 88.12/83.58 | 1:10 | | STS-B | Pearson/Spearman corr. | 88.64/88.48 | 2:13 | 88.71/88.55 | 1:08 | | QQP | Accuracy/F1 | 90.71/87.49 | 2:22:26 | 90.67/87.43 | 1:11:54 | | MNLI | Matched acc./Mismatched acc. | 83.91/84.10 | 2:35:23 | 84.04/84.06 | 1:17:06 | | QNLI | Accuracy | 90.66 | 40:57 | 90.96 | 20:16 | | RTE | Accuracy | 65.70 | 57 | 65.34 | 29 | | WNLI | Accuracy | 56.34 | 24 | 56.34 | 12 | ## PyTorch version, no Trainer Based on the script [`run_glue_no_trainer.py`](https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue_no_trainer.py). Like `run_glue.py`, this script allows you to fine-tune any of the models on the [hub](https://huggingface.co/models) on a text classification task, either a GLUE task or your own data in a csv or a JSON file. The main difference is that this script exposes the bare training loop, to allow you to quickly experiment and add any customization you would like. It offers less options than the script with `Trainer` (for instance you can easily change the options for the optimizer or the dataloaders directly in the script) but still run in a distributed setup, on TPU and supports mixed precision by the mean of the [🤗 `Accelerate`](https://github.com/huggingface/accelerate) library. You can use the script normally after installing it: ```bash pip install git+https://github.com/huggingface/accelerate ``` then ```bash export TASK_NAME=mrpc python run_glue_no_trainer.py \ --model_name_or_path bert-base-cased \ --task_name $TASK_NAME \ --max_length 128 \ --per_device_train_batch_size 32 \ --learning_rate 2e-5 \ --num_train_epochs 3 \ --output_dir /tmp/$TASK_NAME/ ``` You can then use your usual launchers to run in it in a distributed environment, but the easiest way is to run ```bash accelerate config ``` and reply to the questions asked. Then ```bash accelerate test ``` that will check everything is ready for training. Finally, you can launch training with ```bash export TASK_NAME=mrpc accelerate launch run_glue_no_trainer.py \ --model_name_or_path bert-base-cased \ --task_name $TASK_NAME \ --max_length 128 \ --per_device_train_batch_size 32 \ --learning_rate 2e-5 \ --num_train_epochs 3 \ --output_dir /tmp/$TASK_NAME/ ``` This command is the same and will work for: - a CPU-only setup - a setup with one GPU - a distributed training with several GPUs (single or multi node) - a training on TPUs Note that this library is in alpha release so your feedback is more than welcome if you encounter any problem using it. ## XNLI Based on the script [`run_xnli.py`](https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_xnli.py). [XNLI](https://cims.nyu.edu/~sbowman/xnli/) is a crowd-sourced dataset based on [MultiNLI](https://cims.nyu.edu/~sbowman/multinli/). It is an evaluation benchmark for cross-lingual text representations. Pairs of text are labeled with textual entailment annotations for 15 different languages (including both high-resource language such as English and low-resource languages such as Swahili). #### Fine-tuning on XNLI This example code fine-tunes mBERT (multi-lingual BERT) on the XNLI dataset. It runs in 106 mins on a single tesla V100 16GB. ```bash python run_xnli.py \ --model_name_or_path bert-base-multilingual-cased \ --language de \ --train_language en \ --do_train \ --do_eval \ --per_device_train_batch_size 32 \ --learning_rate 5e-5 \ --num_train_epochs 2.0 \ --max_seq_length 128 \ --output_dir /tmp/debug_xnli/ \ --save_steps -1 ``` Training with the previously defined hyper-parameters yields the following results on the **test** set: ```bash acc = 0.7093812375249501 ```
huggingface/transformers/blob/main/examples/pytorch/text-classification/README.md
!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # EfficientFormer ## Overview The EfficientFormer model was proposed in [EfficientFormer: Vision Transformers at MobileNet Speed](https://arxiv.org/abs/2206.01191) by Yanyu Li, Geng Yuan, Yang Wen, Eric Hu, Georgios Evangelidis, Sergey Tulyakov, Yanzhi Wang, Jian Ren. EfficientFormer proposes a dimension-consistent pure transformer that can be run on mobile devices for dense prediction tasks like image classification, object detection and semantic segmentation. The abstract from the paper is the following: *Vision Transformers (ViT) have shown rapid progress in computer vision tasks, achieving promising results on various benchmarks. However, due to the massive number of parameters and model design, e.g., attention mechanism, ViT-based models are generally times slower than lightweight convolutional networks. Therefore, the deployment of ViT for real-time applications is particularly challenging, especially on resource-constrained hardware such as mobile devices. Recent efforts try to reduce the computation complexity of ViT through network architecture search or hybrid design with MobileNet block, yet the inference speed is still unsatisfactory. This leads to an important question: can transformers run as fast as MobileNet while obtaining high performance? To answer this, we first revisit the network architecture and operators used in ViT-based models and identify inefficient designs. Then we introduce a dimension-consistent pure transformer (without MobileNet blocks) as a design paradigm. Finally, we perform latency-driven slimming to get a series of final models dubbed EfficientFormer. Extensive experiments show the superiority of EfficientFormer in performance and speed on mobile devices. Our fastest model, EfficientFormer-L1, achieves 79.2% top-1 accuracy on ImageNet-1K with only 1.6 ms inference latency on iPhone 12 (compiled with CoreML), which { runs as fast as MobileNetV2×1.4 (1.6 ms, 74.7% top-1),} and our largest model, EfficientFormer-L7, obtains 83.3% accuracy with only 7.0 ms latency. Our work proves that properly designed transformers can reach extremely low latency on mobile devices while maintaining high performance.* This model was contributed by [novice03](https://huggingface.co/novice03) and [Bearnardd](https://huggingface.co/Bearnardd). The original code can be found [here](https://github.com/snap-research/EfficientFormer). The TensorFlow version of this model was added by [D-Roberts](https://huggingface.co/D-Roberts). ## Documentation resources - [Image classification task guide](../tasks/image_classification) ## EfficientFormerConfig [[autodoc]] EfficientFormerConfig ## EfficientFormerImageProcessor [[autodoc]] EfficientFormerImageProcessor - preprocess <frameworkcontent> <pt> ## EfficientFormerModel [[autodoc]] EfficientFormerModel - forward ## EfficientFormerForImageClassification [[autodoc]] EfficientFormerForImageClassification - forward ## EfficientFormerForImageClassificationWithTeacher [[autodoc]] EfficientFormerForImageClassificationWithTeacher - forward </pt> <tf> ## TFEfficientFormerModel [[autodoc]] TFEfficientFormerModel - call ## TFEfficientFormerForImageClassification [[autodoc]] TFEfficientFormerForImageClassification - call ## TFEfficientFormerForImageClassificationWithTeacher [[autodoc]] TFEfficientFormerForImageClassificationWithTeacher - call </tf> </frameworkcontent>
huggingface/transformers/blob/main/docs/source/en/model_doc/efficientformer.md
!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Visual Question Answering [[open-in-colab]] Visual Question Answering (VQA) is the task of answering open-ended questions based on an image. The input to models supporting this task is typically a combination of an image and a question, and the output is an answer expressed in natural language. Some noteworthy use case examples for VQA include: * Accessibility applications for visually impaired individuals. * Education: posing questions about visual materials presented in lectures or textbooks. VQA can also be utilized in interactive museum exhibits or historical sites. * Customer service and e-commerce: VQA can enhance user experience by letting users ask questions about products. * Image retrieval: VQA models can be used to retrieve images with specific characteristics. For example, the user can ask "Is there a dog?" to find all images with dogs from a set of images. In this guide you'll learn how to: - Fine-tune a classification VQA model, specifically [ViLT](../model_doc/vilt), on the [`Graphcore/vqa` dataset](https://huggingface.co/datasets/Graphcore/vqa). - Use your fine-tuned ViLT for inference. - Run zero-shot VQA inference with a generative model, like BLIP-2. ## Fine-tuning ViLT ViLT model incorporates text embeddings into a Vision Transformer (ViT), allowing it to have a minimal design for Vision-and-Language Pre-training (VLP). This model can be used for several downstream tasks. For the VQA task, a classifier head is placed on top (a linear layer on top of the final hidden state of the `[CLS]` token) and randomly initialized. Visual Question Answering is thus treated as a **classification problem**. More recent models, such as BLIP, BLIP-2, and InstructBLIP, treat VQA as a generative task. Later in this guide we illustrate how to use them for zero-shot VQA inference. Before you begin, make sure you have all the necessary libraries installed. ```bash pip install -q transformers datasets ``` We encourage you to share your model with the community. Log in to your Hugging Face account to upload it to the 🤗 Hub. When prompted, enter your token to log in: ```py >>> from huggingface_hub import notebook_login >>> notebook_login() ``` Let's define the model checkpoint as a global variable. ```py >>> model_checkpoint = "dandelin/vilt-b32-mlm" ``` ## Load the data For illustration purposes, in this guide we use a very small sample of the annotated visual question answering `Graphcore/vqa` dataset. You can find the full dataset on [🤗 Hub](https://huggingface.co/datasets/Graphcore/vqa). As an alternative to the [`Graphcore/vqa` dataset](https://huggingface.co/datasets/Graphcore/vqa), you can download the same data manually from the official [VQA dataset page](https://visualqa.org/download.html). If you prefer to follow the tutorial with your custom data, check out how to [Create an image dataset](https://huggingface.co/docs/datasets/image_dataset#loading-script) guide in the 🤗 Datasets documentation. Let's load the first 200 examples from the validation split and explore the dataset's features: ```python >>> from datasets import load_dataset >>> dataset = load_dataset("Graphcore/vqa", split="validation[:200]") >>> dataset Dataset({ features: ['question', 'question_type', 'question_id', 'image_id', 'answer_type', 'label'], num_rows: 200 }) ``` Let's take a look at an example to understand the dataset's features: ```py >>> dataset[0] {'question': 'Where is he looking?', 'question_type': 'none of the above', 'question_id': 262148000, 'image_id': '/root/.cache/huggingface/datasets/downloads/extracted/ca733e0e000fb2d7a09fbcc94dbfe7b5a30750681d0e965f8e0a23b1c2f98c75/val2014/COCO_val2014_000000262148.jpg', 'answer_type': 'other', 'label': {'ids': ['at table', 'down', 'skateboard', 'table'], 'weights': [0.30000001192092896, 1.0, 0.30000001192092896, 0.30000001192092896]}} ``` The features relevant to the task include: * `question`: the question to be answered from the image * `image_id`: the path to the image the question refers to * `label`: the annotations We can remove the rest of the features as they won't be necessary: ```py >>> dataset = dataset.remove_columns(['question_type', 'question_id', 'answer_type']) ``` As you can see, the `label` feature contains several answers to the same question (called `ids` here) collected by different human annotators. This is because the answer to a question can be subjective. In this case, the question is "where is he looking?". Some people annotated this with "down", others with "at table", another one with "skateboard", etc. Take a look at the image and consider which answer would you give: ```python >>> from PIL import Image >>> image = Image.open(dataset[0]['image_id']) >>> image ``` <div class="flex justify-center"> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/vqa-example.png" alt="VQA Image Example"/> </div> Due to the questions' and answers' ambiguity, datasets like this are treated as a multi-label classification problem (as multiple answers are possibly valid). Moreover, rather than just creating a one-hot encoded vector, one creates a soft encoding, based on the number of times a certain answer appeared in the annotations. For instance, in the example above, because the answer "down" is selected way more often than other answers, it has a score (called `weight` in the dataset) of 1.0, and the rest of the answers have scores < 1.0. To later instantiate the model with an appropriate classification head, let's create two dictionaries: one that maps the label name to an integer and vice versa: ```py >>> import itertools >>> labels = [item['ids'] for item in dataset['label']] >>> flattened_labels = list(itertools.chain(*labels)) >>> unique_labels = list(set(flattened_labels)) >>> label2id = {label: idx for idx, label in enumerate(unique_labels)} >>> id2label = {idx: label for label, idx in label2id.items()} ``` Now that we have the mappings, we can replace the string answers with their ids, and flatten the dataset for a more convenient further preprocessing. ```python >>> def replace_ids(inputs): ... inputs["label"]["ids"] = [label2id[x] for x in inputs["label"]["ids"]] ... return inputs >>> dataset = dataset.map(replace_ids) >>> flat_dataset = dataset.flatten() >>> flat_dataset.features {'question': Value(dtype='string', id=None), 'image_id': Value(dtype='string', id=None), 'label.ids': Sequence(feature=Value(dtype='int64', id=None), length=-1, id=None), 'label.weights': Sequence(feature=Value(dtype='float64', id=None), length=-1, id=None)} ``` ## Preprocessing data The next step is to load a ViLT processor to prepare the image and text data for the model. [`ViltProcessor`] wraps a BERT tokenizer and ViLT image processor into a convenient single processor: ```py >>> from transformers import ViltProcessor >>> processor = ViltProcessor.from_pretrained(model_checkpoint) ``` To preprocess the data we need to encode the images and questions using the [`ViltProcessor`]. The processor will use the [`BertTokenizerFast`] to tokenize the text and create `input_ids`, `attention_mask` and `token_type_ids` for the text data. As for images, the processor will leverage [`ViltImageProcessor`] to resize and normalize the image, and create `pixel_values` and `pixel_mask`. All these preprocessing steps are done under the hood, we only need to call the `processor`. However, we still need to prepare the target labels. In this representation, each element corresponds to a possible answer (label). For correct answers, the element holds their respective score (weight), while the remaining elements are set to zero. The following function applies the `processor` to the images and questions and formats the labels as described above: ```py >>> import torch >>> def preprocess_data(examples): ... image_paths = examples['image_id'] ... images = [Image.open(image_path) for image_path in image_paths] ... texts = examples['question'] ... encoding = processor(images, texts, padding="max_length", truncation=True, return_tensors="pt") ... for k, v in encoding.items(): ... encoding[k] = v.squeeze() ... targets = [] ... for labels, scores in zip(examples['label.ids'], examples['label.weights']): ... target = torch.zeros(len(id2label)) ... for label, score in zip(labels, scores): ... target[label] = score ... targets.append(target) ... encoding["labels"] = targets ... return encoding ``` To apply the preprocessing function over the entire dataset, use 🤗 Datasets [`~datasets.map`] function. You can speed up `map` by setting `batched=True` to process multiple elements of the dataset at once. At this point, feel free to remove the columns you don't need. ```py >>> processed_dataset = flat_dataset.map(preprocess_data, batched=True, remove_columns=['question','question_type', 'question_id', 'image_id', 'answer_type', 'label.ids', 'label.weights']) >>> processed_dataset Dataset({ features: ['input_ids', 'token_type_ids', 'attention_mask', 'pixel_values', 'pixel_mask', 'labels'], num_rows: 200 }) ``` As a final step, create a batch of examples using [`DefaultDataCollator`]: ```py >>> from transformers import DefaultDataCollator >>> data_collator = DefaultDataCollator() ``` ## Train the model You’re ready to start training your model now! Load ViLT with [`ViltForQuestionAnswering`]. Specify the number of labels along with the label mappings: ```py >>> from transformers import ViltForQuestionAnswering >>> model = ViltForQuestionAnswering.from_pretrained(model_checkpoint, num_labels=len(id2label), id2label=id2label, label2id=label2id) ``` At this point, only three steps remain: 1. Define your training hyperparameters in [`TrainingArguments`]: ```py >>> from transformers import TrainingArguments >>> repo_id = "MariaK/vilt_finetuned_200" >>> training_args = TrainingArguments( ... output_dir=repo_id, ... per_device_train_batch_size=4, ... num_train_epochs=20, ... save_steps=200, ... logging_steps=50, ... learning_rate=5e-5, ... save_total_limit=2, ... remove_unused_columns=False, ... push_to_hub=True, ... ) ``` 2. Pass the training arguments to [`Trainer`] along with the model, dataset, processor, and data collator. ```py >>> from transformers import Trainer >>> trainer = Trainer( ... model=model, ... args=training_args, ... data_collator=data_collator, ... train_dataset=processed_dataset, ... tokenizer=processor, ... ) ``` 3. Call [`~Trainer.train`] to finetune your model. ```py >>> trainer.train() ``` Once training is completed, share your model to the Hub with the [`~Trainer.push_to_hub`] method to share your final model on the 🤗 Hub: ```py >>> trainer.push_to_hub() ``` ## Inference Now that you have fine-tuned a ViLT model, and uploaded it to the 🤗 Hub, you can use it for inference. The simplest way to try out your fine-tuned model for inference is to use it in a [`Pipeline`]. ```py >>> from transformers import pipeline >>> pipe = pipeline("visual-question-answering", model="MariaK/vilt_finetuned_200") ``` The model in this guide has only been trained on 200 examples, so don't expect a lot from it. Let's see if it at least learned something from the data and take the first example from the dataset to illustrate inference: ```py >>> example = dataset[0] >>> image = Image.open(example['image_id']) >>> question = example['question'] >>> print(question) >>> pipe(image, question, top_k=1) "Where is he looking?" [{'score': 0.5498199462890625, 'answer': 'down'}] ``` Even though not very confident, the model indeed has learned something. With more examples and longer training, you'll get far better results! You can also manually replicate the results of the pipeline if you'd like: 1. Take an image and a question, prepare them for the model using the processor from your model. 2. Forward the result or preprocessing through the model. 3. From the logits, get the most likely answer's id, and find the actual answer in the `id2label`. ```py >>> processor = ViltProcessor.from_pretrained("MariaK/vilt_finetuned_200") >>> image = Image.open(example['image_id']) >>> question = example['question'] >>> # prepare inputs >>> inputs = processor(image, question, return_tensors="pt") >>> model = ViltForQuestionAnswering.from_pretrained("MariaK/vilt_finetuned_200") >>> # forward pass >>> with torch.no_grad(): ... outputs = model(**inputs) >>> logits = outputs.logits >>> idx = logits.argmax(-1).item() >>> print("Predicted answer:", model.config.id2label[idx]) Predicted answer: down ``` ## Zero-shot VQA The previous model treated VQA as a classification task. Some recent models, such as BLIP, BLIP-2, and InstructBLIP approach VQA as a generative task. Let's take [BLIP-2](../model_doc/blip-2) as an example. It introduced a new visual-language pre-training paradigm in which any combination of pre-trained vision encoder and LLM can be used (learn more in the [BLIP-2 blog post](https://huggingface.co/blog/blip-2)). This enables achieving state-of-the-art results on multiple visual-language tasks including visual question answering. Let's illustrate how you can use this model for VQA. First, let's load the model. Here we'll explicitly send the model to a GPU, if available, which we didn't need to do earlier when training, as [`Trainer`] handles this automatically: ```py >>> from transformers import AutoProcessor, Blip2ForConditionalGeneration >>> import torch >>> processor = AutoProcessor.from_pretrained("Salesforce/blip2-opt-2.7b") >>> model = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-opt-2.7b", torch_dtype=torch.float16) >>> device = "cuda" if torch.cuda.is_available() else "cpu" >>> model.to(device) ``` The model takes image and text as input, so let's use the exact same image/question pair from the first example in the VQA dataset: ```py >>> example = dataset[0] >>> image = Image.open(example['image_id']) >>> question = example['question'] ``` To use BLIP-2 for visual question answering task, the textual prompt has to follow a specific format: `Question: {} Answer:`. ```py >>> prompt = f"Question: {question} Answer:" ``` Now we need to preprocess the image/prompt with the model's processor, pass the processed input through the model, and decode the output: ```py >>> inputs = processor(image, text=prompt, return_tensors="pt").to(device, torch.float16) >>> generated_ids = model.generate(**inputs, max_new_tokens=10) >>> generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip() >>> print(generated_text) "He is looking at the crowd" ``` As you can see, the model recognized the crowd, and the direction of the face (looking down), however, it seems to miss the fact the crowd is behind the skater. Still, in cases where acquiring human-annotated datasets is not feasible, this approach can quickly produce useful results.
huggingface/transformers/blob/main/docs/source/en/tasks/visual_question_answering.md
!--- Copyright 2021 The Google Flax Team Authors and HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> # Text classification examples ## GLUE tasks Based on the script [`run_flax_glue.py`](https://github.com/huggingface/transformers/blob/main/examples/flax/text-classification/run_flax_glue.py). Fine-tuning the library models for sequence classification on the GLUE benchmark: [General Language Understanding Evaluation](https://gluebenchmark.com/). This script can fine-tune any of the models on the [hub](https://huggingface.co/models) and can also be used for a dataset hosted on our [hub](https://huggingface.co/datasets) or your own data in a csv or a JSON file (the script might need some tweaks in that case, refer to the comments inside for help). GLUE is made up of a total of 9 different tasks. Here is how to run the script on one of them: ```bash export TASK_NAME=mrpc python run_flax_glue.py \ --model_name_or_path bert-base-cased \ --task_name ${TASK_NAME} \ --max_seq_length 128 \ --learning_rate 2e-5 \ --num_train_epochs 3 \ --per_device_train_batch_size 4 \ --eval_steps 100 \ --output_dir ./$TASK_NAME/ \ --push_to_hub ``` where task name can be one of cola, mnli, mnli_mismatched, mnli_matched, mrpc, qnli, qqp, rte, sst2, stsb, wnli. Using the command above, the script will train for 3 epochs and run eval after each epoch. Metrics and hyperparameters are stored in Tensorflow event files in `--output_dir`. You can see the results by running `tensorboard` in that directory: ```bash $ tensorboard --logdir . ``` or directly on the hub under *Training metrics*. ### Accuracy Evaluation We train five replicas and report mean accuracy and stdev on the dev set below. We use the settings as in the command above (with an exception for MRPC and WNLI which are tiny and where we used 5 epochs instead of 3), and we use a total train batch size of 32 (we train on 8 Cloud v3 TPUs, so a per-device batch size of 4), On the task other than MRPC and WNLI we train for 3 these epochs because this is the standard, but looking at the training curves of some of them (e.g., SST-2, STS-b), it appears the models are undertrained and we could get better results when training longer. In the Tensorboard results linked below, the random seed of each model is equal to the ID of the run. So in order to reproduce run 1, run the command above with `--seed=1`. The best run used random seed 3, which is the default in the script. The results of all runs are in [this Google Sheet](https://docs.google.com/spreadsheets/d/1p3XzReMO75m_XdEJvPue-PIq_PN-96J2IJpJW1yS-10/edit?usp=sharing). | Task | Metric | Acc (best run) | Acc (avg/5runs) | Stdev | Metrics | |-------|------------------------------|----------------|-----------------|-----------|--------------------------------------------------------------------------| | CoLA | Matthews corr | 60.57 | 59.04 | 1.06 | [tfhub.dev](https://tensorboard.dev/experiment/lfr2adVpRtmLDALKrElkzg/) | | SST-2 | Accuracy | 92.66 | 92.23 | 0.57 | [tfhub.dev](https://tensorboard.dev/experiment/jYvfv2trRHKMjoWnXVwrZA/) | | MRPC | F1/Accuracy | 89.90/85.78 | 88.97/84.36 | 0.72/1.09 | [tfhub.dev](https://tensorboard.dev/experiment/bo3W3DEoRw2Q7YXjWrJkfg/) | | STS-B | Pearson/Spearman corr. | 89.04/88.70 | 88.94/88.63 | 0.07/0.07 | [tfhub.dev](https://tensorboard.dev/experiment/fxVwbLD7QpKhbot0r9rn2w/) | | QQP | Accuracy/F1 | 90.81/87.58 | 90.76/87.51 | 0.05/0.06 | [tfhub.dev](https://tensorboard.dev/experiment/di089Rc9TZmsnKRMrYNLsA/) | | MNLI | Matched acc. | 84.10 | 83.80 | 0.16 | [tfhub.dev](https://tensorboard.dev/experiment/JgNCGHDJSRaW6HBx6YQFYQ/) | | QNLI | Accuracy | 91.01 | 90.82 | 0.17 | [tfhub.dev](https://tensorboard.dev/experiment/Bq7cMGJnQMSggYgL8qNGeQ/) | | RTE | Accuracy | 66.06 | 64.76 | 1.04 | [tfhub.dev](https://tensorboard.dev/experiment/66Eq24bhRjqN6CEhgDSGqQ/) | | WNLI | Accuracy | 46.48 | 37.01 | 6.83 | [tfhub.dev](https://tensorboard.dev/experiment/TAqcnddqTkWvVEeGaWwIdQ/) | Some of these results are significantly different from the ones reported on the test set of GLUE benchmark on the website. For QQP and WNLI, please refer to [FAQ #12](https://gluebenchmark.com/faq) on the website. ### Runtime evaluation We also ran each task once on a single V100 GPU, 8 V100 GPUs, and 8 Cloud v3 TPUs and report the overall training time below. For comparison we ran Pytorch's [run_glue.py](https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py) on a single GPU (last column). | Task | TPU v3-8 | 8 GPU | [1 GPU](https://tensorboard.dev/experiment/mkPS4Zh8TnGe1HB6Yzwj4Q) | 1 GPU (Pytorch) | |-------|-----------|------------|------------|-----------------| | CoLA | 1m 42s | 1m 26s | 3m 9s | 4m 6s | | SST-2 | 5m 12s | 6m 28s | 22m 33s | 34m 37s | | MRPC | 1m 29s | 1m 14s | 2m 20s | 2m 56s | | STS-B | 1m 30s | 1m 12s | 2m 16s | 2m 48s | | QQP | 22m 50s | 31m 48s | 1h 59m 41s | 2h 54m | | MNLI | 25m 03s | 33m 55s | 2h 9m 37s | 3h 7m 6s | | QNLI | 7m30s | 9m 40s | 34m 40s | 49m 8s | | RTE | 1m 20s | 55s | 1m 10s | 1m 16s | | WNLI | 1m 11s | 48s | 39s | 36s | |-------| | **TOTAL** | 1h 03m | 1h 28m | 5h 16m | 6h 37m | *All experiments are ran on Google Cloud Platform. GPU experiments are ran without further optimizations besides JAX transformations. GPU experiments are ran with full precision (fp32). "TPU v3-8" are 8 TPU cores on 4 chips (each chips has 2 cores), while "8 GPU" are 8 GPU chips.
huggingface/transformers/blob/main/examples/flax/text-classification/README.md
!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # PatchTST ## Overview The PatchTST model was proposed in [A Time Series is Worth 64 Words: Long-term Forecasting with Transformers](https://arxiv.org/abs/2211.14730) by Yuqi Nie, Nam H. Nguyen, Phanwadee Sinthong and Jayant Kalagnanam. At a high level the model vectorizes time series into patches of a given size and encodes the resulting sequence of vectors via a Transformer that then outputs the prediction length forecast via an appropriate head. The model is illustrated in the following figure: ![model](https://github.com/namctin/transformers/assets/8100/150af169-29de-419a-8d98-eb78251c21fa) The abstract from the paper is the following: *We propose an efficient design of Transformer-based models for multivariate time series forecasting and self-supervised representation learning. It is based on two key components: (i) segmentation of time series into subseries-level patches which are served as input tokens to Transformer; (ii) channel-independence where each channel contains a single univariate time series that shares the same embedding and Transformer weights across all the series. Patching design naturally has three-fold benefit: local semantic information is retained in the embedding; computation and memory usage of the attention maps are quadratically reduced given the same look-back window; and the model can attend longer history. Our channel-independent patch time series Transformer (PatchTST) can improve the long-term forecasting accuracy significantly when compared with that of SOTA Transformer-based models. We also apply our model to self-supervised pre-training tasks and attain excellent fine-tuning performance, which outperforms supervised training on large datasets. Transferring of masked pre-trained representation on one dataset to others also produces SOTA forecasting accuracy.* This model was contributed by [namctin](https://huggingface.co/namctin), [gsinthong](https://huggingface.co/gsinthong), [diepi](https://huggingface.co/diepi), [vijaye12](https://huggingface.co/vijaye12), [wmgifford](https://huggingface.co/wmgifford), and [kashif](https://huggingface.co/kashif). The original code can be found [here](https://github.com/yuqinie98/PatchTST). ## Usage tips The model can also be used for time series classification and time series regression. See the respective [`PatchTSTForClassification`] and [`PatchTSTForRegression`] classes. ## PatchTSTConfig [[autodoc]] PatchTSTConfig ## PatchTSTModel [[autodoc]] PatchTSTModel - forward ## PatchTSTForPrediction [[autodoc]] PatchTSTForPrediction - forward ## PatchTSTForClassification [[autodoc]] PatchTSTForClassification - forward ## PatchTSTForPretraining [[autodoc]] PatchTSTForPretraining - forward ## PatchTSTForRegression [[autodoc]] PatchTSTForRegression - forward
huggingface/transformers/blob/main/docs/source/en/model_doc/patchtst.md
!--- Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> <p align="center"> <br> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers_logo_name.png" width="400"/> <br> </p> <p align="center"> <a href="https://circleci.com/gh/huggingface/transformers"> <img alt="Build" src="https://img.shields.io/circleci/build/github/huggingface/transformers/main"> </a> <a href="https://github.com/huggingface/transformers/blob/main/LICENSE"> <img alt="GitHub" src="https://img.shields.io/github/license/huggingface/transformers.svg?color=blue"> </a> <a href="https://huggingface.co/docs/transformers/index"> <img alt="Documentation" src="https://img.shields.io/website/http/huggingface.co/docs/transformers/index.svg?down_color=red&down_message=offline&up_message=online"> </a> <a href="https://github.com/huggingface/transformers/releases"> <img alt="GitHub release" src="https://img.shields.io/github/release/huggingface/transformers.svg"> </a> <a href="https://github.com/huggingface/transformers/blob/main/CODE_OF_CONDUCT.md"> <img alt="Contributor Covenant" src="https://img.shields.io/badge/Contributor%20Covenant-v2.0%20adopted-ff69b4.svg"> </a> <a href="https://zenodo.org/badge/latestdoi/155220641"><img src="https://zenodo.org/badge/155220641.svg" alt="DOI"></a> </p> <h4 align="center"> <p> <a href="https://github.com/huggingface/transformers/">English</a> | <a href="https://github.com/huggingface/transformers/blob/main/README_zh-hans.md">简体中文</a> | <a href="https://github.com/huggingface/transformers/blob/main/README_zh-hant.md">繁體中文</a> | <b>한국어</b> | <a href="https://github.com/huggingface/transformers/blob/main/README_es.md">Español</a> | <a href="https://github.com/huggingface/transformers/blob/main/README_ja.md">日本語</a> | <a href="https://github.com/huggingface/transformers/blob/main/README_hd.md">हिन्दी</a> <a href="https://github.com/huggingface/transformers//blob/main/README_te.md">తెలుగు</a> | </p> </h4> <h3 align="center"> <p> Jax, Pytorch, TensorFlow를 위한 최첨단 자연어처리</p> </h3> <h3 align="center"> <a href="https://hf.co/course"><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/course_banner.png"></a> </h3> 🤗 Transformers는 분류, 정보 추출, 질문 답변, 요약, 번역, 문장 생성 등을 100개 이상의 언어로 수행할 수 있는 수천개의 사전학습된 모델을 제공합니다. 우리의 목표는 모두가 최첨단의 NLP 기술을 쉽게 사용하는 것입니다. 🤗 Transformers는 이러한 사전학습 모델을 빠르게 다운로드해 특정 텍스트에 사용하고, 원하는 데이터로 fine-tuning해 커뮤니티나 우리의 [모델 허브](https://huggingface.co/models)에 공유할 수 있도록 API를 제공합니다. 또한, 모델 구조를 정의하는 각 파이썬 모듈은 완전히 독립적이여서 연구 실험을 위해 손쉽게 수정할 수 있습니다. 🤗 Transformers는 가장 유명한 3개의 딥러닝 라이브러리를 지원합니다. 이들은 서로 완벽히 연동됩니다 — [Jax](https://jax.readthedocs.io/en/latest/), [PyTorch](https://pytorch.org/), [TensorFlow](https://www.tensorflow.org/). 간단하게 이 라이브러리 중 하나로 모델을 학습하고, 또 다른 라이브러리로 추론을 위해 모델을 불러올 수 있습니다. ## 온라인 데모 대부분의 모델을 [모델 허브](https://huggingface.co/models) 페이지에서 바로 테스트해볼 수 있습니다. 공개 및 비공개 모델을 위한 [비공개 모델 호스팅, 버전 관리, 추론 API](https://huggingface.co/pricing)도 제공합니다. 예시: - [BERT로 마스킹된 단어 완성하기](https://huggingface.co/bert-base-uncased?text=Paris+is+the+%5BMASK%5D+of+France) - [Electra를 이용한 개체명 인식](https://huggingface.co/dbmdz/electra-large-discriminator-finetuned-conll03-english?text=My+name+is+Sarah+and+I+live+in+London+city) - [GPT-2로 텍스트 생성하기](https://huggingface.co/gpt2?text=A+long+time+ago%2C+) - [RoBERTa로 자연어 추론하기](https://huggingface.co/roberta-large-mnli?text=The+dog+was+lost.+Nobody+lost+any+animal) - [BART를 이용한 요약](https://huggingface.co/facebook/bart-large-cnn?text=The+tower+is+324+metres+%281%2C063+ft%29+tall%2C+about+the+same+height+as+an+81-storey+building%2C+and+the+tallest+structure+in+Paris.+Its+base+is+square%2C+measuring+125+metres+%28410+ft%29+on+each+side.+During+its+construction%2C+the+Eiffel+Tower+surpassed+the+Washington+Monument+to+become+the+tallest+man-made+structure+in+the+world%2C+a+title+it+held+for+41+years+until+the+Chrysler+Building+in+New+York+City+was+finished+in+1930.+It+was+the+first+structure+to+reach+a+height+of+300+metres.+Due+to+the+addition+of+a+broadcasting+aerial+at+the+top+of+the+tower+in+1957%2C+it+is+now+taller+than+the+Chrysler+Building+by+5.2+metres+%2817+ft%29.+Excluding+transmitters%2C+the+Eiffel+Tower+is+the+second+tallest+free-standing+structure+in+France+after+the+Millau+Viaduct) - [DistilBERT를 이용한 질문 답변](https://huggingface.co/distilbert-base-uncased-distilled-squad?text=Which+name+is+also+used+to+describe+the+Amazon+rainforest+in+English%3F&context=The+Amazon+rainforest+%28Portuguese%3A+Floresta+Amaz%C3%B4nica+or+Amaz%C3%B4nia%3B+Spanish%3A+Selva+Amaz%C3%B3nica%2C+Amazon%C3%ADa+or+usually+Amazonia%3B+French%3A+For%C3%AAt+amazonienne%3B+Dutch%3A+Amazoneregenwoud%29%2C+also+known+in+English+as+Amazonia+or+the+Amazon+Jungle%2C+is+a+moist+broadleaf+forest+that+covers+most+of+the+Amazon+basin+of+South+America.+This+basin+encompasses+7%2C000%2C000+square+kilometres+%282%2C700%2C000+sq+mi%29%2C+of+which+5%2C500%2C000+square+kilometres+%282%2C100%2C000+sq+mi%29+are+covered+by+the+rainforest.+This+region+includes+territory+belonging+to+nine+nations.+The+majority+of+the+forest+is+contained+within+Brazil%2C+with+60%25+of+the+rainforest%2C+followed+by+Peru+with+13%25%2C+Colombia+with+10%25%2C+and+with+minor+amounts+in+Venezuela%2C+Ecuador%2C+Bolivia%2C+Guyana%2C+Suriname+and+French+Guiana.+States+or+departments+in+four+nations+contain+%22Amazonas%22+in+their+names.+The+Amazon+represents+over+half+of+the+planet%27s+remaining+rainforests%2C+and+comprises+the+largest+and+most+biodiverse+tract+of+tropical+rainforest+in+the+world%2C+with+an+estimated+390+billion+individual+trees+divided+into+16%2C000+species) - [T5로 번역하기](https://huggingface.co/t5-base?text=My+name+is+Wolfgang+and+I+live+in+Berlin) **[Transformer와 글쓰기](https://transformer.huggingface.co)** 는 이 저장소의 텍스트 생성 능력에 관한 Hugging Face 팀의 공식 데모입니다. ## Hugging Face 팀의 커스텀 지원을 원한다면 <a target="_blank" href="https://huggingface.co/support"> <img alt="HuggingFace Expert Acceleration Program" src="https://huggingface.co/front/thumbnails/support.png" style="max-width: 600px; border: 1px solid #eee; border-radius: 4px; box-shadow: 0 1px 2px 0 rgba(0, 0, 0, 0.05);"> </a><br> ## 퀵 투어 원하는 텍스트에 바로 모델을 사용할 수 있도록, 우리는 `pipeline` API를 제공합니다. Pipeline은 사전학습 모델과 그 모델을 학습할 때 적용한 전처리 방식을 하나로 합칩니다. 다음은 긍정적인 텍스트와 부정적인 텍스트를 분류하기 위해 pipeline을 사용한 간단한 예시입니다: ```python >>> from transformers import pipeline # Allocate a pipeline for sentiment-analysis >>> classifier = pipeline('sentiment-analysis') >>> classifier('We are very happy to introduce pipeline to the transformers repository.') [{'label': 'POSITIVE', 'score': 0.9996980428695679}] ``` 코드의 두번째 줄은 pipeline이 사용하는 사전학습 모델을 다운로드하고 캐시로 저장합니다. 세번째 줄에선 그 모델이 주어진 텍스트를 평가합니다. 여기서 모델은 99.97%의 확률로 텍스트가 긍정적이라고 평가했습니다. 많은 NLP 과제들을 `pipeline`으로 바로 수행할 수 있습니다. 예를 들어, 질문과 문맥이 주어지면 손쉽게 답변을 추출할 수 있습니다: ``` python >>> from transformers import pipeline # Allocate a pipeline for question-answering >>> question_answerer = pipeline('question-answering') >>> question_answerer({ ... 'question': 'What is the name of the repository ?', ... 'context': 'Pipeline has been included in the huggingface/transformers repository' ... }) {'score': 0.30970096588134766, 'start': 34, 'end': 58, 'answer': 'huggingface/transformers'} ``` 답변뿐만 아니라, 여기에 사용된 사전학습 모델은 확신도와 토크나이즈된 문장 속 답변의 시작점, 끝점까지 반환합니다. [이 튜토리얼](https://huggingface.co/docs/transformers/task_summary)에서 `pipeline` API가 지원하는 다양한 과제를 확인할 수 있습니다. 코드 3줄로 원하는 과제에 맞게 사전학습 모델을 다운로드 받고 사용할 수 있습니다. 다음은 PyTorch 버전입니다: ```python >>> from transformers import AutoTokenizer, AutoModel >>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") >>> model = AutoModel.from_pretrained("bert-base-uncased") >>> inputs = tokenizer("Hello world!", return_tensors="pt") >>> outputs = model(**inputs) ``` 다음은 TensorFlow 버전입니다: ```python >>> from transformers import AutoTokenizer, TFAutoModel >>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") >>> model = TFAutoModel.from_pretrained("bert-base-uncased") >>> inputs = tokenizer("Hello world!", return_tensors="tf") >>> outputs = model(**inputs) ``` 토크나이저는 사전학습 모델의 모든 전처리를 책임집니다. 그리고 (위의 예시처럼) 1개의 스트링이나 리스트도 처리할 수 있습니다. 토크나이저는 딕셔너리를 반환하는데, 이는 다운스트림 코드에 사용하거나 언패킹 연산자 ** 를 이용해 모델에 바로 전달할 수도 있습니다. 모델 자체는 일반적으로 사용되는 [Pytorch `nn.Module`](https://pytorch.org/docs/stable/nn.html#torch.nn.Module)나 [TensorFlow `tf.keras.Model`](https://www.tensorflow.org/api_docs/python/tf/keras/Model)입니다. [이 튜토리얼](https://huggingface.co/transformers/training.html)은 이러한 모델을 표준적인 PyTorch나 TensorFlow 학습 과정에서 사용하는 방법, 또는 새로운 데이터로 fine-tune하기 위해 `Trainer` API를 사용하는 방법을 설명해줍니다. ## 왜 transformers를 사용해야 할까요? 1. 손쉽게 사용할 수 있는 최첨단 모델: - NLU와 NLG 과제에서 뛰어난 성능을 보입니다. - 교육자 실무자에게 진입 장벽이 낮습니다. - 3개의 클래스만 배우면 바로 사용할 수 있습니다. - 하나의 API로 모든 사전학습 모델을 사용할 수 있습니다. 1. 더 적은 계산 비용, 더 적은 탄소 발자국: - 연구자들은 모델을 계속 다시 학습시키는 대신 학습된 모델을 공유할 수 있습니다. - 실무자들은 학습에 필요한 시간과 비용을 절약할 수 있습니다. - 수십개의 모델 구조, 2,000개 이상의 사전학습 모델, 100개 이상의 언어로 학습된 모델 등. 1. 모델의 각 생애주기에 적합한 프레임워크: - 코드 3줄로 최첨단 모델을 학습하세요. - 자유롭게 모델을 TF2.0나 PyTorch 프레임워크로 변환하세요. - 학습, 평가, 공개 등 각 단계에 맞는 프레임워크를 원하는대로 선택하세요. 1. 필요한 대로 모델이나 예시를 커스터마이즈하세요: - 우리는 저자가 공개한 결과를 재현하기 위해 각 모델 구조의 예시를 제공합니다. - 모델 내부 구조는 가능한 일관적으로 공개되어 있습니다. - 빠른 실험을 위해 모델 파일은 라이브러리와 독립적으로 사용될 수 있습니다. ## 왜 transformers를 사용하지 말아야 할까요? - 이 라이브러리는 신경망 블록을 만들기 위한 모듈이 아닙니다. 연구자들이 여러 파일을 살펴보지 않고 바로 각 모델을 사용할 수 있도록, 모델 파일 코드의 추상화 수준을 적정하게 유지했습니다. - 학습 API는 모든 모델에 적용할 수 있도록 만들어지진 않았지만, 라이브러리가 제공하는 모델들에 적용할 수 있도록 최적화되었습니다. 일반적인 머신 러닝을 위해선, 다른 라이브러리를 사용하세요. - 가능한 많은 사용 예시를 보여드리고 싶어서, [예시 폴더](https://github.com/huggingface/transformers/tree/main/examples)의 스크립트를 준비했습니다. 이 스크립트들을 수정 없이 특정한 문제에 바로 적용하지 못할 수 있습니다. 필요에 맞게 일부 코드를 수정해야 할 수 있습니다. ## 설치 ### pip로 설치하기 이 저장소는 Python 3.8+, Flax 0.4.1+, PyTorch 1.10+, TensorFlow 2.6+에서 테스트 되었습니다. [가상 환경](https://docs.python.org/3/library/venv.html)에 🤗 Transformers를 설치하세요. Python 가상 환경에 익숙하지 않다면, [사용자 가이드](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/)를 확인하세요. 우선, 사용할 Python 버전으로 가상 환경을 만들고 실행하세요. 그 다음, Flax, PyTorch, TensorFlow 중 적어도 하나는 설치해야 합니다. 플랫폼에 맞는 설치 명령어를 확인하기 위해 [TensorFlow 설치 페이지](https://www.tensorflow.org/install/), [PyTorch 설치 페이지](https://pytorch.org/get-started/locally/#start-locally), [Flax 설치 페이지](https://github.com/google/flax#quick-install)를 확인하세요. 이들 중 적어도 하나가 설치되었다면, 🤗 Transformers는 다음과 같이 pip을 이용해 설치할 수 있습니다: ```bash pip install transformers ``` 예시들을 체험해보고 싶거나, 최최최첨단 코드를 원하거나, 새로운 버전이 나올 때까지 기다릴 수 없다면 [라이브러리를 소스에서 바로 설치](https://huggingface.co/docs/transformers/installation#installing-from-source)하셔야 합니다. ### conda로 설치하기 Transformers 버전 v4.0.0부터, conda 채널이 생겼습니다: `huggingface`. 🤗 Transformers는 다음과 같이 conda로 설치할 수 있습니다: ```shell script conda install -c huggingface transformers ``` Flax, PyTorch, TensorFlow 설치 페이지에서 이들을 conda로 설치하는 방법을 확인하세요. ## 모델 구조 **🤗 Transformers가 제공하는 [모든 모델 체크포인트](https://huggingface.co/models)** 는 huggingface.co [모델 허브](https://huggingface.co)에 완벽히 연동되어 있습니다. [개인](https://huggingface.co/users)과 [기관](https://huggingface.co/organizations)이 모델 허브에 직접 업로드할 수 있습니다. 현재 사용 가능한 모델 체크포인트의 개수: ![](https://img.shields.io/endpoint?url=https://huggingface.co/api/shields/models&color=brightgreen) 🤗 Transformers는 다음 모델들을 제공합니다 (각 모델의 요약은 [여기](https://huggingface.co/docs/transformers/model_summary)서 확인하세요): 1. **[ALBERT](https://huggingface.co/docs/transformers/model_doc/albert)** (from Google Research and the Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut. 1. **[ALIGN](https://huggingface.co/docs/transformers/model_doc/align)** (Google Research 에서 제공)은 Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc V. Le, Yunhsuan Sung, Zhen Li, Tom Duerig.의 [Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision](https://arxiv.org/abs/2102.05918)논문과 함께 발표했습니다. 1. **[AltCLIP](https://huggingface.co/docs/transformers/model_doc/altclip)** (from BAAI) released with the paper [AltCLIP: Altering the Language Encoder in CLIP for Extended Language Capabilities](https://arxiv.org/abs/2211.06679) by Chen, Zhongzhi and Liu, Guang and Zhang, Bo-Wen and Ye, Fulong and Yang, Qinghong and Wu, Ledell. 1. **[Audio Spectrogram Transformer](https://huggingface.co/docs/transformers/model_doc/audio-spectrogram-transformer)** (from MIT) released with the paper [AST: Audio Spectrogram Transformer](https://arxiv.org/abs/2104.01778) by Yuan Gong, Yu-An Chung, James Glass. 1. **[Autoformer](https://huggingface.co/docs/transformers/model_doc/autoformer)** (from Tsinghua University) released with the paper [Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting](https://arxiv.org/abs/2106.13008) by Haixu Wu, Jiehui Xu, Jianmin Wang, Mingsheng Long. 1. **[Bark](https://huggingface.co/docs/transformers/model_doc/bark)** (from Suno) released in the repository [suno-ai/bark](https://github.com/suno-ai/bark) by Suno AI team. 1. **[BART](https://huggingface.co/docs/transformers/model_doc/bart)** (from Facebook) released with the paper [BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension](https://arxiv.org/pdf/1910.13461.pdf) by Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov and Luke Zettlemoyer. 1. **[BARThez](https://huggingface.co/docs/transformers/model_doc/barthez)** (from École polytechnique) released with the paper [BARThez: a Skilled Pretrained French Sequence-to-Sequence Model](https://arxiv.org/abs/2010.12321) by Moussa Kamal Eddine, Antoine J.-P. Tixier, Michalis Vazirgiannis. 1. **[BARTpho](https://huggingface.co/docs/transformers/model_doc/bartpho)** (from VinAI Research) released with the paper [BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnamese](https://arxiv.org/abs/2109.09701) by Nguyen Luong Tran, Duong Minh Le and Dat Quoc Nguyen. 1. **[BEiT](https://huggingface.co/docs/transformers/model_doc/beit)** (from Microsoft) released with the paper [BEiT: BERT Pre-Training of Image Transformers](https://arxiv.org/abs/2106.08254) by Hangbo Bao, Li Dong, Furu Wei. 1. **[BERT](https://huggingface.co/docs/transformers/model_doc/bert)** (from Google) released with the paper [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805) by Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova. 1. **[BERT For Sequence Generation](https://huggingface.co/docs/transformers/model_doc/bert-generation)** (from Google) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn. 1. **[BERTweet](https://huggingface.co/docs/transformers/model_doc/bertweet)** (from VinAI Research) released with the paper [BERTweet: A pre-trained language model for English Tweets](https://aclanthology.org/2020.emnlp-demos.2/) by Dat Quoc Nguyen, Thanh Vu and Anh Tuan Nguyen. 1. **[BigBird-Pegasus](https://huggingface.co/docs/transformers/model_doc/bigbird_pegasus)** (from Google Research) released with the paper [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed. 1. **[BigBird-RoBERTa](https://huggingface.co/docs/transformers/model_doc/big_bird)** (from Google Research) released with the paper [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed. 1. **[BioGpt](https://huggingface.co/docs/transformers/model_doc/biogpt)** (from Microsoft Research AI4Science) released with the paper [BioGPT: generative pre-trained transformer for biomedical text generation and mining](https://academic.oup.com/bib/advance-article/doi/10.1093/bib/bbac409/6713511?guestAccessKey=a66d9b5d-4f83-4017-bb52-405815c907b9) by Renqian Luo, Liai Sun, Yingce Xia, Tao Qin, Sheng Zhang, Hoifung Poon and Tie-Yan Liu. 1. **[BiT](https://huggingface.co/docs/transformers/model_doc/bit)** (from Google AI) released with the paper [Big Transfer (BiT) by Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica Yung, Sylvain Gelly, Neil Houlsby. 1. **[Blenderbot](https://huggingface.co/docs/transformers/model_doc/blenderbot)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston. 1. **[BlenderbotSmall](https://huggingface.co/docs/transformers/model_doc/blenderbot-small)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston. 1. **[BLIP](https://huggingface.co/docs/transformers/model_doc/blip)** (from Salesforce) released with the paper [BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation](https://arxiv.org/abs/2201.12086) by Junnan Li, Dongxu Li, Caiming Xiong, Steven Hoi. 1. **[BLIP-2](https://huggingface.co/docs/transformers/model_doc/blip-2)** (Salesforce 에서 제공)은 Junnan Li, Dongxu Li, Silvio Savarese, Steven Hoi.의 [BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models](https://arxiv.org/abs/2301.12597)논문과 함께 발표했습니다. 1. **[BLOOM](https://huggingface.co/docs/transformers/model_doc/bloom)** (from BigScience workshop) released by the [BigScience Workshop](https://bigscience.huggingface.co/). 1. **[BORT](https://huggingface.co/docs/transformers/model_doc/bort)** (Alexa 에서) Adrian de Wynter and Daniel J. Perry 의 [Optimal Subarchitecture Extraction For BERT](https://arxiv.org/abs/2010.10499) 논문과 함께 발표했습니다. 1. **[BridgeTower](https://huggingface.co/docs/transformers/model_doc/bridgetower)** (from Harbin Institute of Technology/Microsoft Research Asia/Intel Labs) released with the paper [BridgeTower: Building Bridges Between Encoders in Vision-Language Representation Learning](https://arxiv.org/abs/2206.08657) by Xiao Xu, Chenfei Wu, Shachar Rosenman, Vasudev Lal, Wanxiang Che, Nan Duan. 1. **[BROS](https://huggingface.co/docs/transformers/model_doc/bros)** (NAVER CLOVA 에서 제공)은 Teakgyu Hong, Donghyun Kim, Mingi Ji, Wonseok Hwang, Daehyun Nam, Sungrae Park.의 [BROS: A Pre-trained Language Model Focusing on Text and Layout for Better Key Information Extraction from Documents](https://arxiv.org/abs/2108.04539)논문과 함께 발표했습니다. 1. **[ByT5](https://huggingface.co/docs/transformers/model_doc/byt5)** (Google Research 에서) Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel 의 [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://arxiv.org/abs/2105.13626) 논문과 함께 발표했습니다. 1. **[CamemBERT](https://huggingface.co/docs/transformers/model_doc/camembert)** (Inria/Facebook/Sorbonne 에서) Louis Martin*, Benjamin Muller*, Pedro Javier Ortiz Suárez*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot 의 [CamemBERT: a Tasty French Language Model](https://arxiv.org/abs/1911.03894) 논문과 함께 발표했습니다. 1. **[CANINE](https://huggingface.co/docs/transformers/model_doc/canine)** (Google Research 에서) Jonathan H. Clark, Dan Garrette, Iulia Turc, John Wieting 의 [CANINE: Pre-training an Efficient Tokenization-Free Encoder for Language Representation](https://arxiv.org/abs/2103.06874) 논문과 함께 발표했습니다. 1. **[Chinese-CLIP](https://huggingface.co/docs/transformers/model_doc/chinese_clip)** (OFA-Sys 에서) An Yang, Junshu Pan, Junyang Lin, Rui Men, Yichang Zhang, Jingren Zhou, Chang Zhou 의 [Chinese CLIP: Contrastive Vision-Language Pretraining in Chinese](https://arxiv.org/abs/2211.01335) 논문과 함께 발표했습니다. 1. **[CLAP](https://huggingface.co/docs/transformers/model_doc/clap)** (LAION-AI 에서 제공)은 Yusong Wu, Ke Chen, Tianyu Zhang, Yuchen Hui, Taylor Berg-Kirkpatrick, Shlomo Dubnov.의 [Large-scale Contrastive Language-Audio Pretraining with Feature Fusion and Keyword-to-Caption Augmentation](https://arxiv.org/abs/2211.06687)논문과 함께 발표했습니다. 1. **[CLIP](https://huggingface.co/docs/transformers/model_doc/clip)** (OpenAI 에서) Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever 의 [Learning Transferable Visual Models From Natural Language Supervision](https://arxiv.org/abs/2103.00020) 논문과 함께 발표했습니다. 1. **[CLIPSeg](https://huggingface.co/docs/transformers/model_doc/clipseg)** (University of Göttingen 에서) Timo Lüddecke and Alexander Ecker 의 [Image Segmentation Using Text and Image Prompts](https://arxiv.org/abs/2112.10003) 논문과 함께 발표했습니다. 1. **[CLVP](https://huggingface.co/docs/transformers/model_doc/clvp)** released with the paper [Better speech synthesis through scaling](https://arxiv.org/abs/2305.07243) by James Betker. 1. **[CodeGen](https://huggingface.co/docs/transformers/model_doc/codegen)** (Salesforce 에서) Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, Caiming Xiong 의 [A Conversational Paradigm for Program Synthesis](https://arxiv.org/abs/2203.13474) 논문과 함께 발표했습니다. 1. **[CodeLlama](https://huggingface.co/docs/transformers/model_doc/llama_code)** (MetaAI 에서 제공)은 Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas Scialom, Gabriel Synnaeve.의 [Code Llama: Open Foundation Models for Code](https://ai.meta.com/research/publications/code-llama-open-foundation-models-for-code/)논문과 함께 발표했습니다. 1. **[Conditional DETR](https://huggingface.co/docs/transformers/model_doc/conditional_detr)** (Microsoft Research Asia 에서) Depu Meng, Xiaokang Chen, Zejia Fan, Gang Zeng, Houqiang Li, Yuhui Yuan, Lei Sun, Jingdong Wang 의 [Conditional DETR for Fast Training Convergence](https://arxiv.org/abs/2108.06152) 논문과 함께 발표했습니다. 1. **[ConvBERT](https://huggingface.co/docs/transformers/model_doc/convbert)** (YituTech 에서) Zihang Jiang, Weihao Yu, Daquan Zhou, Yunpeng Chen, Jiashi Feng, Shuicheng Yan 의 [ConvBERT: Improving BERT with Span-based Dynamic Convolution](https://arxiv.org/abs/2008.02496) 논문과 함께 발표했습니다. 1. **[ConvNeXT](https://huggingface.co/docs/transformers/model_doc/convnext)** (Facebook AI 에서) Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, Saining Xie 의 [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545) 논문과 함께 발표했습니다. 1. **[ConvNeXTV2](https://huggingface.co/docs/transformers/model_doc/convnextv2)** (from Facebook AI) released with the paper [ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders](https://arxiv.org/abs/2301.00808) by Sanghyun Woo, Shoubhik Debnath, Ronghang Hu, Xinlei Chen, Zhuang Liu, In So Kweon, Saining Xie. 1. **[CPM](https://huggingface.co/docs/transformers/model_doc/cpm)** (Tsinghua University 에서) Zhengyan Zhang, Xu Han, Hao Zhou, Pei Ke, Yuxian Gu, Deming Ye, Yujia Qin, Yusheng Su, Haozhe Ji, Jian Guan, Fanchao Qi, Xiaozhi Wang, Yanan Zheng, Guoyang Zeng, Huanqi Cao, Shengqi Chen, Daixuan Li, Zhenbo Sun, Zhiyuan Liu, Minlie Huang, Wentao Han, Jie Tang, Juanzi Li, Xiaoyan Zhu, Maosong Sun 의 [CPM: A Large-scale Generative Chinese Pre-trained Language Model](https://arxiv.org/abs/2012.00413) 논문과 함께 발표했습니다. 1. **[CPM-Ant](https://huggingface.co/docs/transformers/model_doc/cpmant)** (from OpenBMB) released by the [OpenBMB](https://www.openbmb.org/). 1. **[CTRL](https://huggingface.co/docs/transformers/model_doc/ctrl)** (Salesforce 에서) Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher 의 [CTRL: A Conditional Transformer Language Model for Controllable Generation](https://arxiv.org/abs/1909.05858) 논문과 함께 발표했습니다. 1. **[CvT](https://huggingface.co/docs/transformers/model_doc/cvt)** (Microsoft 에서) Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, Lei Zhang 의 [CvT: Introducing Convolutions to Vision Transformers](https://arxiv.org/abs/2103.15808) 논문과 함께 발표했습니다. 1. **[Data2Vec](https://huggingface.co/docs/transformers/model_doc/data2vec)** (Facebook 에서) Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, Michael Auli 의 [Data2Vec: A General Framework for Self-supervised Learning in Speech, Vision and Language](https://arxiv.org/abs/2202.03555) 논문과 함께 발표했습니다. 1. **[DeBERTa](https://huggingface.co/docs/transformers/model_doc/deberta)** (Microsoft 에서) Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen 의 [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) 논문과 함께 발표했습니다. 1. **[DeBERTa-v2](https://huggingface.co/docs/transformers/model_doc/deberta-v2)** (Microsoft 에서) Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen 의 [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) 논문과 함께 발표했습니다. 1. **[Decision Transformer](https://huggingface.co/docs/transformers/model_doc/decision_transformer)** (Berkeley/Facebook/Google 에서) Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas, Igor Mordatch 의 [Decision Transformer: Reinforcement Learning via Sequence Modeling](https://arxiv.org/abs/2106.01345) 논문과 함께 발표했습니다. 1. **[Deformable DETR](https://huggingface.co/docs/transformers/model_doc/deformable_detr)** (SenseTime Research 에서) Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, Jifeng Dai 의 [Deformable DETR: Deformable Transformers for End-to-End Object Detection](https://arxiv.org/abs/2010.04159) 논문과 함께 발표했습니다. 1. **[DeiT](https://huggingface.co/docs/transformers/model_doc/deit)** (Facebook 에서) Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, Hervé Jégou 의 [Training data-efficient image transformers & distillation through attention](https://arxiv.org/abs/2012.12877) 논문과 함께 발표했습니다. 1. **[DePlot](https://huggingface.co/docs/transformers/model_doc/deplot)** (Google AI 에서 제공)은 Fangyu Liu, Julian Martin Eisenschlos, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Wenhu Chen, Nigel Collier, Yasemin Altun.의 [DePlot: One-shot visual language reasoning by plot-to-table translation](https://arxiv.org/abs/2212.10505)논문과 함께 발표했습니다. 1. **[DETA](https://huggingface.co/docs/transformers/model_doc/deta)** (The University of Texas at Austin 에서 제공)은 Jeffrey Ouyang-Zhang, Jang Hyun Cho, Xingyi Zhou, Philipp Krähenbühl.의 [NMS Strikes Back](https://arxiv.org/abs/2212.06137)논문과 함께 발표했습니다. 1. **[DETR](https://huggingface.co/docs/transformers/model_doc/detr)** (Facebook 에서) Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, Sergey Zagoruyko 의 [End-to-End Object Detection with Transformers](https://arxiv.org/abs/2005.12872) 논문과 함께 발표했습니다. 1. **[DialoGPT](https://huggingface.co/docs/transformers/model_doc/dialogpt)** (Microsoft Research 에서) Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing Liu, Bill Dolan 의 [DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation](https://arxiv.org/abs/1911.00536) 논문과 함께 발표했습니다. 1. **[DiNAT](https://huggingface.co/docs/transformers/model_doc/dinat)** (SHI Labs 에서) Ali Hassani and Humphrey Shi 의 [Dilated Neighborhood Attention Transformer](https://arxiv.org/abs/2209.15001) 논문과 함께 발표했습니다. 1. **[DINOv2](https://huggingface.co/docs/transformers/model_doc/dinov2)** (Meta AI 에서 제공)은 Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Mahmoud Assran, Nicolas Ballas, Wojciech Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra, Michael Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Hervé Jegou, Julien Mairal, Patrick Labatut, Armand Joulin, Piotr Bojanowski.의 [DINOv2: Learning Robust Visual Features without Supervision](https://arxiv.org/abs/2304.07193)논문과 함께 발표했습니다. 1. **[DistilBERT](https://huggingface.co/docs/transformers/model_doc/distilbert)** (HuggingFace 에서) Victor Sanh, Lysandre Debut and Thomas Wolf. The same method has been applied to compress GPT2 into [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation), Multilingual BERT into [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German version of DistilBERT 의 [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter](https://arxiv.org/abs/1910.01108) 논문과 함께 발표했습니다. 1. **[DiT](https://huggingface.co/docs/transformers/model_doc/dit)** (Microsoft Research 에서) Junlong Li, Yiheng Xu, Tengchao Lv, Lei Cui, Cha Zhang, Furu Wei 의 [DiT: Self-supervised Pre-training for Document Image Transformer](https://arxiv.org/abs/2203.02378) 논문과 함께 발표했습니다. 1. **[Donut](https://huggingface.co/docs/transformers/model_doc/donut)** (NAVER 에서) Geewook Kim, Teakgyu Hong, Moonbin Yim, Jeongyeon Nam, Jinyoung Park, Jinyeong Yim, Wonseok Hwang, Sangdoo Yun, Dongyoon Han, Seunghyun Park 의 [OCR-free Document Understanding Transformer](https://arxiv.org/abs/2111.15664) 논문과 함께 발표했습니다. 1. **[DPR](https://huggingface.co/docs/transformers/model_doc/dpr)** (Facebook 에서) Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih 의 [Dense Passage Retrieval for Open-Domain Question Answering](https://arxiv.org/abs/2004.04906) 논문과 함께 발표했습니다. 1. **[DPT](https://huggingface.co/docs/transformers/master/model_doc/dpt)** (Intel Labs 에서) René Ranftl, Alexey Bochkovskiy, Vladlen Koltun 의 [Vision Transformers for Dense Prediction](https://arxiv.org/abs/2103.13413) 논문과 함께 발표했습니다. 1. **[EfficientFormer](https://huggingface.co/docs/transformers/model_doc/efficientformer)** (from Snap Research) released with the paper [EfficientFormer: Vision Transformers at MobileNetSpeed](https://arxiv.org/abs/2206.01191) by Yanyu Li, Geng Yuan, Yang Wen, Ju Hu, Georgios Evangelidis, Sergey Tulyakov, Yanzhi Wang, Jian Ren. 1. **[EfficientNet](https://huggingface.co/docs/transformers/model_doc/efficientnet)** (from Google Brain) released with the paper [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks](https://arxiv.org/abs/1905.11946) by Mingxing Tan, Quoc V. Le. 1. **[ELECTRA](https://huggingface.co/docs/transformers/model_doc/electra)** (Google Research/Stanford University 에서) Kevin Clark, Minh-Thang Luong, Quoc V. Le, Christopher D. Manning 의 [ELECTRA: Pre-training text encoders as discriminators rather than generators](https://arxiv.org/abs/2003.10555) 논문과 함께 발표했습니다. 1. **[EnCodec](https://huggingface.co/docs/transformers/model_doc/encodec)** (Meta AI 에서 제공)은 Alexandre Défossez, Jade Copet, Gabriel Synnaeve, Yossi Adi.의 [High Fidelity Neural Audio Compression](https://arxiv.org/abs/2210.13438)논문과 함께 발표했습니다. 1. **[EncoderDecoder](https://huggingface.co/docs/transformers/model_doc/encoder-decoder)** (Google Research 에서) Sascha Rothe, Shashi Narayan, Aliaksei Severyn 의 [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) 논문과 함께 발표했습니다. 1. **[ERNIE](https://huggingface.co/docs/transformers/model_doc/ernie)** (Baidu 에서) Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Xuyi Chen, Han Zhang, Xin Tian, Danxiang Zhu, Hao Tian, Hua Wu 의 [ERNIE: Enhanced Representation through Knowledge Integration](https://arxiv.org/abs/1904.09223) 논문과 함께 발표했습니다. 1. **[ErnieM](https://huggingface.co/docs/transformers/model_doc/ernie_m)** (Baidu 에서 제공)은 Xuan Ouyang, Shuohuan Wang, Chao Pang, Yu Sun, Hao Tian, Hua Wu, Haifeng Wang.의 [ERNIE-M: Enhanced Multilingual Representation by Aligning Cross-lingual Semantics with Monolingual Corpora](https://arxiv.org/abs/2012.15674)논문과 함께 발표했습니다. 1. **[ESM](https://huggingface.co/docs/transformers/model_doc/esm)** (from Meta AI) are transformer protein language models. **ESM-1b** was released with the paper [Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences](https://www.pnas.org/content/118/15/e2016239118) by Alexander Rives, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin, Jason Liu, Demi Guo, Myle Ott, C. Lawrence Zitnick, Jerry Ma, and Rob Fergus. **ESM-1v** was released with the paper [Language models enable zero-shot prediction of the effects of mutations on protein function](https://doi.org/10.1101/2021.07.09.450648) by Joshua Meier, Roshan Rao, Robert Verkuil, Jason Liu, Tom Sercu and Alexander Rives. **ESM-2** was released with the paper [Language models of protein sequences at the scale of evolution enable accurate structure prediction](https://doi.org/10.1101/2022.07.20.500902) by Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Allan dos Santos Costa, Maryam Fazel-Zarandi, Tom Sercu, Sal Candido, Alexander Rives. 1. **[Falcon](https://huggingface.co/docs/transformers/model_doc/falcon)** (from Technology Innovation Institute) by Almazrouei, Ebtesam and Alobeidli, Hamza and Alshamsi, Abdulaziz and Cappelli, Alessandro and Cojocaru, Ruxandra and Debbah, Merouane and Goffinet, Etienne and Heslow, Daniel and Launay, Julien and Malartic, Quentin and Noune, Badreddine and Pannier, Baptiste and Penedo, Guilherme. 1. **[FLAN-T5](https://huggingface.co/docs/transformers/model_doc/flan-t5)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-t5-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei 1. **[FLAN-UL2](https://huggingface.co/docs/transformers/model_doc/flan-ul2)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-ul2-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei 1. **[FlauBERT](https://huggingface.co/docs/transformers/model_doc/flaubert)** (from CNRS) released with the paper [FlauBERT: Unsupervised Language Model Pre-training for French](https://arxiv.org/abs/1912.05372) by Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoît Crabbé, Laurent Besacier, Didier Schwab. 1. **[FLAVA](https://huggingface.co/docs/transformers/model_doc/flava)** (from Facebook AI) released with the paper [FLAVA: A Foundational Language And Vision Alignment Model](https://arxiv.org/abs/2112.04482) by Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guillaume Couairon, Wojciech Galuba, Marcus Rohrbach, and Douwe Kiela. 1. **[FNet](https://huggingface.co/docs/transformers/model_doc/fnet)** (from Google Research) released with the paper [FNet: Mixing Tokens with Fourier Transforms](https://arxiv.org/abs/2105.03824) by James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon. 1. **[FocalNet](https://huggingface.co/docs/transformers/model_doc/focalnet)** (from Microsoft Research) released with the paper [Focal Modulation Networks](https://arxiv.org/abs/2203.11926) by Jianwei Yang, Chunyuan Li, Xiyang Dai, Lu Yuan, Jianfeng Gao. 1. **[Funnel Transformer](https://huggingface.co/docs/transformers/model_doc/funnel)** (from CMU/Google Brain) released with the paper [Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing](https://arxiv.org/abs/2006.03236) by Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le. 1. **[Fuyu](https://huggingface.co/docs/transformers/model_doc/fuyu)** (from ADEPT) Rohan Bavishi, Erich Elsen, Curtis Hawthorne, Maxwell Nye, Augustus Odena, Arushi Somani, Sağnak Taşırlar. 논문과 함께 공개 [blog post](https://www.adept.ai/blog/fuyu-8b) 1. **[GIT](https://huggingface.co/docs/transformers/model_doc/git)** (from Microsoft Research) released with the paper [GIT: A Generative Image-to-text Transformer for Vision and Language](https://arxiv.org/abs/2205.14100) by Jianfeng Wang, Zhengyuan Yang, Xiaowei Hu, Linjie Li, Kevin Lin, Zhe Gan, Zicheng Liu, Ce Liu, Lijuan Wang. 1. **[GLPN](https://huggingface.co/docs/transformers/model_doc/glpn)** (from KAIST) released with the paper [Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth](https://arxiv.org/abs/2201.07436) by Doyeon Kim, Woonghyun Ga, Pyungwhan Ahn, Donggyu Joo, Sehwan Chun, Junmo Kim. 1. **[GPT](https://huggingface.co/docs/transformers/model_doc/openai-gpt)** (from OpenAI) released with the paper [Improving Language Understanding by Generative Pre-Training](https://blog.openai.com/language-unsupervised/) by Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever. 1. **[GPT Neo](https://huggingface.co/docs/transformers/model_doc/gpt_neo)** (from EleutherAI) released in the repository [EleutherAI/gpt-neo](https://github.com/EleutherAI/gpt-neo) by Sid Black, Stella Biderman, Leo Gao, Phil Wang and Connor Leahy. 1. **[GPT NeoX](https://huggingface.co/docs/transformers/model_doc/gpt_neox)** (EleutherAI 에서) Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Horace He, Connor Leahy, Kyle McDonell, Jason Phang, Michael Pieler, USVSN Sai Prashanth, Shivanshu Purohit, Laria Reynolds, Jonathan Tow, Ben Wang, Samuel Weinbac 의 [GPT-NeoX-20B: An Open-Source Autoregressive Language Model](https://arxiv.org/abs/2204.06745) 논문과 함께 발표했습니다. 1. **[GPT NeoX Japanese](https://huggingface.co/docs/transformers/model_doc/gpt_neox_japanese)** (from ABEJA) released by Shinya Otani, Takayoshi Makabe, Anuj Arora, and Kyo Hattori. 1. **[GPT-2](https://huggingface.co/docs/transformers/model_doc/gpt2)** (OpenAI 에서) Alec Radford*, Jeffrey Wu*, Rewon Child, David Luan, Dario Amodei** and Ilya Sutskever** 의 [Language Models are Unsupervised Multitask Learners](https://blog.openai.com/better-language-models/) 논문과 함께 발표했습니다. 1. **[GPT-J](https://huggingface.co/docs/transformers/model_doc/gptj)** (from EleutherAI) released in the repository [kingoflolz/mesh-transformer-jax](https://github.com/kingoflolz/mesh-transformer-jax/) by Ben Wang and Aran Komatsuzaki. 1. **[GPT-Sw3](https://huggingface.co/docs/transformers/model_doc/gpt-sw3)** (AI-Sweden 에서) Ariel Ekgren, Amaru Cuba Gyllensten, Evangelia Gogoulou, Alice Heiman, Severine Verlinden, Joey Öhman, Fredrik Carlsson, Magnus Sahlgren. 의 [Lessons Learned from GPT-SW3: Building the First Large-Scale Generative Language Model for Swedish](http://www.lrec-conf.org/proceedings/lrec2022/pdf/2022.lrec-1.376.pdf) 논문과 함께 발표했습니다. 1. **[GPTBigCode](https://huggingface.co/docs/transformers/model_doc/gpt_bigcode)** (BigCode 에서 제공)은 Loubna Ben Allal, Raymond Li, Denis Kocetkov, Chenghao Mou, Christopher Akiki, Carlos Munoz Ferrandis, Niklas Muennighoff, Mayank Mishra, Alex Gu, Manan Dey, Logesh Kumar Umapathi, Carolyn Jane Anderson, Yangtian Zi, Joel Lamy Poirier, Hailey Schoelkopf, Sergey Troshin, Dmitry Abulkhanov, Manuel Romero, Michael Lappert, Francesco De Toni, Bernardo García del Río, Qian Liu, Shamik Bose, Urvashi Bhattacharyya, Terry Yue Zhuo, Ian Yu, Paulo Villegas, Marco Zocca, Sourab Mangrulkar, David Lansky, Huu Nguyen, Danish Contractor, Luis Villa, Jia Li, Dzmitry Bahdanau, Yacine Jernite, Sean Hughes, Daniel Fried, Arjun Guha, Harm de Vries, Leandro von Werra.의 [SantaCoder: don't reach for the stars!](https://arxiv.org/abs/2301.03988)논문과 함께 발표했습니다. 1. **[GPTSAN-japanese](https://huggingface.co/docs/transformers/model_doc/gptsan-japanese)** released in the repository [tanreinama/GPTSAN](https://github.com/tanreinama/GPTSAN/blob/main/report/model.md) by Toshiyuki Sakamoto(tanreinama). 1. **[Graphormer](https://huggingface.co/docs/transformers/model_doc/graphormer)** (from Microsoft) Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, Tie-Yan Liu 의 [Do Transformers Really Perform Bad for Graph Representation?](https://arxiv.org/abs/2106.05234) 논문과 함께 발표했습니다. 1. **[GroupViT](https://huggingface.co/docs/transformers/model_doc/groupvit)** (UCSD, NVIDIA 에서) Jiarui Xu, Shalini De Mello, Sifei Liu, Wonmin Byeon, Thomas Breuel, Jan Kautz, Xiaolong Wang 의 [GroupViT: Semantic Segmentation Emerges from Text Supervision](https://arxiv.org/abs/2202.11094) 논문과 함께 발표했습니다. 1. **[HerBERT](https://huggingface.co/docs/transformers/model_doc/herbert)** (Allegro.pl, AGH University of Science and Technology 에서 제공)은 Piotr Rybak, Robert Mroczkowski, Janusz Tracz, Ireneusz Gawlik.의 [KLEJ: Comprehensive Benchmark for Polish Language Understanding](https://www.aclweb.org/anthology/2020.acl-main.111.pdf)논문과 함께 발표했습니다. 1. **[Hubert](https://huggingface.co/docs/transformers/model_doc/hubert)** (Facebook 에서) Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, Abdelrahman Mohamed 의 [HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units](https://arxiv.org/abs/2106.07447) 논문과 함께 발표했습니다. 1. **[I-BERT](https://huggingface.co/docs/transformers/model_doc/ibert)** (Berkeley 에서) Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W. Mahoney, Kurt Keutzer 의 [I-BERT: Integer-only BERT Quantization](https://arxiv.org/abs/2101.01321) 논문과 함께 발표했습니다. 1. **[IDEFICS](https://huggingface.co/docs/transformers/model_doc/idefics)** (from HuggingFace) released with the paper [OBELICS: An Open Web-Scale Filtered Dataset of Interleaved Image-Text Documents](https://huggingface.co/papers/2306.16527) by Hugo Laurençon, Lucile Saulnier, Léo Tronchon, Stas Bekman, Amanpreet Singh, Anton Lozhkov, Thomas Wang, Siddharth Karamcheti, Alexander M. Rush, Douwe Kiela, Matthieu Cord, Victor Sanh. 1. **[ImageGPT](https://huggingface.co/docs/transformers/model_doc/imagegpt)** (OpenAI 에서) Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, Ilya Sutskever 의 [Generative Pretraining from Pixels](https://openai.com/blog/image-gpt/) 논문과 함께 발표했습니다. 1. **[Informer](https://huggingface.co/docs/transformers/model_doc/informer)** (from Beihang University, UC Berkeley, Rutgers University, SEDD Company) released with the paper [Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting](https://arxiv.org/abs/2012.07436) by Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang. 1. **[InstructBLIP](https://huggingface.co/docs/transformers/model_doc/instructblip)** (Salesforce 에서 제공)은 Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao, Weisheng Wang, Boyang Li, Pascale Fung, Steven Hoi.의 [InstructBLIP: Towards General-purpose Vision-Language Models with Instruction Tuning](https://arxiv.org/abs/2305.06500)논문과 함께 발표했습니다. 1. **[Jukebox](https://huggingface.co/docs/transformers/model_doc/jukebox)** (OpenAI 에서) Prafulla Dhariwal, Heewoo Jun, Christine Payne, Jong Wook Kim, Alec Radford, Ilya Sutskever 의 [Jukebox: A Generative Model for Music](https://arxiv.org/pdf/2005.00341.pdf) 논문과 함께 발표했습니다. 1. **[KOSMOS-2](https://huggingface.co/docs/transformers/model_doc/kosmos-2)** (from Microsoft Research Asia) released with the paper [Kosmos-2: Grounding Multimodal Large Language Models to the World](https://arxiv.org/abs/2306.14824) by Zhiliang Peng, Wenhui Wang, Li Dong, Yaru Hao, Shaohan Huang, Shuming Ma, Furu Wei. 1. **[LayoutLM](https://huggingface.co/docs/transformers/model_doc/layoutlm)** (Microsoft Research Asia 에서) Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou 의 [LayoutLM: Pre-training of Text and Layout for Document Image Understanding](https://arxiv.org/abs/1912.13318) 논문과 함께 발표했습니다. 1. **[LayoutLMv2](https://huggingface.co/docs/transformers/model_doc/layoutlmv2)** (Microsoft Research Asia 에서) Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Wanxiang Che, Min Zhang, Lidong Zhou 의 [LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding](https://arxiv.org/abs/2012.14740) 논문과 함께 발표했습니다. 1. **[LayoutLMv3](https://huggingface.co/docs/transformers/model_doc/layoutlmv3)** (Microsoft Research Asia 에서) Yupan Huang, Tengchao Lv, Lei Cui, Yutong Lu, Furu Wei 의 [LayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking](https://arxiv.org/abs/2204.08387) 논문과 함께 발표했습니다. 1. **[LayoutXLM](https://huggingface.co/docs/transformers/model_doc/layoutxlm)** (Microsoft Research Asia 에서) Yiheng Xu, Tengchao Lv, Lei Cui, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Furu Wei 의 [LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding](https://arxiv.org/abs/2104.08836) 논문과 함께 발표했습니다. 1. **[LED](https://huggingface.co/docs/transformers/model_doc/led)** (AllenAI 에서) Iz Beltagy, Matthew E. Peters, Arman Cohan 의 [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) 논문과 함께 발표했습니다. 1. **[LeViT](https://huggingface.co/docs/transformers/model_doc/levit)** (Meta AI 에서) Ben Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand Joulin, Hervé Jégou, Matthijs Douze 의 [LeViT: A Vision Transformer in ConvNet's Clothing for Faster Inference](https://arxiv.org/abs/2104.01136) 논문과 함께 발표했습니다. 1. **[LiLT](https://huggingface.co/docs/transformers/model_doc/lilt)** (South China University of Technology 에서) Jiapeng Wang, Lianwen Jin, Kai Ding 의 [LiLT: A Simple yet Effective Language-Independent Layout Transformer for Structured Document Understanding](https://arxiv.org/abs/2202.13669) 논문과 함께 발표했습니다. 1. **[LLaMA](https://huggingface.co/docs/transformers/model_doc/llama)** (The FAIR team of Meta AI 에서 제공)은 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, Guillaume Lample.의 [LLaMA: Open and Efficient Foundation Language Models](https://arxiv.org/abs/2302.13971)논문과 함께 발표했습니다. 1. **[Llama2](https://huggingface.co/docs/transformers/model_doc/llama2)** (The FAIR team of Meta AI 에서 제공)은 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushka rMishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing EllenTan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, Sergey Edunov, Thomas Scialom..의 [Llama2: Open Foundation and Fine-Tuned Chat Models](https://ai.meta.com/research/publications/llama-2-open-foundation-and-fine-tuned-chat-models/XXX)논문과 함께 발표했습니다. 1. **[LLaVa](https://huggingface.co/docs/transformers/model_doc/llava)** (Microsoft Research & University of Wisconsin-Madison 에서 제공)은 Haotian Liu, Chunyuan Li, Yuheng Li and Yong Jae Lee.의 [Visual Instruction Tuning](https://arxiv.org/abs/2304.08485)논문과 함께 발표했습니다. 1. **[Longformer](https://huggingface.co/docs/transformers/model_doc/longformer)** (AllenAI 에서) Iz Beltagy, Matthew E. Peters, Arman Cohan 의 [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) 논문과 함께 발표했습니다. 1. **[LongT5](https://huggingface.co/docs/transformers/model_doc/longt5)** (Google AI 에서) Mandy Guo, Joshua Ainslie, David Uthus, Santiago Ontanon, Jianmo Ni, Yun-Hsuan Sung, Yinfei Yang 의 [LongT5: Efficient Text-To-Text Transformer for Long Sequences](https://arxiv.org/abs/2112.07916) 논문과 함께 발표했습니다. 1. **[LUKE](https://huggingface.co/docs/transformers/model_doc/luke)** (Studio Ousia 에서) Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, Yuji Matsumoto 의 [LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention](https://arxiv.org/abs/2010.01057) 논문과 함께 발표했습니다. 1. **[LXMERT](https://huggingface.co/docs/transformers/model_doc/lxmert)** (UNC Chapel Hill 에서) Hao Tan and Mohit Bansal 의 [LXMERT: Learning Cross-Modality Encoder Representations from Transformers for Open-Domain Question Answering](https://arxiv.org/abs/1908.07490) 논문과 함께 발표했습니다. 1. **[M-CTC-T](https://huggingface.co/docs/transformers/model_doc/mctct)** (Facebook 에서) Loren Lugosch, Tatiana Likhomanenko, Gabriel Synnaeve, and Ronan Collobert 의 [Pseudo-Labeling For Massively Multilingual Speech Recognition](https://arxiv.org/abs/2111.00161) 논문과 함께 발표했습니다. 1. **[M2M100](https://huggingface.co/docs/transformers/model_doc/m2m_100)** (Facebook 에서) Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi Ma, Ahmed El-Kishky, Siddharth Goyal, Mandeep Baines, Onur Celebi, Guillaume Wenzek, Vishrav Chaudhary, Naman Goyal, Tom Birch, Vitaliy Liptchinsky, Sergey Edunov, Edouard Grave, Michael Auli, Armand Joulin 의 [Beyond English-Centric Multilingual Machine Translation](https://arxiv.org/abs/2010.11125) 논문과 함께 발표했습니다. 1. **[MADLAD-400](https://huggingface.co/docs/transformers/model_doc/madlad-400)** (from Google) released with the paper [MADLAD-400: A Multilingual And Document-Level Large Audited Dataset](https://arxiv.org/abs/2309.04662) by Sneha Kudugunta, Isaac Caswell, Biao Zhang, Xavier Garcia, Christopher A. Choquette-Choo, Katherine Lee, Derrick Xin, Aditya Kusupati, Romi Stella, Ankur Bapna, Orhan Firat. 1. **[MarianMT](https://huggingface.co/docs/transformers/model_doc/marian)** Machine translation models trained using [OPUS](http://opus.nlpl.eu/) data by Jörg Tiedemann. The [Marian Framework](https://marian-nmt.github.io/) is being developed by the Microsoft Translator Team. 1. **[MarkupLM](https://huggingface.co/docs/transformers/model_doc/markuplm)** (Microsoft Research Asia 에서) Junlong Li, Yiheng Xu, Lei Cui, Furu Wei 의 [MarkupLM: Pre-training of Text and Markup Language for Visually-rich Document Understanding](https://arxiv.org/abs/2110.08518) 논문과 함께 발표했습니다. 1. **[Mask2Former](https://huggingface.co/docs/transformers/model_doc/mask2former)** (FAIR and UIUC 에서 제공)은 Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexander Kirillov, Rohit Girdhar.의 [Masked-attention Mask Transformer for Universal Image Segmentation](https://arxiv.org/abs/2112.01527)논문과 함께 발표했습니다. 1. **[MaskFormer](https://huggingface.co/docs/transformers/model_doc/maskformer)** (Meta and UIUC 에서) Bowen Cheng, Alexander G. Schwing, Alexander Kirillov 의 [Per-Pixel Classification is Not All You Need for Semantic Segmentation](https://arxiv.org/abs/2107.06278) 논문과 함께 발표했습니다. 1. **[MatCha](https://huggingface.co/docs/transformers/model_doc/matcha)** (Google AI 에서 제공)은 Fangyu Liu, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Yasemin Altun, Nigel Collier, Julian Martin Eisenschlos.의 [MatCha: Enhancing Visual Language Pretraining with Math Reasoning and Chart Derendering](https://arxiv.org/abs/2212.09662)논문과 함께 발표했습니다. 1. **[mBART](https://huggingface.co/docs/transformers/model_doc/mbart)** (Facebook 에서) Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad, Mike Lewis, Luke Zettlemoyer 의 [Multilingual Denoising Pre-training for Neural Machine Translation](https://arxiv.org/abs/2001.08210) 논문과 함께 발표했습니다. 1. **[mBART-50](https://huggingface.co/docs/transformers/model_doc/mbart)** (Facebook 에서) Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Naman Goyal, Vishrav Chaudhary, Jiatao Gu, Angela Fan 의 [Multilingual Translation with Extensible Multilingual Pretraining and Finetuning](https://arxiv.org/abs/2008.00401) 논문과 함께 발표했습니다. 1. **[MEGA](https://huggingface.co/docs/transformers/model_doc/mega)** (Facebook 에서 제공)은 Xuezhe Ma, Chunting Zhou, Xiang Kong, Junxian He, Liangke Gui, Graham Neubig, Jonathan May, and Luke Zettlemoyer.의 [Mega: Moving Average Equipped Gated Attention](https://arxiv.org/abs/2209.10655)논문과 함께 발표했습니다. 1. **[Megatron-BERT](https://huggingface.co/docs/transformers/model_doc/megatron-bert)** (NVIDIA 에서) Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro 의 [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) 논문과 함께 발표했습니다. 1. **[Megatron-GPT2](https://huggingface.co/docs/transformers/model_doc/megatron_gpt2)** (NVIDIA 에서) Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro 의 [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) 논문과 함께 발표했습니다. 1. **[MGP-STR](https://huggingface.co/docs/transformers/model_doc/mgp-str)** (Alibaba Research 에서 제공)은 Peng Wang, Cheng Da, and Cong Yao.의 [Multi-Granularity Prediction for Scene Text Recognition](https://arxiv.org/abs/2209.03592)논문과 함께 발표했습니다. 1. **[Mistral](https://huggingface.co/docs/transformers/model_doc/mistral)** (from Mistral AI) by The Mistral AI team: Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed.. 1. **[Mixtral](https://huggingface.co/docs/transformers/model_doc/mixtral)** (from Mistral AI) by The [Mistral AI](https://mistral.ai) team: Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed. 1. **[mLUKE](https://huggingface.co/docs/transformers/model_doc/mluke)** (Studio Ousia 에서) Ryokan Ri, Ikuya Yamada, and Yoshimasa Tsuruoka 의 [mLUKE: The Power of Entity Representations in Multilingual Pretrained Language Models](https://arxiv.org/abs/2110.08151) 논문과 함께 발표했습니다. 1. **[MMS](https://huggingface.co/docs/transformers/model_doc/mms)** (Facebook 에서 제공)은 Vineel Pratap, Andros Tjandra, Bowen Shi, Paden Tomasello, Arun Babu, Sayani Kundu, Ali Elkahky, Zhaoheng Ni, Apoorv Vyas, Maryam Fazel-Zarandi, Alexei Baevski, Yossi Adi, Xiaohui Zhang, Wei-Ning Hsu, Alexis Conneau, Michael Auli.의 [Scaling Speech Technology to 1,000+ Languages](https://arxiv.org/abs/2305.13516)논문과 함께 발표했습니다. 1. **[MobileBERT](https://huggingface.co/docs/transformers/model_doc/mobilebert)** (CMU/Google Brain 에서) Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou 의 [MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices](https://arxiv.org/abs/2004.02984) 논문과 함께 발표했습니다. 1. **[MobileNetV1](https://huggingface.co/docs/transformers/model_doc/mobilenet_v1)** (Google Inc. 에서) Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam 의 [MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications](https://arxiv.org/abs/1704.04861) 논문과 함께 발표했습니다. 1. **[MobileNetV2](https://huggingface.co/docs/transformers/model_doc/mobilenet_v2)** (Google Inc. 에서) Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen 의 [MobileNetV2: Inverted Residuals and Linear Bottlenecks](https://arxiv.org/abs/1801.04381) 논문과 함께 발표했습니다. 1. **[MobileViT](https://huggingface.co/docs/transformers/model_doc/mobilevit)** (Apple 에서) Sachin Mehta and Mohammad Rastegari 의 [MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer](https://arxiv.org/abs/2110.02178) 논문과 함께 발표했습니다. 1. **[MobileViTV2](https://huggingface.co/docs/transformers/model_doc/mobilevitv2)** (Apple 에서 제공)은 Sachin Mehta and Mohammad Rastegari.의 [Separable Self-attention for Mobile Vision Transformers](https://arxiv.org/abs/2206.02680)논문과 함께 발표했습니다. 1. **[MPNet](https://huggingface.co/docs/transformers/model_doc/mpnet)** (Microsoft Research 에서) Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu 의 [MPNet: Masked and Permuted Pre-training for Language Understanding](https://arxiv.org/abs/2004.09297) 논문과 함께 발표했습니다. 1. **[MPT](https://huggingface.co/docs/transformers/model_doc/mpt)** (MosaiML 에서 제공)은 the MosaicML NLP Team.의 [llm-foundry](https://github.com/mosaicml/llm-foundry/)논문과 함께 발표했습니다. 1. **[MRA](https://huggingface.co/docs/transformers/model_doc/mra)** (the University of Wisconsin - Madison 에서 제공)은 Zhanpeng Zeng, Sourav Pal, Jeffery Kline, Glenn M Fung, Vikas Singh.의 [Multi Resolution Analysis (MRA)](https://arxiv.org/abs/2207.10284) 논문과 함께 발표했습니다. 1. **[MT5](https://huggingface.co/docs/transformers/model_doc/mt5)** (Google AI 에서) Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel 의 [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934) 논문과 함께 발표했습니다. 1. **[MusicGen](https://huggingface.co/docs/transformers/model_doc/musicgen)** (from Meta) released with the paper [Simple and Controllable Music Generation](https://arxiv.org/abs/2306.05284) by Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi and Alexandre Défossez. 1. **[MVP](https://huggingface.co/docs/transformers/model_doc/mvp)** (RUC AI Box 에서) Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen 의 [MVP: Multi-task Supervised Pre-training for Natural Language Generation](https://arxiv.org/abs/2206.12131) 논문과 함께 발표했습니다. 1. **[NAT](https://huggingface.co/docs/transformers/model_doc/nat)** (SHI Labs 에서) Ali Hassani, Steven Walton, Jiachen Li, Shen Li, and Humphrey Shi 의 [Neighborhood Attention Transformer](https://arxiv.org/abs/2204.07143) 논문과 함께 발표했습니다. 1. **[Nezha](https://huggingface.co/docs/transformers/model_doc/nezha)** (Huawei Noah’s Ark Lab 에서) Junqiu Wei, Xiaozhe Ren, Xiaoguang Li, Wenyong Huang, Yi Liao, Yasheng Wang, Jiashu Lin, Xin Jiang, Xiao Chen and Qun Liu 의 [NEZHA: Neural Contextualized Representation for Chinese Language Understanding](https://arxiv.org/abs/1909.00204) 논문과 함께 발표했습니다. 1. **[NLLB](https://huggingface.co/docs/transformers/model_doc/nllb)** (Meta 에서) the NLLB team 의 [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) 논문과 함께 발표했습니다. 1. **[NLLB-MOE](https://huggingface.co/docs/transformers/model_doc/nllb-moe)** (Meta 에서 제공)은 the NLLB team.의 [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672)논문과 함께 발표했습니다. 1. **[Nougat](https://huggingface.co/docs/transformers/model_doc/nougat)** (Meta AI 에서 제공)은 Lukas Blecher, Guillem Cucurull, Thomas Scialom, Robert Stojnic.의 [Nougat: Neural Optical Understanding for Academic Documents](https://arxiv.org/abs/2308.13418)논문과 함께 발표했습니다. 1. **[Nyströmformer](https://huggingface.co/docs/transformers/model_doc/nystromformer)** (the University of Wisconsin - Madison 에서) Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, Vikas Singh 의 [Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention](https://arxiv.org/abs/2102.03902) 논문과 함께 발표했습니다. 1. **[OneFormer](https://huggingface.co/docs/transformers/model_doc/oneformer)** (SHI Labs 에서) Jitesh Jain, Jiachen Li, MangTik Chiu, Ali Hassani, Nikita Orlov, Humphrey Shi 의 [OneFormer: One Transformer to Rule Universal Image Segmentation](https://arxiv.org/abs/2211.06220) 논문과 함께 발표했습니다. 1. **[OpenLlama](https://huggingface.co/docs/transformers/model_doc/open-llama)** (from [s-JoL](https://huggingface.co/s-JoL)) released on GitHub (now removed). 1. **[OPT](https://huggingface.co/docs/transformers/master/model_doc/opt)** (Meta AI 에서) Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen et al 의 [OPT: Open Pre-trained Transformer Language Models](https://arxiv.org/abs/2205.01068) 논문과 함께 발표했습니다. 1. **[OWL-ViT](https://huggingface.co/docs/transformers/model_doc/owlvit)** (Google AI 에서) Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, Xiao Wang, Xiaohua Zhai, Thomas Kipf, and Neil Houlsby 의 [Simple Open-Vocabulary Object Detection with Vision Transformers](https://arxiv.org/abs/2205.06230) 논문과 함께 발표했습니다. 1. **[OWLv2](https://huggingface.co/docs/transformers/model_doc/owlv2)** (Google AI 에서 제공)은 Matthias Minderer, Alexey Gritsenko, Neil Houlsby.의 [Scaling Open-Vocabulary Object Detection](https://arxiv.org/abs/2306.09683)논문과 함께 발표했습니다. 1. **[PatchTSMixer](https://huggingface.co/docs/transformers/model_doc/patchtsmixer)** ( IBM Research 에서 제공)은 Vijay Ekambaram, Arindam Jati, Nam Nguyen, Phanwadee Sinthong, Jayant Kalagnanam.의 [TSMixer: Lightweight MLP-Mixer Model for Multivariate Time Series Forecasting](https://arxiv.org/pdf/2306.09364.pdf)논문과 함께 발표했습니다. 1. **[PatchTST](https://huggingface.co/docs/transformers/model_doc/patchtst)** (IBM 에서 제공)은 Yuqi Nie, Nam H. Nguyen, Phanwadee Sinthong, Jayant Kalagnanam.의 [A Time Series is Worth 64 Words: Long-term Forecasting with Transformers](https://arxiv.org/pdf/2211.14730.pdf)논문과 함께 발표했습니다. 1. **[Pegasus](https://huggingface.co/docs/transformers/model_doc/pegasus)** (Google 에서) Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu 의 [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777) 논문과 함께 발표했습니다. 1. **[PEGASUS-X](https://huggingface.co/docs/transformers/model_doc/pegasus_x)** (Google 에서) Jason Phang, Yao Zhao, Peter J. Liu 의 [Investigating Efficiently Extending Transformers for Long Input Summarization](https://arxiv.org/abs/2208.04347) 논문과 함께 발표했습니다. 1. **[Perceiver IO](https://huggingface.co/docs/transformers/model_doc/perceiver)** (Deepmind 에서) Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu, David Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, Olivier Hénaff, Matthew M. Botvinick, Andrew Zisserman, Oriol Vinyals, João Carreira 의 [Perceiver IO: A General Architecture for Structured Inputs & Outputs](https://arxiv.org/abs/2107.14795) 논문과 함께 발표했습니다. 1. **[Persimmon](https://huggingface.co/docs/transformers/model_doc/persimmon)** (ADEPT 에서 제공)은 Erich Elsen, Augustus Odena, Maxwell Nye, Sağnak Taşırlar, Tri Dao, Curtis Hawthorne, Deepak Moparthi, Arushi Somani.의 [blog post](https://www.adept.ai/blog/persimmon-8b)논문과 함께 발표했습니다. 1. **[Phi](https://huggingface.co/docs/transformers/model_doc/phi)** (from Microsoft) released with the papers - [Textbooks Are All You Need](https://arxiv.org/abs/2306.11644) by Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio César Teodoro Mendes, Allie Del Giorno, Sivakanth Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo de Rosa, Olli Saarikivi, Adil Salim, Shital Shah, Harkirat Singh Behl, Xin Wang, Sébastien Bubeck, Ronen Eldan, Adam Tauman Kalai, Yin Tat Lee and Yuanzhi Li, [Textbooks Are All You Need II: phi-1.5 technical report](https://arxiv.org/abs/2309.05463) by Yuanzhi Li, Sébastien Bubeck, Ronen Eldan, Allie Del Giorno, Suriya Gunasekar and Yin Tat Lee. 1. **[PhoBERT](https://huggingface.co/docs/transformers/model_doc/phobert)** (VinAI Research 에서) Dat Quoc Nguyen and Anh Tuan Nguyen 의 [PhoBERT: Pre-trained language models for Vietnamese](https://www.aclweb.org/anthology/2020.findings-emnlp.92/) 논문과 함께 발표했습니다. 1. **[Pix2Struct](https://huggingface.co/docs/transformers/model_doc/pix2struct)** (Google 에서 제공)은 Kenton Lee, Mandar Joshi, Iulia Turc, Hexiang Hu, Fangyu Liu, Julian Eisenschlos, Urvashi Khandelwal, Peter Shaw, Ming-Wei Chang, Kristina Toutanova.의 [Pix2Struct: Screenshot Parsing as Pretraining for Visual Language Understanding](https://arxiv.org/abs/2210.03347)논문과 함께 발표했습니다. 1. **[PLBart](https://huggingface.co/docs/transformers/model_doc/plbart)** (UCLA NLP 에서) Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, Kai-Wei Chang 의 [Unified Pre-training for Program Understanding and Generation](https://arxiv.org/abs/2103.06333) 논문과 함께 발표했습니다. 1. **[PoolFormer](https://huggingface.co/docs/transformers/model_doc/poolformer)** (Sea AI Labs 에서) Yu, Weihao and Luo, Mi and Zhou, Pan and Si, Chenyang and Zhou, Yichen and Wang, Xinchao and Feng, Jiashi and Yan, Shuicheng 의 [MetaFormer is Actually What You Need for Vision](https://arxiv.org/abs/2111.11418) 논문과 함께 발표했습니다. 1. **[Pop2Piano](https://huggingface.co/docs/transformers/model_doc/pop2piano)** released with the paper [Pop2Piano : Pop Audio-based Piano Cover Generation](https://arxiv.org/abs/2211.00895) by Jongho Choi, Kyogu Lee. 1. **[ProphetNet](https://huggingface.co/docs/transformers/model_doc/prophetnet)** (Microsoft Research 에서) Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou 의 [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) 논문과 함께 발표했습니다. 1. **[PVT](https://huggingface.co/docs/transformers/model_doc/pvt)** (Nanjing University, The University of Hong Kong etc. 에서 제공)은 Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao.의 [Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions](https://arxiv.org/pdf/2102.12122.pdf)논문과 함께 발표했습니다. 1. **[QDQBert](https://huggingface.co/docs/transformers/model_doc/qdqbert)** (NVIDIA 에서) Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev and Paulius Micikevicius 의 [Integer Quantization for Deep Learning Inference: Principles and Empirical Evaluation](https://arxiv.org/abs/2004.09602) 논문과 함께 발표했습니다. 1. **[RAG](https://huggingface.co/docs/transformers/model_doc/rag)** (Facebook 에서) Patrick Lewis, Ethan Perez, Aleksandara Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, Douwe Kiela 의 [Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks](https://arxiv.org/abs/2005.11401) 논문과 함께 발표했습니다. 1. **[REALM](https://huggingface.co/docs/transformers/model_doc/realm.html)** (Google Research 에서) Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat and Ming-Wei Chang 의 [REALM: Retrieval-Augmented Language Model Pre-Training](https://arxiv.org/abs/2002.08909) 논문과 함께 발표했습니다. 1. **[Reformer](https://huggingface.co/docs/transformers/model_doc/reformer)** (Google Research 에서) Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya 의 [Reformer: The Efficient Transformer](https://arxiv.org/abs/2001.04451) 논문과 함께 발표했습니다. 1. **[RegNet](https://huggingface.co/docs/transformers/model_doc/regnet)** (META Research 에서) Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, Piotr Dollár 의 [Designing Network Design Space](https://arxiv.org/abs/2003.13678) 논문과 함께 발표했습니다. 1. **[RemBERT](https://huggingface.co/docs/transformers/model_doc/rembert)** (Google Research 에서) Hyung Won Chung, Thibault Févry, Henry Tsai, M. Johnson, Sebastian Ruder 의 [Rethinking embedding coupling in pre-trained language models](https://arxiv.org/pdf/2010.12821.pdf) 논문과 함께 발표했습니다. 1. **[ResNet](https://huggingface.co/docs/transformers/model_doc/resnet)** (Microsoft Research 에서) Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun 의 [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) 논문과 함께 발표했습니다. 1. **[RoBERTa](https://huggingface.co/docs/transformers/model_doc/roberta)** (Facebook 에서) Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov 의 a [Robustly Optimized BERT Pretraining Approach](https://arxiv.org/abs/1907.11692) 논문과 함께 발표했습니다. 1. **[RoBERTa-PreLayerNorm](https://huggingface.co/docs/transformers/model_doc/roberta-prelayernorm)** (Facebook 에서) Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier, Michael Auli 의 [fairseq: A Fast, Extensible Toolkit for Sequence Modeling](https://arxiv.org/abs/1904.01038) 논문과 함께 발표했습니다. 1. **[RoCBert](https://huggingface.co/docs/transformers/model_doc/roc_bert)** (WeChatAI 에서) HuiSu, WeiweiShi, XiaoyuShen, XiaoZhou, TuoJi, JiaruiFang, JieZhou 의 [RoCBert: Robust Chinese Bert with Multimodal Contrastive Pretraining](https://aclanthology.org/2022.acl-long.65.pdf) 논문과 함께 발표했습니다. 1. **[RoFormer](https://huggingface.co/docs/transformers/model_doc/roformer)** (ZhuiyiTechnology 에서) Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu 의 a [RoFormer: Enhanced Transformer with Rotary Position Embedding](https://arxiv.org/pdf/2104.09864v1.pdf) 논문과 함께 발표했습니다. 1. **[RWKV](https://huggingface.co/docs/transformers/model_doc/rwkv)** (Bo Peng 에서 제공)은 Bo Peng.의 [this repo](https://github.com/BlinkDL/RWKV-LM)논문과 함께 발표했습니다. 1. **[SeamlessM4T](https://huggingface.co/docs/transformers/model_doc/seamless_m4t)** (from Meta AI) released with the paper [SeamlessM4T — Massively Multilingual & Multimodal Machine Translation](https://dl.fbaipublicfiles.com/seamless/seamless_m4t_paper.pdf) by the Seamless Communication team. 1. **[SeamlessM4Tv2](https://huggingface.co/docs/transformers/model_doc/seamless_m4t_v2)** (from Meta AI) released with the paper [Seamless: Multilingual Expressive and Streaming Speech Translation](https://ai.meta.com/research/publications/seamless-multilingual-expressive-and-streaming-speech-translation/) by the Seamless Communication team. 1. **[SegFormer](https://huggingface.co/docs/transformers/model_doc/segformer)** (NVIDIA 에서) Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M. Alvarez, Ping Luo 의 [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203) 논문과 함께 발표했습니다. 1. **[Segment Anything](https://huggingface.co/docs/transformers/model_doc/sam)** (Meta AI 에서 제공)은 Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer Whitehead, Alex Berg, Wan-Yen Lo, Piotr Dollar, Ross Girshick.의 [Segment Anything](https://arxiv.org/pdf/2304.02643v1.pdf)논문과 함께 발표했습니다. 1. **[SEW](https://huggingface.co/docs/transformers/model_doc/sew)** (ASAPP 에서) Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi 의 [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) 논문과 함께 발표했습니다. 1. **[SEW-D](https://huggingface.co/docs/transformers/model_doc/sew_d)** (ASAPP 에서) Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi 의 [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) 논문과 함께 발표했습니다. 1. **[SpeechT5](https://huggingface.co/docs/transformers/model_doc/speecht5)** (Microsoft Research 에서 제공)은 Junyi Ao, Rui Wang, Long Zhou, Chengyi Wang, Shuo Ren, Yu Wu, Shujie Liu, Tom Ko, Qing Li, Yu Zhang, Zhihua Wei, Yao Qian, Jinyu Li, Furu Wei.의 [SpeechT5: Unified-Modal Encoder-Decoder Pre-Training for Spoken Language Processing](https://arxiv.org/abs/2110.07205)논문과 함께 발표했습니다. 1. **[SpeechToTextTransformer](https://huggingface.co/docs/transformers/model_doc/speech_to_text)** (Facebook 에서) Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Dmytro Okhonko, Juan Pino 의 [fairseq S2T: Fast Speech-to-Text Modeling with fairseq](https://arxiv.org/abs/2010.05171) 논문과 함께 발표했습니다. 1. **[SpeechToTextTransformer2](https://huggingface.co/docs/transformers/model_doc/speech_to_text_2)** (Facebook 에서) Changhan Wang, Anne Wu, Juan Pino, Alexei Baevski, Michael Auli, Alexis Conneau 의 [Large-Scale Self- and Semi-Supervised Learning for Speech Translation](https://arxiv.org/abs/2104.06678) 논문과 함께 발표했습니다. 1. **[Splinter](https://huggingface.co/docs/transformers/model_doc/splinter)** (Tel Aviv University 에서) Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Globerson, Omer Levy 의 [Few-Shot Question Answering by Pretraining Span Selection](https://arxiv.org/abs/2101.00438) 논문과 함께 발표했습니다. 1. **[SqueezeBERT](https://huggingface.co/docs/transformers/model_doc/squeezebert)** (Berkeley 에서) Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer 의 [SqueezeBERT: What can computer vision teach NLP about efficient neural networks?](https://arxiv.org/abs/2006.11316) 논문과 함께 발표했습니다. 1. **[SwiftFormer](https://huggingface.co/docs/transformers/model_doc/swiftformer)** (MBZUAI 에서 제공)은 Abdelrahman Shaker, Muhammad Maaz, Hanoona Rasheed, Salman Khan, Ming-Hsuan Yang, Fahad Shahbaz Khan.의 [SwiftFormer: Efficient Additive Attention for Transformer-based Real-time Mobile Vision Applications](https://arxiv.org/abs/2303.15446)논문과 함께 발표했습니다. 1. **[Swin Transformer](https://huggingface.co/docs/transformers/model_doc/swin)** (Microsoft 에서) Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo 의 [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030) 논문과 함께 발표했습니다. 1. **[Swin Transformer V2](https://huggingface.co/docs/transformers/model_doc/swinv2)** (Microsoft 에서) Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong, Furu Wei, Baining Guo 의 [Swin Transformer V2: Scaling Up Capacity and Resolution](https://arxiv.org/abs/2111.09883) 논문과 함께 발표했습니다. 1. **[Swin2SR](https://huggingface.co/docs/transformers/model_doc/swin2sr)** (University of Würzburg 에서) Marcos V. Conde, Ui-Jin Choi, Maxime Burchi, Radu Timofte 의 [Swin2SR: SwinV2 Transformer for Compressed Image Super-Resolution and Restoration](https://arxiv.org/abs/2209.11345) 논문과 함께 발표했습니다. 1. **[SwitchTransformers](https://huggingface.co/docs/transformers/model_doc/switch_transformers)** (Google 에서) William Fedus, Barret Zoph, Noam Shazeer. 의 [Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity](https://arxiv.org/abs/2101.03961) 논문과 함께 발표했습니다. 1. **[T5](https://huggingface.co/docs/transformers/model_doc/t5)** (Google AI 에서) Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu 의 [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/abs/1910.10683) 논문과 함께 발표했습니다. 1. **[T5v1.1](https://huggingface.co/docs/transformers/model_doc/t5v1.1)** (from Google AI) released in the repository [google-research/text-to-text-transfer-transformer](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#t511) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu. 1. **[Table Transformer](https://huggingface.co/docs/transformers/model_doc/table-transformer)** (Microsoft Research 에서) Brandon Smock, Rohith Pesala, Robin Abraham 의 [PubTables-1M: Towards Comprehensive Table Extraction From Unstructured Documents](https://arxiv.org/abs/2110.00061) 논문과 함께 발표했습니다. 1. **[TAPAS](https://huggingface.co/docs/transformers/model_doc/tapas)** (Google AI 에서) Jonathan Herzig, Paweł Krzysztof Nowak, Thomas Müller, Francesco Piccinno and Julian Martin Eisenschlos 의 [TAPAS: Weakly Supervised Table Parsing via Pre-training](https://arxiv.org/abs/2004.02349) 논문과 함께 발표했습니다. 1. **[TAPEX](https://huggingface.co/docs/transformers/model_doc/tapex)** (Microsoft Research 에서) Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi Lin, Weizhu Chen, Jian-Guang Lou 의 [TAPEX: Table Pre-training via Learning a Neural SQL Executor](https://arxiv.org/abs/2107.07653) 논문과 함께 발표했습니다. 1. **[Time Series Transformer](https://huggingface.co/docs/transformers/model_doc/time_series_transformer)** (from HuggingFace). 1. **[TimeSformer](https://huggingface.co/docs/transformers/model_doc/timesformer)** (Facebook 에서) Gedas Bertasius, Heng Wang, Lorenzo Torresani 의 [Is Space-Time Attention All You Need for Video Understanding?](https://arxiv.org/abs/2102.05095) 논문과 함께 발표했습니다. 1. **[Trajectory Transformer](https://huggingface.co/docs/transformers/model_doc/trajectory_transformers)** (the University of California at Berkeley 에서) Michael Janner, Qiyang Li, Sergey Levin 의 [Offline Reinforcement Learning as One Big Sequence Modeling Problem](https://arxiv.org/abs/2106.02039) 논문과 함께 발표했습니다. 1. **[Transformer-XL](https://huggingface.co/docs/transformers/model_doc/transfo-xl)** (Google/CMU 에서) Zihang Dai*, Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov 의 [Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context](https://arxiv.org/abs/1901.02860) 논문과 함께 발표했습니다. 1. **[TrOCR](https://huggingface.co/docs/transformers/model_doc/trocr)** (Microsoft 에서) Minghao Li, Tengchao Lv, Lei Cui, Yijuan Lu, Dinei Florencio, Cha Zhang, Zhoujun Li, Furu Wei 의 [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282) 논문과 함께 발표했습니다. 1. **[TVLT](https://huggingface.co/docs/transformers/model_doc/tvlt)** (from UNC Chapel Hill 에서) Zineng Tang, Jaemin Cho, Yixin Nie, Mohit Bansal 의 [TVLT: Textless Vision-Language Transformer](https://arxiv.org/abs/2209.14156) 논문과 함께 발표했습니다. 1. **[TVP](https://huggingface.co/docs/transformers/model_doc/tvp)** (Intel 에서) Yimeng Zhang, Xin Chen, Jinghan Jia, Sijia Liu, Ke Ding 의 [Text-Visual Prompting for Efficient 2D Temporal Video Grounding](https://arxiv.org/abs/2303.04995) 논문과 함께 발표했습니다. 1. **[UL2](https://huggingface.co/docs/transformers/model_doc/ul2)** (Google Research 에서) Yi Tay, Mostafa Dehghani, Vinh Q. Tran, Xavier Garcia, Dara Bahri, Tal Schuster, Huaixiu Steven Zheng, Neil Houlsby, Donald Metzle 의 [Unifying Language Learning Paradigms](https://arxiv.org/abs/2205.05131v1) 논문과 함께 발표했습니다. 1. **[UMT5](https://huggingface.co/docs/transformers/model_doc/umt5)** (Google Research 에서 제공)은 Hyung Won Chung, Xavier Garcia, Adam Roberts, Yi Tay, Orhan Firat, Sharan Narang, Noah Constant.의 [UniMax: Fairer and More Effective Language Sampling for Large-Scale Multilingual Pretraining](https://openreview.net/forum?id=kXwdL1cWOAi)논문과 함께 발표했습니다. 1. **[UniSpeech](https://huggingface.co/docs/transformers/model_doc/unispeech)** (Microsoft Research 에서) Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang 의 [UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data](https://arxiv.org/abs/2101.07597) 논문과 함께 발표했습니다. 1. **[UniSpeechSat](https://huggingface.co/docs/transformers/model_doc/unispeech-sat)** (Microsoft Research 에서) Sanyuan Chen, Yu Wu, Chengyi Wang, Zhengyang Chen, Zhuo Chen, Shujie Liu, Jian Wu, Yao Qian, Furu Wei, Jinyu Li, Xiangzhan Yu 의 [UNISPEECH-SAT: UNIVERSAL SPEECH REPRESENTATION LEARNING WITH SPEAKER AWARE PRE-TRAINING](https://arxiv.org/abs/2110.05752) 논문과 함께 발표했습니다. 1. **[UnivNet](https://huggingface.co/docs/transformers/model_doc/univnet)** (from Kakao Corporation) released with the paper [UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation](https://arxiv.org/abs/2106.07889) by Won Jang, Dan Lim, Jaesam Yoon, Bongwan Kim, and Juntae Kim. 1. **[UPerNet](https://huggingface.co/docs/transformers/model_doc/upernet)** (Peking University 에서 제공)은 Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, Jian Sun.의 [Unified Perceptual Parsing for Scene Understanding](https://arxiv.org/abs/1807.10221)논문과 함께 발표했습니다. 1. **[VAN](https://huggingface.co/docs/transformers/model_doc/van)** (Tsinghua University and Nankai University 에서) Meng-Hao Guo, Cheng-Ze Lu, Zheng-Ning Liu, Ming-Ming Cheng, Shi-Min Hu 의 [Visual Attention Network](https://arxiv.org/pdf/2202.09741.pdf) 논문과 함께 발표했습니다. 1. **[VideoMAE](https://huggingface.co/docs/transformers/model_doc/videomae)** (Multimedia Computing Group, Nanjing University 에서) Zhan Tong, Yibing Song, Jue Wang, Limin Wang 의 [VideoMAE: Masked Autoencoders are Data-Efficient Learners for Self-Supervised Video Pre-Training](https://arxiv.org/abs/2203.12602) 논문과 함께 발표했습니다. 1. **[ViLT](https://huggingface.co/docs/transformers/model_doc/vilt)** (NAVER AI Lab/Kakao Enterprise/Kakao Brain 에서) Wonjae Kim, Bokyung Son, Ildoo Kim 의 [ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision](https://arxiv.org/abs/2102.03334) 논문과 함께 발표했습니다. 1. **[VipLlava](https://huggingface.co/docs/transformers/model_doc/vipllava)** (University of Wisconsin–Madison 에서 제공)은 Mu Cai, Haotian Liu, Siva Karthik Mustikovela, Gregory P. Meyer, Yuning Chai, Dennis Park, Yong Jae Lee.의 [Making Large Multimodal Models Understand Arbitrary Visual Prompts](https://arxiv.org/abs/2312.00784)논문과 함께 발표했습니다. 1. **[Vision Transformer (ViT)](https://huggingface.co/docs/transformers/model_doc/vit)** (Google AI 에서) Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby 의 [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) 논문과 함께 발표했습니다. 1. **[VisualBERT](https://huggingface.co/docs/transformers/model_doc/visual_bert)** (UCLA NLP 에서) Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang 의 [VisualBERT: A Simple and Performant Baseline for Vision and Language](https://arxiv.org/pdf/1908.03557) 논문과 함께 발표했습니다. 1. **[ViT Hybrid](https://huggingface.co/docs/transformers/model_doc/vit_hybrid)** (Google AI 에서) Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby 의 [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) 논문과 함께 발표했습니다. 1. **[VitDet](https://huggingface.co/docs/transformers/model_doc/vitdet)** (Meta AI 에서 제공)은 Yanghao Li, Hanzi Mao, Ross Girshick, Kaiming He.의 [Exploring Plain Vision Transformer Backbones for Object Detection](https://arxiv.org/abs/2203.16527)논문과 함께 발표했습니다. 1. **[ViTMAE](https://huggingface.co/docs/transformers/model_doc/vit_mae)** (Meta AI 에서) Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick 의 [Masked Autoencoders Are Scalable Vision Learners](https://arxiv.org/abs/2111.06377) 논문과 함께 발표했습니다. 1. **[ViTMatte](https://huggingface.co/docs/transformers/model_doc/vitmatte)** (HUST-VL 에서 제공)은 Jingfeng Yao, Xinggang Wang, Shusheng Yang, Baoyuan Wang.의 [ViTMatte: Boosting Image Matting with Pretrained Plain Vision Transformers](https://arxiv.org/abs/2305.15272)논문과 함께 발표했습니다. 1. **[ViTMSN](https://huggingface.co/docs/transformers/model_doc/vit_msn)** (Meta AI 에서) Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bojanowski, Florian Bordes, Pascal Vincent, Armand Joulin, Michael Rabbat, Nicolas Ballas 의 [Masked Siamese Networks for Label-Efficient Learning](https://arxiv.org/abs/2204.07141) 논문과 함께 발표했습니다. 1. **[VITS](https://huggingface.co/docs/transformers/model_doc/vits)** (Kakao Enterprise 에서 제공)은 Jaehyeon Kim, Jungil Kong, Juhee Son.의 [Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech](https://arxiv.org/abs/2106.06103)논문과 함께 발표했습니다. 1. **[ViViT](https://huggingface.co/docs/transformers/model_doc/vivit)** (from Google Research) released with the paper [ViViT: A Video Vision Transformer](https://arxiv.org/abs/2103.15691) by Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lučić, Cordelia Schmid. 1. **[Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/wav2vec2)** (Facebook AI 에서) Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli 의 [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations](https://arxiv.org/abs/2006.11477) 논문과 함께 발표했습니다. 1. **[Wav2Vec2-Conformer](https://huggingface.co/docs/transformers/model_doc/wav2vec2-conformer)** (Facebook AI 에서) Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Sravya Popuri, Dmytro Okhonko, Juan Pino 의 [FAIRSEQ S2T: Fast Speech-to-Text Modeling with FAIRSEQ](https://arxiv.org/abs/2010.05171) 논문과 함께 발표했습니다. 1. **[Wav2Vec2Phoneme](https://huggingface.co/docs/transformers/model_doc/wav2vec2_phoneme)** (Facebook AI 에서) Qiantong Xu, Alexei Baevski, Michael Auli 의 [Simple and Effective Zero-shot Cross-lingual Phoneme Recognition](https://arxiv.org/abs/2109.11680) 논문과 함께 발표했습니다. 1. **[WavLM](https://huggingface.co/docs/transformers/model_doc/wavlm)** (Microsoft Research 에서) Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki Kanda, Takuya Yoshioka, Xiong Xiao, Jian Wu, Long Zhou, Shuo Ren, Yanmin Qian, Yao Qian, Jian Wu, Michael Zeng, Furu Wei 의 [WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing](https://arxiv.org/abs/2110.13900) 논문과 함께 발표했습니다. 1. **[Whisper](https://huggingface.co/docs/transformers/model_doc/whisper)** (OpenAI 에서) Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, Ilya Sutskever 의 [Robust Speech Recognition via Large-Scale Weak Supervision](https://cdn.openai.com/papers/whisper.pdf) 논문과 함께 발표했습니다. 1. **[X-CLIP](https://huggingface.co/docs/transformers/model_doc/xclip)** (Microsoft Research 에서) Bolin Ni, Houwen Peng, Minghao Chen, Songyang Zhang, Gaofeng Meng, Jianlong Fu, Shiming Xiang, Haibin Ling 의 [Expanding Language-Image Pretrained Models for General Video Recognition](https://arxiv.org/abs/2208.02816) 논문과 함께 발표했습니다. 1. **[X-MOD](https://huggingface.co/docs/transformers/model_doc/xmod)** (Meta AI 에서 제공)은 Jonas Pfeiffer, Naman Goyal, Xi Lin, Xian Li, James Cross, Sebastian Riedel, Mikel Artetxe.의 [Lifting the Curse of Multilinguality by Pre-training Modular Transformers](http://dx.doi.org/10.18653/v1/2022.naacl-main.255)논문과 함께 발표했습니다. 1. **[XGLM](https://huggingface.co/docs/transformers/model_doc/xglm)** (Facebook AI 에서 제공) Xi Victoria Lin, Todor Mihaylov, Mikel Artetxe, Tianlu Wang, Shuohui Chen, Daniel Simig, Myle Ott, Naman Goyal, Shruti Bhosale, Jingfei Du, Ramakanth Pasunuru, Sam Shleifer, Punit Singh Koura, Vishrav Chaudhary, Brian O'Horo, Jeff Wang, Luke Zettlemoyer, Zornitsa Kozareva, Mona Diab, Veselin Stoyanov, Xian Li 의 [Few-shot Learning with Multilingual Language Models](https://arxiv.org/abs/2112.10668) 논문과 함께 발표했습니다. 1. **[XLM](https://huggingface.co/docs/transformers/model_doc/xlm)** (Facebook 에서) Guillaume Lample and Alexis Conneau 의 [Cross-lingual Language Model Pretraining](https://arxiv.org/abs/1901.07291) 논문과 함께 발표했습니다. 1. **[XLM-ProphetNet](https://huggingface.co/docs/transformers/model_doc/xlm-prophetnet)** (Microsoft Research 에서) Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou 의 [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) 논문과 함께 발표했습니다. 1. **[XLM-RoBERTa](https://huggingface.co/docs/transformers/model_doc/xlm-roberta)** (Facebook AI 에서) Alexis Conneau*, Kartikay Khandelwal*, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer and Veselin Stoyanov 의 [Unsupervised Cross-lingual Representation Learning at Scale](https://arxiv.org/abs/1911.02116) 논문과 함께 발표했습니다. 1. **[XLM-RoBERTa-XL](https://huggingface.co/docs/transformers/model_doc/xlm-roberta-xl)** (Facebook AI 에서) Naman Goyal, Jingfei Du, Myle Ott, Giri Anantharaman, Alexis Conneau 의 [Larger-Scale Transformers for Multilingual Masked Language Modeling](https://arxiv.org/abs/2105.00572) 논문과 함께 발표했습니다. 1. **[XLM-V](https://huggingface.co/docs/transformers/model_doc/xlm-v)** (Meta AI 에서) Davis Liang, Hila Gonen, Yuning Mao, Rui Hou, Naman Goyal, Marjan Ghazvininejad, Luke Zettlemoyer, Madian Khabsa 의 [XLM-V: Overcoming the Vocabulary Bottleneck in Multilingual Masked Language Models](https://arxiv.org/abs/2301.10472) 논문과 함께 발표했습니다. 1. **[XLNet](https://huggingface.co/docs/transformers/model_doc/xlnet)** (Google/CMU 에서) Zhilin Yang*, Zihang Dai*, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le 의 [​XLNet: Generalized Autoregressive Pretraining for Language Understanding](https://arxiv.org/abs/1906.08237) 논문과 함께 발표했습니다. 1. **[XLS-R](https://huggingface.co/docs/transformers/model_doc/xls_r)** (Facebook AI 에서) Arun Babu, Changhan Wang, Andros Tjandra, Kushal Lakhotia, Qiantong Xu, Naman Goyal, Kritika Singh, Patrick von Platen, Yatharth Saraf, Juan Pino, Alexei Baevski, Alexis Conneau, Michael Auli 의 [XLS-R: Self-supervised Cross-lingual Speech Representation Learning at Scale](https://arxiv.org/abs/2111.09296) 논문과 함께 발표했습니다. 1. **[XLSR-Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/xlsr_wav2vec2)** (Facebook AI 에서) Alexis Conneau, Alexei Baevski, Ronan Collobert, Abdelrahman Mohamed, Michael Auli 의 [Unsupervised Cross-Lingual Representation Learning For Speech Recognition](https://arxiv.org/abs/2006.13979) 논문과 함께 발표했습니다. 1. **[YOLOS](https://huggingface.co/docs/transformers/model_doc/yolos)** (Huazhong University of Science & Technology 에서) Yuxin Fang, Bencheng Liao, Xinggang Wang, Jiemin Fang, Jiyang Qi, Rui Wu, Jianwei Niu, Wenyu Liu 의 [You Only Look at One Sequence: Rethinking Transformer in Vision through Object Detection](https://arxiv.org/abs/2106.00666) 논문과 함께 발표했습니다. 1. **[YOSO](https://huggingface.co/docs/transformers/model_doc/yoso)** (the University of Wisconsin - Madison 에서) Zhanpeng Zeng, Yunyang Xiong, Sathya N. Ravi, Shailesh Acharya, Glenn Fung, Vikas Singh 의 [You Only Sample (Almost) Once: Linear Cost Self-Attention Via Bernoulli Sampling](https://arxiv.org/abs/2111.09714) 논문과 함께 발표했습니다. 1. 새로운 모델을 올리고 싶나요? 우리가 **상세한 가이드와 템플릿** 으로 새로운 모델을 올리도록 도와드릴게요. 가이드와 템플릿은 이 저장소의 [`templates`](./templates) 폴더에서 확인하실 수 있습니다. [컨트리뷰션 가이드라인](./CONTRIBUTING.md)을 꼭 확인해주시고, PR을 올리기 전에 메인테이너에게 연락하거나 이슈를 오픈해 피드백을 받으시길 바랍니다. 각 모델이 Flax, PyTorch, TensorFlow으로 구현되었는지 또는 🤗 Tokenizers 라이브러리가 지원하는 토크나이저를 사용하는지 확인하려면, [이 표](https://huggingface.co/docs/transformers/index#supported-frameworks)를 확인하세요. 이 구현은 여러 데이터로 검증되었고 (예시 스크립트를 참고하세요) 오리지널 구현의 성능과 같아야 합니다. [도큐먼트](https://huggingface.co/docs/transformers/examples)의 Examples 섹션에서 성능에 대한 자세한 설명을 확인할 수 있습니다. ## 더 알아보기 | 섹션 | 설명 | |-|-| | [도큐먼트](https://huggingface.co/transformers/) | 전체 API 도큐먼트와 튜토리얼 | | [과제 요약](https://huggingface.co/docs/transformers/task_summary) | 🤗 Transformers가 지원하는 과제들 | | [전처리 튜토리얼](https://huggingface.co/docs/transformers/preprocessing) | `Tokenizer` 클래스를 이용해 모델을 위한 데이터 준비하기 | | [학습과 fine-tuning](https://huggingface.co/docs/transformers/training) | 🤗 Transformers가 제공하는 모델 PyTorch/TensorFlow 학습 과정과 `Trainer` API에서 사용하기 | | [퀵 투어: Fine-tuning/사용 스크립트](https://github.com/huggingface/transformers/tree/main/examples) | 다양한 과제에서 모델 fine-tuning하는 예시 스크립트 | | [모델 공유 및 업로드](https://huggingface.co/docs/transformers/model_sharing) | 커뮤니티에 fine-tune된 모델을 업로드 및 공유하기 | | [마이그레이션](https://huggingface.co/docs/transformers/migration) | `pytorch-transformers`나 `pytorch-pretrained-bert`에서 🤗 Transformers로 이동하기| ## 인용 🤗 Transformers 라이브러리를 인용하고 싶다면, 이 [논문](https://www.aclweb.org/anthology/2020.emnlp-demos.6/)을 인용해 주세요: ```bibtex @inproceedings{wolf-etal-2020-transformers, title = "Transformers: State-of-the-Art Natural Language Processing", author = "Thomas Wolf and Lysandre Debut and Victor Sanh and Julien Chaumond and Clement Delangue and Anthony Moi and Pierric Cistac and Tim Rault and Rémi Louf and Morgan Funtowicz and Joe Davison and Sam Shleifer and Patrick von Platen and Clara Ma and Yacine Jernite and Julien Plu and Canwen Xu and Teven Le Scao and Sylvain Gugger and Mariama Drame and Quentin Lhoest and Alexander M. Rush", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations", month = oct, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.emnlp-demos.6", pages = "38--45" } ```
huggingface/transformers/blob/main/README_ko.md
!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Efficient Training on Multiple CPUs When training on a single CPU is too slow, we can use multiple CPUs. This guide focuses on PyTorch-based DDP enabling distributed CPU training efficiently on [bare metal](#usage-in-trainer) and [Kubernetes](#usage-with-kubernetes). ## Intel® oneCCL Bindings for PyTorch [Intel® oneCCL](https://github.com/oneapi-src/oneCCL) (collective communications library) is a library for efficient distributed deep learning training implementing such collectives like allreduce, allgather, alltoall. For more information on oneCCL, please refer to the [oneCCL documentation](https://spec.oneapi.com/versions/latest/elements/oneCCL/source/index.html) and [oneCCL specification](https://spec.oneapi.com/versions/latest/elements/oneCCL/source/index.html). Module `oneccl_bindings_for_pytorch` (`torch_ccl` before version 1.12) implements PyTorch C10D ProcessGroup API and can be dynamically loaded as external ProcessGroup and only works on Linux platform now Check more detailed information for [oneccl_bind_pt](https://github.com/intel/torch-ccl). ### Intel® oneCCL Bindings for PyTorch installation Wheel files are available for the following Python versions: | Extension Version | Python 3.6 | Python 3.7 | Python 3.8 | Python 3.9 | Python 3.10 | | :---------------: | :--------: | :--------: | :--------: | :--------: | :---------: | | 1.13.0 | | √ | √ | √ | √ | | 1.12.100 | | √ | √ | √ | √ | | 1.12.0 | | √ | √ | √ | √ | | 1.11.0 | | √ | √ | √ | √ | | 1.10.0 | √ | √ | √ | √ | | ``` pip install oneccl_bind_pt=={pytorch_version} -f https://developer.intel.com/ipex-whl-stable-cpu ``` where `{pytorch_version}` should be your PyTorch version, for instance 1.13.0. Check more approaches for [oneccl_bind_pt installation](https://github.com/intel/torch-ccl). Versions of oneCCL and PyTorch must match. <Tip warning={true}> oneccl_bindings_for_pytorch 1.12.0 prebuilt wheel does not work with PyTorch 1.12.1 (it is for PyTorch 1.12.0) PyTorch 1.12.1 should work with oneccl_bindings_for_pytorch 1.12.100 </Tip> ## Intel® MPI library Use this standards-based MPI implementation to deliver flexible, efficient, scalable cluster messaging on Intel® architecture. This component is part of the Intel® oneAPI HPC Toolkit. oneccl_bindings_for_pytorch is installed along with the MPI tool set. Need to source the environment before using it. for Intel® oneCCL >= 1.12.0 ``` oneccl_bindings_for_pytorch_path=$(python -c "from oneccl_bindings_for_pytorch import cwd; print(cwd)") source $oneccl_bindings_for_pytorch_path/env/setvars.sh ``` for Intel® oneCCL whose version < 1.12.0 ``` torch_ccl_path=$(python -c "import torch; import torch_ccl; import os; print(os.path.abspath(os.path.dirname(torch_ccl.__file__)))") source $torch_ccl_path/env/setvars.sh ``` #### Intel® Extension for PyTorch installation Intel Extension for PyTorch (IPEX) provides performance optimizations for CPU training with both Float32 and BFloat16 (refer to the [single CPU section](./perf_train_cpu) to learn more). The following "Usage in Trainer" takes mpirun in Intel® MPI library as an example. ## Usage in Trainer To enable multi CPU distributed training in the Trainer with the ccl backend, users should add **`--ddp_backend ccl`** in the command arguments. Let's see an example with the [question-answering example](https://github.com/huggingface/transformers/tree/main/examples/pytorch/question-answering) The following command enables training with 2 processes on one Xeon node, with one process running per one socket. The variables OMP_NUM_THREADS/CCL_WORKER_COUNT can be tuned for optimal performance. ```shell script export CCL_WORKER_COUNT=1 export MASTER_ADDR=127.0.0.1 mpirun -n 2 -genv OMP_NUM_THREADS=23 \ python3 run_qa.py \ --model_name_or_path bert-large-uncased \ --dataset_name squad \ --do_train \ --do_eval \ --per_device_train_batch_size 12 \ --learning_rate 3e-5 \ --num_train_epochs 2 \ --max_seq_length 384 \ --doc_stride 128 \ --output_dir /tmp/debug_squad/ \ --no_cuda \ --ddp_backend ccl \ --use_ipex ``` The following command enables training with a total of four processes on two Xeons (node0 and node1, taking node0 as the main process), ppn (processes per node) is set to 2, with one process running per one socket. The variables OMP_NUM_THREADS/CCL_WORKER_COUNT can be tuned for optimal performance. In node0, you need to create a configuration file which contains the IP addresses of each node (for example hostfile) and pass that configuration file path as an argument. ```shell script cat hostfile xxx.xxx.xxx.xxx #node0 ip xxx.xxx.xxx.xxx #node1 ip ``` Now, run the following command in node0 and **4DDP** will be enabled in node0 and node1 with BF16 auto mixed precision: ```shell script export CCL_WORKER_COUNT=1 export MASTER_ADDR=xxx.xxx.xxx.xxx #node0 ip mpirun -f hostfile -n 4 -ppn 2 \ -genv OMP_NUM_THREADS=23 \ python3 run_qa.py \ --model_name_or_path bert-large-uncased \ --dataset_name squad \ --do_train \ --do_eval \ --per_device_train_batch_size 12 \ --learning_rate 3e-5 \ --num_train_epochs 2 \ --max_seq_length 384 \ --doc_stride 128 \ --output_dir /tmp/debug_squad/ \ --no_cuda \ --ddp_backend ccl \ --use_ipex \ --bf16 ``` ## Usage with Kubernetes The same distributed training job from the previous section can be deployed to a Kubernetes cluster using the [Kubeflow PyTorchJob training operator](https://www.kubeflow.org/docs/components/training/pytorch/). ### Setup This example assumes that you have: * Access to a Kubernetes cluster with [Kubeflow installed](https://www.kubeflow.org/docs/started/installing-kubeflow/) * [`kubectl`](https://kubernetes.io/docs/tasks/tools/) installed and configured to access the Kubernetes cluster * A [Persistent Volume Claim (PVC)](https://kubernetes.io/docs/concepts/storage/persistent-volumes/) that can be used to store datasets and model files. There are multiple options for setting up the PVC including using an NFS [storage class](https://kubernetes.io/docs/concepts/storage/storage-classes/) or a cloud storage bucket. * A Docker container that includes your model training script and all the dependencies needed to run the script. For distributed CPU training jobs, this typically includes PyTorch, Transformers, Intel Extension for PyTorch, Intel oneCCL Bindings for PyTorch, and OpenSSH to communicate between the containers. The snippet below is an example of a Dockerfile that uses a base image that supports distributed CPU training and then extracts a Transformers release to the `/workspace` directory, so that the example scripts are included in the image: ``` FROM intel/ai-workflows:torch-2.0.1-huggingface-multinode-py3.9 WORKDIR /workspace # Download and extract the transformers code ARG HF_TRANSFORMERS_VER="4.35.2" RUN mkdir transformers && \ curl -sSL --retry 5 https://github.com/huggingface/transformers/archive/refs/tags/v${HF_TRANSFORMERS_VER}.tar.gz | tar -C transformers --strip-components=1 -xzf - ``` The image needs to be built and copied to the cluster's nodes or pushed to a container registry prior to deploying the PyTorchJob to the cluster. ### PyTorchJob Specification File The [Kubeflow PyTorchJob](https://www.kubeflow.org/docs/components/training/pytorch/) is used to run the distributed training job on the cluster. The yaml file for the PyTorchJob defines parameters such as: * The name of the PyTorchJob * The number of replicas (workers) * The python script and it's parameters that will be used to run the training job * The types of resources (node selector, memory, and CPU) needed for each worker * The image/tag for the Docker container to use * Environment variables * A volume mount for the PVC The volume mount defines a path where the PVC will be mounted in the container for each worker pod. This location can be used for the dataset, checkpoint files, and the saved model after training completes. The snippet below is an example of a yaml file for a PyTorchJob with 4 workers running the [question-answering example](https://github.com/huggingface/transformers/tree/main/examples/pytorch/question-answering). ```yaml apiVersion: "kubeflow.org/v1" kind: PyTorchJob metadata: name: transformers-pytorchjob namespace: kubeflow spec: elasticPolicy: rdzvBackend: c10d minReplicas: 1 maxReplicas: 4 maxRestarts: 10 pytorchReplicaSpecs: Worker: replicas: 4 # The number of worker pods restartPolicy: OnFailure template: spec: containers: - name: pytorch image: <image name>:<tag> # Specify the docker image to use for the worker pods imagePullPolicy: IfNotPresent command: - torchrun - /workspace/transformers/examples/pytorch/question-answering/run_qa.py - --model_name_or_path - "bert-large-uncased" - --dataset_name - "squad" - --do_train - --do_eval - --per_device_train_batch_size - "12" - --learning_rate - "3e-5" - --num_train_epochs - "2" - --max_seq_length - "384" - --doc_stride - "128" - --output_dir - "/tmp/pvc-mount/output" - --no_cuda - --ddp_backend - "ccl" - --use_ipex - --bf16 # Specify --bf16 if your hardware supports bfloat16 env: - name: LD_PRELOAD value: "/usr/lib/x86_64-linux-gnu/libtcmalloc.so.4.5.9:/usr/local/lib/libiomp5.so" - name: TRANSFORMERS_CACHE value: "/tmp/pvc-mount/transformers_cache" - name: HF_DATASETS_CACHE value: "/tmp/pvc-mount/hf_datasets_cache" - name: LOGLEVEL value: "INFO" - name: CCL_WORKER_COUNT value: "1" - name: OMP_NUM_THREADS # Can be tuned for optimal performance - value: "56" resources: limits: cpu: 200 # Update the CPU and memory limit values based on your nodes memory: 128Gi requests: cpu: 200 # Update the CPU and memory request values based on your nodes memory: 128Gi volumeMounts: - name: pvc-volume mountPath: /tmp/pvc-mount - mountPath: /dev/shm name: dshm restartPolicy: Never nodeSelector: # Optionally use the node selector to specify what types of nodes to use for the workers node-type: spr volumes: - name: pvc-volume persistentVolumeClaim: claimName: transformers-pvc - name: dshm emptyDir: medium: Memory ``` To run this example, update the yaml based on your training script and the nodes in your cluster. <Tip> The CPU resource limits/requests in the yaml are defined in [cpu units](https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/#meaning-of-cpu) where 1 CPU unit is equivalent to 1 physical CPU core or 1 virtual core (depending on whether the node is a physical host or a VM). The amount of CPU and memory limits/requests defined in the yaml should be less than the amount of available CPU/memory capacity on a single machine. It is usually a good idea to not use the entire machine's capacity in order to leave some resources for the kubelet and OS. In order to get ["guaranteed"](https://kubernetes.io/docs/concepts/workloads/pods/pod-qos/#guaranteed) [quality of service](https://kubernetes.io/docs/tasks/configure-pod-container/quality-service-pod/) for the worker pods, set the same CPU and memory amounts for both the resource limits and requests. </Tip> ### Deploy After the PyTorchJob spec has been updated with values appropriate for your cluster and training job, it can be deployed to the cluster using: ``` kubectl create -f pytorchjob.yaml ``` The `kubectl get pods -n kubeflow` command can then be used to list the pods in the `kubeflow` namespace. You should see the worker pods for the PyTorchJob that was just deployed. At first, they will probably have a status of "Pending" as the containers get pulled and created, then the status should change to "Running". ``` NAME READY STATUS RESTARTS AGE ... transformers-pytorchjob-worker-0 1/1 Running 0 7m37s transformers-pytorchjob-worker-1 1/1 Running 0 7m37s transformers-pytorchjob-worker-2 1/1 Running 0 7m37s transformers-pytorchjob-worker-3 1/1 Running 0 7m37s ... ``` The logs for worker can be viewed using `kubectl logs -n kubeflow <pod name>`. Add `-f` to stream the logs, for example: ``` kubectl logs -n kubeflow transformers-pytorchjob-worker-0 -f ``` After the training job completes, the trained model can be copied from the PVC or storage location. When you are done with the job, the PyTorchJob resource can be deleted from the cluster using `kubectl delete -f pytorchjob.yaml`. ## Summary This guide covered running distributed PyTorch training jobs using multiple CPUs on bare metal and on a Kubernetes cluster. Both cases utilize Intel Extension for PyTorch and Intel oneCCL Bindings for PyTorch for optimal training performance, and can be used as a template to run your own workload on multiple nodes.
huggingface/transformers/blob/main/docs/source/en/perf_train_cpu_many.md
!--Copyright 2021 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # MatCha ## Overview MatCha has been proposed in the paper [MatCha: Enhancing Visual Language Pretraining with Math Reasoning and Chart Derendering](https://arxiv.org/abs/2212.09662), from Fangyu Liu, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Yasemin Altun, Nigel Collier, Julian Martin Eisenschlos. The abstract of the paper states the following: *Visual language data such as plots, charts, and infographics are ubiquitous in the human world. However, state-of-the-art vision-language models do not perform well on these data. We propose MatCha (Math reasoning and Chart derendering pretraining) to enhance visual language models' capabilities in jointly modeling charts/plots and language data. Specifically, we propose several pretraining tasks that cover plot deconstruction and numerical reasoning which are the key capabilities in visual language modeling. We perform the MatCha pretraining starting from Pix2Struct, a recently proposed image-to-text visual language model. On standard benchmarks such as PlotQA and ChartQA, the MatCha model outperforms state-of-the-art methods by as much as nearly 20%. We also examine how well MatCha pretraining transfers to domains such as screenshots, textbook diagrams, and document figures and observe overall improvement, verifying the usefulness of MatCha pretraining on broader visual language tasks.* ## Model description MatCha is a model that is trained using `Pix2Struct` architecture. You can find more information about `Pix2Struct` in the [Pix2Struct documentation](https://huggingface.co/docs/transformers/main/en/model_doc/pix2struct). MatCha is a Visual Question Answering subset of `Pix2Struct` architecture. It renders the input question on the image and predicts the answer. ## Usage Currently 6 checkpoints are available for MatCha: - `google/matcha`: the base MatCha model, used to fine-tune MatCha on downstream tasks - `google/matcha-chartqa`: MatCha model fine-tuned on ChartQA dataset. It can be used to answer questions about charts. - `google/matcha-plotqa-v1`: MatCha model fine-tuned on PlotQA dataset. It can be used to answer questions about plots. - `google/matcha-plotqa-v2`: MatCha model fine-tuned on PlotQA dataset. It can be used to answer questions about plots. - `google/matcha-chart2text-statista`: MatCha model fine-tuned on Statista dataset. - `google/matcha-chart2text-pew`: MatCha model fine-tuned on Pew dataset. The models finetuned on `chart2text-pew` and `chart2text-statista` are more suited for summarization, whereas the models finetuned on `plotqa` and `chartqa` are more suited for question answering. You can use these models as follows (example on a ChatQA dataset): ```python from transformers import AutoProcessor, Pix2StructForConditionalGeneration import requests from PIL import Image model = Pix2StructForConditionalGeneration.from_pretrained("google/matcha-chartqa").to(0) processor = AutoProcessor.from_pretrained("google/matcha-chartqa") url = "https://raw.githubusercontent.com/vis-nlp/ChartQA/main/ChartQA%20Dataset/val/png/20294671002019.png" image = Image.open(requests.get(url, stream=True).raw) inputs = processor(images=image, text="Is the sum of all 4 places greater than Laos?", return_tensors="pt").to(0) predictions = model.generate(**inputs, max_new_tokens=512) print(processor.decode(predictions[0], skip_special_tokens=True)) ``` ## Fine-tuning To fine-tune MatCha, refer to the pix2struct [fine-tuning notebook](https://github.com/huggingface/notebooks/blob/main/examples/image_captioning_pix2struct.ipynb). For `Pix2Struct` models, we have found out that fine-tuning the model with Adafactor and cosine learning rate scheduler leads to faste convergence: ```python from transformers.optimization import Adafactor, get_cosine_schedule_with_warmup optimizer = Adafactor(self.parameters(), scale_parameter=False, relative_step=False, lr=0.01, weight_decay=1e-05) scheduler = get_cosine_schedule_with_warmup(optimizer, num_warmup_steps=1000, num_training_steps=40000) ``` <Tip> MatCha is a model that is trained using `Pix2Struct` architecture. You can find more information about `Pix2Struct` in the [Pix2Struct documentation](https://huggingface.co/docs/transformers/main/en/model_doc/pix2struct). </Tip>
huggingface/transformers/blob/main/docs/source/en/model_doc/matcha.md
!--Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # CPMAnt ## Overview CPM-Ant is an open-source Chinese pre-trained language model (PLM) with 10B parameters. It is also the first milestone of the live training process of CPM-Live. The training process is cost-effective and environment-friendly. CPM-Ant also achieves promising results with delta tuning on the CUGE benchmark. Besides the full model, we also provide various compressed versions to meet the requirements of different hardware configurations. [See more](https://github.com/OpenBMB/CPM-Live/tree/cpm-ant/cpm-live) This model was contributed by [OpenBMB](https://huggingface.co/openbmb). The original code can be found [here](https://github.com/OpenBMB/CPM-Live/tree/cpm-ant/cpm-live). ## Resources - A tutorial on [CPM-Live](https://github.com/OpenBMB/CPM-Live/tree/cpm-ant/cpm-live). ## CpmAntConfig [[autodoc]] CpmAntConfig - all ## CpmAntTokenizer [[autodoc]] CpmAntTokenizer - all ## CpmAntModel [[autodoc]] CpmAntModel - all ## CpmAntForCausalLM [[autodoc]] CpmAntForCausalLM - all
huggingface/transformers/blob/main/docs/source/en/model_doc/cpmant.md
!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> # DINOv2 ## Overview The DINOv2 model was proposed in [DINOv2: Learning Robust Visual Features without Supervision](https://arxiv.org/abs/2304.07193) by Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Mahmoud Assran, Nicolas Ballas, Wojciech Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra, Michael Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Hervé Jegou, Julien Mairal, Patrick Labatut, Armand Joulin, Piotr Bojanowski. DINOv2 is an upgrade of [DINO](https://arxiv.org/abs/2104.14294), a self-supervised method applied on [Vision Transformers](vit). This method enables all-purpose visual features, i.e., features that work across image distributions and tasks without finetuning. The abstract from the paper is the following: *The recent breakthroughs in natural language processing for model pretraining on large quantities of data have opened the way for similar foundation models in computer vision. These models could greatly simplify the use of images in any system by producing all-purpose visual features, i.e., features that work across image distributions and tasks without finetuning. This work shows that existing pretraining methods, especially self-supervised methods, can produce such features if trained on enough curated data from diverse sources. We revisit existing approaches and combine different techniques to scale our pretraining in terms of data and model size. Most of the technical contributions aim at accelerating and stabilizing the training at scale. In terms of data, we propose an automatic pipeline to build a dedicated, diverse, and curated image dataset instead of uncurated data, as typically done in the self-supervised literature. In terms of models, we train a ViT model (Dosovitskiy et al., 2020) with 1B parameters and distill it into a series of smaller models that surpass the best available all-purpose features, OpenCLIP (Ilharco et al., 2021) on most of the benchmarks at image and pixel levels.* This model was contributed by [nielsr](https://huggingface.co/nielsr). The original code can be found [here](https://github.com/facebookresearch/dinov2). ## Usage tips The model can be traced using `torch.jit.trace` which leverages JIT compilation to optimize the model making it faster to run. Note this still produces some mis-matched elements and the difference between the original model and the traced model is of the order of 1e-4. ```python import torch from transformers import AutoImageProcessor, AutoModel from PIL import Image import requests url = 'http://images.cocodataset.org/val2017/000000039769.jpg' image = Image.open(requests.get(url, stream=True).raw) processor = AutoImageProcessor.from_pretrained('facebook/dinov2-base') model = AutoModel.from_pretrained('facebook/dinov2-base') inputs = processor(images=image, return_tensors="pt") outputs = model(**inputs) last_hidden_states = outputs[0] # We have to force return_dict=False for tracing model.config.return_dict = False with torch.no_grad(): traced_model = torch.jit.trace(model, [inputs.pixel_values]) traced_outputs = traced_model(inputs.pixel_values) print((last_hidden_states - traced_outputs[0]).abs().max()) ``` ## Resources A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with DPT. - Demo notebooks for DINOv2 can be found [here](https://github.com/NielsRogge/Transformers-Tutorials/tree/master/DINOv2). 🌎 <PipelineTag pipeline="image-classification"/> - [`Dinov2ForImageClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/image-classification) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/image_classification.ipynb). - See also: [Image classification task guide](../tasks/image_classification) If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource. ## Dinov2Config [[autodoc]] Dinov2Config ## Dinov2Model [[autodoc]] Dinov2Model - forward ## Dinov2ForImageClassification [[autodoc]] Dinov2ForImageClassification - forward
huggingface/transformers/blob/main/docs/source/en/model_doc/dinov2.md
!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Image tasks with IDEFICS [[open-in-colab]] While individual tasks can be tackled by fine-tuning specialized models, an alternative approach that has recently emerged and gained popularity is to use large models for a diverse set of tasks without fine-tuning. For instance, large language models can handle such NLP tasks as summarization, translation, classification, and more. This approach is no longer limited to a single modality, such as text, and in this guide, we will illustrate how you can solve image-text tasks with a large multimodal model called IDEFICS. [IDEFICS](../model_doc/idefics) is an open-access vision and language model based on [Flamingo](https://huggingface.co/papers/2204.14198), a state-of-the-art visual language model initially developed by DeepMind. The model accepts arbitrary sequences of image and text inputs and generates coherent text as output. It can answer questions about images, describe visual content, create stories grounded in multiple images, and so on. IDEFICS comes in two variants - [80 billion parameters](https://huggingface.co/HuggingFaceM4/idefics-80b) and [9 billion parameters](https://huggingface.co/HuggingFaceM4/idefics-9b), both of which are available on the 🤗 Hub. For each variant, you can also find fine-tuned instructed versions of the model adapted for conversational use cases. This model is exceptionally versatile and can be used for a wide range of image and multimodal tasks. However, being a large model means it requires significant computational resources and infrastructure. It is up to you to decide whether this approach suits your use case better than fine-tuning specialized models for each individual task. In this guide, you'll learn how to: - [Load IDEFICS](#loading-the-model) and [load the quantized version of the model](#loading-the-quantized-version-of-the-model) - Use IDEFICS for: - [Image captioning](#image-captioning) - [Prompted image captioning](#prompted-image-captioning) - [Few-shot prompting](#few-shot-prompting) - [Visual question answering](#visual-question-answering) - [Image classificaiton](#image-classification) - [Image-guided text generation](#image-guided-text-generation) - [Run inference in batch mode](#running-inference-in-batch-mode) - [Run IDEFICS instruct for conversational use](#idefics-instruct-for-conversational-use) Before you begin, make sure you have all the necessary libraries installed. ```bash pip install -q bitsandbytes sentencepiece accelerate transformers ``` <Tip> To run the following examples with a non-quantized version of the model checkpoint you will need at least 20GB of GPU memory. </Tip> ## Loading the model Let's start by loading the model's 9 billion parameters checkpoint: ```py >>> checkpoint = "HuggingFaceM4/idefics-9b" ``` Just like for other Transformers models, you need to load a processor and the model itself from the checkpoint. The IDEFICS processor wraps a [`LlamaTokenizer`] and IDEFICS image processor into a single processor to take care of preparing text and image inputs for the model. ```py >>> import torch >>> from transformers import IdeficsForVisionText2Text, AutoProcessor >>> processor = AutoProcessor.from_pretrained(checkpoint) >>> model = IdeficsForVisionText2Text.from_pretrained(checkpoint, torch_dtype=torch.bfloat16, device_map="auto") ``` Setting `device_map` to `"auto"` will automatically determine how to load and store the model weights in the most optimized manner given existing devices. ### Quantized model If high-memory GPU availability is an issue, you can load the quantized version of the model. To load the model and the processor in 4bit precision, pass a `BitsAndBytesConfig` to the `from_pretrained` method and the model will be compressed on the fly while loading. ```py >>> import torch >>> from transformers import IdeficsForVisionText2Text, AutoProcessor, BitsAndBytesConfig >>> quantization_config = BitsAndBytesConfig( ... load_in_4bit=True, ... bnb_4bit_compute_dtype=torch.float16, ... ) >>> processor = AutoProcessor.from_pretrained(checkpoint) >>> model = IdeficsForVisionText2Text.from_pretrained( ... checkpoint, ... quantization_config=quantization_config, ... device_map="auto" ... ) ``` Now that you have the model loaded in one of the suggested ways, let's move on to exploring tasks that you can use IDEFICS for. ## Image captioning Image captioning is the task of predicting a caption for a given image. A common application is to aid visually impaired people navigate through different situations, for instance, explore image content online. To illustrate the task, get an image to be captioned, e.g.: <div class="flex justify-center"> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/idefics-im-captioning.jpg" alt="Image of a puppy in a flower bed"/> </div> Photo by [Hendo Wang](https://unsplash.com/@hendoo). IDEFICS accepts text and image prompts. However, to caption an image, you do not have to provide a text prompt to the model, only the preprocessed input image. Without a text prompt, the model will start generating text from the BOS (beginning-of-sequence) token thus creating a caption. As image input to the model, you can use either an image object (`PIL.Image`) or a url from which the image can be retrieved. ```py >>> prompt = [ ... "https://images.unsplash.com/photo-1583160247711-2191776b4b91?ixlib=rb-4.0.3&ixid=M3wxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8fA%3D%3D&auto=format&fit=crop&w=3542&q=80", ... ] >>> inputs = processor(prompt, return_tensors="pt").to("cuda") >>> bad_words_ids = processor.tokenizer(["<image>", "<fake_token_around_image>"], add_special_tokens=False).input_ids >>> generated_ids = model.generate(**inputs, max_new_tokens=10, bad_words_ids=bad_words_ids) >>> generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True) >>> print(generated_text[0]) A puppy in a flower bed ``` <Tip> It is a good idea to include the `bad_words_ids` in the call to `generate` to avoid errors arising when increasing the `max_new_tokens`: the model will want to generate a new `<image>` or `<fake_token_around_image>` token when there is no image being generated by the model. You can set it on-the-fly as in this guide, or store in the `GenerationConfig` as described in the [Text generation strategies](../generation_strategies) guide. </Tip> ## Prompted image captioning You can extend image captioning by providing a text prompt, which the model will continue given the image. Let's take another image to illustrate: <div class="flex justify-center"> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/idefics-prompted-im-captioning.jpg" alt="Image of the Eiffel Tower at night"/> </div> Photo by [Denys Nevozhai](https://unsplash.com/@dnevozhai). Textual and image prompts can be passed to the model's processor as a single list to create appropriate inputs. ```py >>> prompt = [ ... "https://images.unsplash.com/photo-1543349689-9a4d426bee8e?ixlib=rb-4.0.3&ixid=M3wxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8fA%3D%3D&auto=format&fit=crop&w=3501&q=80", ... "This is an image of ", ... ] >>> inputs = processor(prompt, return_tensors="pt").to("cuda") >>> bad_words_ids = processor.tokenizer(["<image>", "<fake_token_around_image>"], add_special_tokens=False).input_ids >>> generated_ids = model.generate(**inputs, max_new_tokens=10, bad_words_ids=bad_words_ids) >>> generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True) >>> print(generated_text[0]) This is an image of the Eiffel Tower in Paris, France. ``` ## Few-shot prompting While IDEFICS demonstrates great zero-shot results, your task may require a certain format of the caption, or come with other restrictions or requirements that increase task's complexity. Few-shot prompting can be used to enable in-context learning. By providing examples in the prompt, you can steer the model to generate results that mimic the format of given examples. Let's use the previous image of the Eiffel Tower as an example for the model and build a prompt that demonstrates to the model that in addition to learning what the object in an image is, we would also like to get some interesting information about it. Then, let's see, if we can get the same response format for an image of the Statue of Liberty: <div class="flex justify-center"> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/idefics-few-shot.jpg" alt="Image of the Statue of Liberty"/> </div> Photo by [Juan Mayobre](https://unsplash.com/@jmayobres). ```py >>> prompt = ["User:", ... "https://images.unsplash.com/photo-1543349689-9a4d426bee8e?ixlib=rb-4.0.3&ixid=M3wxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8fA%3D%3D&auto=format&fit=crop&w=3501&q=80", ... "Describe this image.\nAssistant: An image of the Eiffel Tower at night. Fun fact: the Eiffel Tower is the same height as an 81-storey building.\n", ... "User:", ... "https://images.unsplash.com/photo-1524099163253-32b7f0256868?ixlib=rb-4.0.3&ixid=M3wxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8fA%3D%3D&auto=format&fit=crop&w=3387&q=80", ... "Describe this image.\nAssistant:" ... ] >>> inputs = processor(prompt, return_tensors="pt").to("cuda") >>> bad_words_ids = processor.tokenizer(["<image>", "<fake_token_around_image>"], add_special_tokens=False).input_ids >>> generated_ids = model.generate(**inputs, max_new_tokens=30, bad_words_ids=bad_words_ids) >>> generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True) >>> print(generated_text[0]) User: Describe this image. Assistant: An image of the Eiffel Tower at night. Fun fact: the Eiffel Tower is the same height as an 81-storey building. User: Describe this image. Assistant: An image of the Statue of Liberty. Fun fact: the Statue of Liberty is 151 feet tall. ``` Notice that just from a single example (i.e., 1-shot) the model has learned how to perform the task. For more complex tasks, feel free to experiment with a larger number of examples (e.g., 3-shot, 5-shot, etc.). ## Visual question answering Visual Question Answering (VQA) is the task of answering open-ended questions based on an image. Similar to image captioning it can be used in accessibility applications, but also in education (reasoning about visual materials), customer service (questions about products based on images), and image retrieval. Let's get a new image for this task: <div class="flex justify-center"> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/idefics-vqa.jpg" alt="Image of a couple having a picnic"/> </div> Photo by [Jarritos Mexican Soda](https://unsplash.com/@jarritos). You can steer the model from image captioning to visual question answering by prompting it with appropriate instructions: ```py >>> prompt = [ ... "Instruction: Provide an answer to the question. Use the image to answer.\n", ... "https://images.unsplash.com/photo-1623944889288-cd147dbb517c?ixlib=rb-4.0.3&ixid=M3wxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8fA%3D%3D&auto=format&fit=crop&w=3540&q=80", ... "Question: Where are these people and what's the weather like? Answer:" ... ] >>> inputs = processor(prompt, return_tensors="pt").to("cuda") >>> bad_words_ids = processor.tokenizer(["<image>", "<fake_token_around_image>"], add_special_tokens=False).input_ids >>> generated_ids = model.generate(**inputs, max_new_tokens=20, bad_words_ids=bad_words_ids) >>> generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True) >>> print(generated_text[0]) Instruction: Provide an answer to the question. Use the image to answer. Question: Where are these people and what's the weather like? Answer: They're in a park in New York City, and it's a beautiful day. ``` ## Image classification IDEFICS is capable of classifying images into different categories without being explicitly trained on data containing labeled examples from those specific categories. Given a list of categories and using its image and text understanding capabilities, the model can infer which category the image likely belongs to. Say, we have this image of a vegetable stand: <div class="flex justify-center"> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/idefics-classification.jpg" alt="Image of a vegetable stand"/> </div> Photo by [Peter Wendt](https://unsplash.com/@peterwendt). We can instruct the model to classify the image into one of the categories that we have: ```py >>> categories = ['animals','vegetables', 'city landscape', 'cars', 'office'] >>> prompt = [f"Instruction: Classify the following image into a single category from the following list: {categories}.\n", ... "https://images.unsplash.com/photo-1471193945509-9ad0617afabf?ixlib=rb-4.0.3&ixid=M3wxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8fA%3D%3D&auto=format&fit=crop&w=3540&q=80", ... "Category: " ... ] >>> inputs = processor(prompt, return_tensors="pt").to("cuda") >>> bad_words_ids = processor.tokenizer(["<image>", "<fake_token_around_image>"], add_special_tokens=False).input_ids >>> generated_ids = model.generate(**inputs, max_new_tokens=6, bad_words_ids=bad_words_ids) >>> generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True) >>> print(generated_text[0]) Instruction: Classify the following image into a single category from the following list: ['animals', 'vegetables', 'city landscape', 'cars', 'office']. Category: Vegetables ``` In the example above we instruct the model to classify the image into a single category, however, you can also prompt the model to do rank classification. ## Image-guided text generation For more creative applications, you can use image-guided text generation to generate text based on an image. This can be useful to create descriptions of products, ads, descriptions of a scene, etc. Let's prompt IDEFICS to write a story based on a simple image of a red door: <div class="flex justify-center"> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/idefics-story-generation.jpg" alt="Image of a red door with a pumpkin on the steps"/> </div> Photo by [Craig Tidball](https://unsplash.com/@devonshiremedia). ```py >>> prompt = ["Instruction: Use the image to write a story. \n", ... "https://images.unsplash.com/photo-1517086822157-2b0358e7684a?ixlib=rb-4.0.3&ixid=M3wxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8fA%3D%3D&auto=format&fit=crop&w=2203&q=80", ... "Story: \n"] >>> inputs = processor(prompt, return_tensors="pt").to("cuda") >>> bad_words_ids = processor.tokenizer(["<image>", "<fake_token_around_image>"], add_special_tokens=False).input_ids >>> generated_ids = model.generate(**inputs, num_beams=2, max_new_tokens=200, bad_words_ids=bad_words_ids) >>> generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True) >>> print(generated_text[0]) Instruction: Use the image to write a story. Story: Once upon a time, there was a little girl who lived in a house with a red door. She loved her red door. It was the prettiest door in the whole world. One day, the little girl was playing in her yard when she noticed a man standing on her doorstep. He was wearing a long black coat and a top hat. The little girl ran inside and told her mother about the man. Her mother said, “Don’t worry, honey. He’s just a friendly ghost.” The little girl wasn’t sure if she believed her mother, but she went outside anyway. When she got to the door, the man was gone. The next day, the little girl was playing in her yard again when she noticed the man standing on her doorstep. He was wearing a long black coat and a top hat. The little girl ran ``` Looks like IDEFICS noticed the pumpkin on the doorstep and went with a spooky Halloween story about a ghost. <Tip> For longer outputs like this, you will greatly benefit from tweaking the text generation strategy. This can help you significantly improve the quality of the generated output. Check out [Text generation strategies](../generation_strategies) to learn more. </Tip> ## Running inference in batch mode All of the earlier sections illustrated IDEFICS for a single example. In a very similar fashion, you can run inference for a batch of examples by passing a list of prompts: ```py >>> prompts = [ ... [ "https://images.unsplash.com/photo-1543349689-9a4d426bee8e?ixlib=rb-4.0.3&ixid=M3wxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8fA%3D%3D&auto=format&fit=crop&w=3501&q=80", ... "This is an image of ", ... ], ... [ "https://images.unsplash.com/photo-1623944889288-cd147dbb517c?ixlib=rb-4.0.3&ixid=M3wxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8fA%3D%3D&auto=format&fit=crop&w=3540&q=80", ... "This is an image of ", ... ], ... [ "https://images.unsplash.com/photo-1471193945509-9ad0617afabf?ixlib=rb-4.0.3&ixid=M3wxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8fA%3D%3D&auto=format&fit=crop&w=3540&q=80", ... "This is an image of ", ... ], ... ] >>> inputs = processor(prompts, return_tensors="pt").to("cuda") >>> bad_words_ids = processor.tokenizer(["<image>", "<fake_token_around_image>"], add_special_tokens=False).input_ids >>> generated_ids = model.generate(**inputs, max_new_tokens=10, bad_words_ids=bad_words_ids) >>> generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True) >>> for i,t in enumerate(generated_text): ... print(f"{i}:\n{t}\n") 0: This is an image of the Eiffel Tower in Paris, France. 1: This is an image of a couple on a picnic blanket. 2: This is an image of a vegetable stand. ``` ## IDEFICS instruct for conversational use For conversational use cases, you can find fine-tuned instructed versions of the model on the 🤗 Hub: `HuggingFaceM4/idefics-80b-instruct` and `HuggingFaceM4/idefics-9b-instruct`. These checkpoints are the result of fine-tuning the respective base models on a mixture of supervised and instruction fine-tuning datasets, which boosts the downstream performance while making the models more usable in conversational settings. The use and prompting for the conversational use is very similar to using the base models: ```py >>> import torch >>> from transformers import IdeficsForVisionText2Text, AutoProcessor >>> device = "cuda" if torch.cuda.is_available() else "cpu" >>> checkpoint = "HuggingFaceM4/idefics-9b-instruct" >>> model = IdeficsForVisionText2Text.from_pretrained(checkpoint, torch_dtype=torch.bfloat16).to(device) >>> processor = AutoProcessor.from_pretrained(checkpoint) >>> prompts = [ ... [ ... "User: What is in this image?", ... "https://upload.wikimedia.org/wikipedia/commons/8/86/Id%C3%A9fix.JPG", ... "<end_of_utterance>", ... "\nAssistant: This picture depicts Idefix, the dog of Obelix in Asterix and Obelix. Idefix is running on the ground.<end_of_utterance>", ... "\nUser:", ... "https://static.wikia.nocookie.net/asterix/images/2/25/R22b.gif/revision/latest?cb=20110815073052", ... "And who is that?<end_of_utterance>", ... "\nAssistant:", ... ], ... ] >>> # --batched mode >>> inputs = processor(prompts, add_end_of_utterance_token=False, return_tensors="pt").to(device) >>> # --single sample mode >>> # inputs = processor(prompts[0], return_tensors="pt").to(device) >>> # Generation args >>> exit_condition = processor.tokenizer("<end_of_utterance>", add_special_tokens=False).input_ids >>> bad_words_ids = processor.tokenizer(["<image>", "<fake_token_around_image>"], add_special_tokens=False).input_ids >>> generated_ids = model.generate(**inputs, eos_token_id=exit_condition, bad_words_ids=bad_words_ids, max_length=100) >>> generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True) >>> for i, t in enumerate(generated_text): ... print(f"{i}:\n{t}\n") ```
huggingface/transformers/blob/main/docs/source/en/tasks/idefics.md
!--- Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> <p align="center"> <picture> <source media="(prefers-color-scheme: dark)" srcset="https://huggingface.co/datasets/huggingface/documentation-images/raw/main/transformers-logo-dark.svg"> <source media="(prefers-color-scheme: light)" srcset="https://huggingface.co/datasets/huggingface/documentation-images/raw/main/transformers-logo-light.svg"> <img alt="Hugging Face Transformers Library" src="https://huggingface.co/datasets/huggingface/documentation-images/raw/main/transformers-logo-light.svg" width="352" height="59" style="max-width: 100%;"> </picture> <br/> <br/> </p> <p align="center"> <a href="https://circleci.com/gh/huggingface/transformers"> <img alt="Build" src="https://img.shields.io/circleci/build/github/huggingface/transformers/main"> </a> <a href="https://github.com/huggingface/transformers/blob/main/LICENSE"> <img alt="GitHub" src="https://img.shields.io/github/license/huggingface/transformers.svg?color=blue"> </a> <a href="https://huggingface.co/docs/transformers/index"> <img alt="Documentation" src="https://img.shields.io/website/http/huggingface.co/docs/transformers/index.svg?down_color=red&down_message=offline&up_message=online"> </a> <a href="https://github.com/huggingface/transformers/releases"> <img alt="GitHub release" src="https://img.shields.io/github/release/huggingface/transformers.svg"> </a> <a href="https://github.com/huggingface/transformers/blob/main/CODE_OF_CONDUCT.md"> <img alt="Contributor Covenant" src="https://img.shields.io/badge/Contributor%20Covenant-v2.0%20adopted-ff69b4.svg"> </a> <a href="https://zenodo.org/badge/latestdoi/155220641"><img src="https://zenodo.org/badge/155220641.svg" alt="DOI"></a> </p> <h4 align="center"> <p> <b>English</b> | <a href="https://github.com/huggingface/transformers/blob/main/README_zh-hans.md">简体中文</a> | <a href="https://github.com/huggingface/transformers/blob/main/README_zh-hant.md">繁體中文</a> | <a href="https://github.com/huggingface/transformers/blob/main/README_ko.md">한국어</a> | <a href="https://github.com/huggingface/transformers/blob/main/README_es.md">Español</a> | <a href="https://github.com/huggingface/transformers/blob/main/README_ja.md">日本語</a> | <a href="https://github.com/huggingface/transformers/blob/main/README_hd.md">हिन्दी</a> | <a href="https://github.com/huggingface/transformers/blob/main/README_ru.md">Русский</a> | <a href="https://github.com/huggingface/transformers/blob/main/README_pt-br.md">Рortuguês</a> | <a href="https://github.com/huggingface/transformers//blob/main/README_te.md">తెలుగు</a> | </p> </h4> <h3 align="center"> <p>State-of-the-art Machine Learning for JAX, PyTorch and TensorFlow</p> </h3> <h3 align="center"> <a href="https://hf.co/course"><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/course_banner.png"></a> </h3> 🤗 Transformers provides thousands of pretrained models to perform tasks on different modalities such as text, vision, and audio. These models can be applied on: * 📝 Text, for tasks like text classification, information extraction, question answering, summarization, translation, and text generation, in over 100 languages. * 🖼️ Images, for tasks like image classification, object detection, and segmentation. * 🗣️ Audio, for tasks like speech recognition and audio classification. Transformer models can also perform tasks on **several modalities combined**, such as table question answering, optical character recognition, information extraction from scanned documents, video classification, and visual question answering. 🤗 Transformers provides APIs to quickly download and use those pretrained models on a given text, fine-tune them on your own datasets and then share them with the community on our [model hub](https://huggingface.co/models). At the same time, each python module defining an architecture is fully standalone and can be modified to enable quick research experiments. 🤗 Transformers is backed by the three most popular deep learning libraries — [Jax](https://jax.readthedocs.io/en/latest/), [PyTorch](https://pytorch.org/) and [TensorFlow](https://www.tensorflow.org/) — with a seamless integration between them. It's straightforward to train your models with one before loading them for inference with the other. ## Online demos You can test most of our models directly on their pages from the [model hub](https://huggingface.co/models). We also offer [private model hosting, versioning, & an inference API](https://huggingface.co/pricing) for public and private models. Here are a few examples: In Natural Language Processing: - [Masked word completion with BERT](https://huggingface.co/bert-base-uncased?text=Paris+is+the+%5BMASK%5D+of+France) - [Name Entity Recognition with Electra](https://huggingface.co/dbmdz/electra-large-discriminator-finetuned-conll03-english?text=My+name+is+Sarah+and+I+live+in+London+city) - [Text generation with GPT-2](https://huggingface.co/gpt2?text=A+long+time+ago%2C+) - [Natural Language Inference with RoBERTa](https://huggingface.co/roberta-large-mnli?text=The+dog+was+lost.+Nobody+lost+any+animal) - [Summarization with BART](https://huggingface.co/facebook/bart-large-cnn?text=The+tower+is+324+metres+%281%2C063+ft%29+tall%2C+about+the+same+height+as+an+81-storey+building%2C+and+the+tallest+structure+in+Paris.+Its+base+is+square%2C+measuring+125+metres+%28410+ft%29+on+each+side.+During+its+construction%2C+the+Eiffel+Tower+surpassed+the+Washington+Monument+to+become+the+tallest+man-made+structure+in+the+world%2C+a+title+it+held+for+41+years+until+the+Chrysler+Building+in+New+York+City+was+finished+in+1930.+It+was+the+first+structure+to+reach+a+height+of+300+metres.+Due+to+the+addition+of+a+broadcasting+aerial+at+the+top+of+the+tower+in+1957%2C+it+is+now+taller+than+the+Chrysler+Building+by+5.2+metres+%2817+ft%29.+Excluding+transmitters%2C+the+Eiffel+Tower+is+the+second+tallest+free-standing+structure+in+France+after+the+Millau+Viaduct) - [Question answering with DistilBERT](https://huggingface.co/distilbert-base-uncased-distilled-squad?text=Which+name+is+also+used+to+describe+the+Amazon+rainforest+in+English%3F&context=The+Amazon+rainforest+%28Portuguese%3A+Floresta+Amaz%C3%B4nica+or+Amaz%C3%B4nia%3B+Spanish%3A+Selva+Amaz%C3%B3nica%2C+Amazon%C3%ADa+or+usually+Amazonia%3B+French%3A+For%C3%AAt+amazonienne%3B+Dutch%3A+Amazoneregenwoud%29%2C+also+known+in+English+as+Amazonia+or+the+Amazon+Jungle%2C+is+a+moist+broadleaf+forest+that+covers+most+of+the+Amazon+basin+of+South+America.+This+basin+encompasses+7%2C000%2C000+square+kilometres+%282%2C700%2C000+sq+mi%29%2C+of+which+5%2C500%2C000+square+kilometres+%282%2C100%2C000+sq+mi%29+are+covered+by+the+rainforest.+This+region+includes+territory+belonging+to+nine+nations.+The+majority+of+the+forest+is+contained+within+Brazil%2C+with+60%25+of+the+rainforest%2C+followed+by+Peru+with+13%25%2C+Colombia+with+10%25%2C+and+with+minor+amounts+in+Venezuela%2C+Ecuador%2C+Bolivia%2C+Guyana%2C+Suriname+and+French+Guiana.+States+or+departments+in+four+nations+contain+%22Amazonas%22+in+their+names.+The+Amazon+represents+over+half+of+the+planet%27s+remaining+rainforests%2C+and+comprises+the+largest+and+most+biodiverse+tract+of+tropical+rainforest+in+the+world%2C+with+an+estimated+390+billion+individual+trees+divided+into+16%2C000+species) - [Translation with T5](https://huggingface.co/t5-base?text=My+name+is+Wolfgang+and+I+live+in+Berlin) In Computer Vision: - [Image classification with ViT](https://huggingface.co/google/vit-base-patch16-224) - [Object Detection with DETR](https://huggingface.co/facebook/detr-resnet-50) - [Semantic Segmentation with SegFormer](https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512) - [Panoptic Segmentation with MaskFormer](https://huggingface.co/facebook/maskformer-swin-small-coco) - [Depth Estimation with DPT](https://huggingface.co/docs/transformers/model_doc/dpt) - [Video Classification with VideoMAE](https://huggingface.co/docs/transformers/model_doc/videomae) - [Universal Segmentation with OneFormer](https://huggingface.co/shi-labs/oneformer_ade20k_dinat_large) In Audio: - [Automatic Speech Recognition with Wav2Vec2](https://huggingface.co/facebook/wav2vec2-base-960h) - [Keyword Spotting with Wav2Vec2](https://huggingface.co/superb/wav2vec2-base-superb-ks) - [Audio Classification with Audio Spectrogram Transformer](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593) In Multimodal tasks: - [Table Question Answering with TAPAS](https://huggingface.co/google/tapas-base-finetuned-wtq) - [Visual Question Answering with ViLT](https://huggingface.co/dandelin/vilt-b32-finetuned-vqa) - [Zero-shot Image Classification with CLIP](https://huggingface.co/openai/clip-vit-large-patch14) - [Document Question Answering with LayoutLM](https://huggingface.co/impira/layoutlm-document-qa) - [Zero-shot Video Classification with X-CLIP](https://huggingface.co/docs/transformers/model_doc/xclip) ## 100 projects using Transformers Transformers is more than a toolkit to use pretrained models: it's a community of projects built around it and the Hugging Face Hub. We want Transformers to enable developers, researchers, students, professors, engineers, and anyone else to build their dream projects. In order to celebrate the 100,000 stars of transformers, we have decided to put the spotlight on the community, and we have created the [awesome-transformers](./awesome-transformers.md) page which lists 100 incredible projects built in the vicinity of transformers. If you own or use a project that you believe should be part of the list, please open a PR to add it! ## If you are looking for custom support from the Hugging Face team <a target="_blank" href="https://huggingface.co/support"> <img alt="HuggingFace Expert Acceleration Program" src="https://cdn-media.huggingface.co/marketing/transformers/new-support-improved.png" style="max-width: 600px; border: 1px solid #eee; border-radius: 4px; box-shadow: 0 1px 2px 0 rgba(0, 0, 0, 0.05);"> </a><br> ## Quick tour To immediately use a model on a given input (text, image, audio, ...), we provide the `pipeline` API. Pipelines group together a pretrained model with the preprocessing that was used during that model's training. Here is how to quickly use a pipeline to classify positive versus negative texts: ```python >>> from transformers import pipeline # Allocate a pipeline for sentiment-analysis >>> classifier = pipeline('sentiment-analysis') >>> classifier('We are very happy to introduce pipeline to the transformers repository.') [{'label': 'POSITIVE', 'score': 0.9996980428695679}] ``` The second line of code downloads and caches the pretrained model used by the pipeline, while the third evaluates it on the given text. Here, the answer is "positive" with a confidence of 99.97%. Many tasks have a pre-trained `pipeline` ready to go, in NLP but also in computer vision and speech. For example, we can easily extract detected objects in an image: ``` python >>> import requests >>> from PIL import Image >>> from transformers import pipeline # Download an image with cute cats >>> url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/coco_sample.png" >>> image_data = requests.get(url, stream=True).raw >>> image = Image.open(image_data) # Allocate a pipeline for object detection >>> object_detector = pipeline('object-detection') >>> object_detector(image) [{'score': 0.9982201457023621, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9960021376609802, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9954745173454285, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9988006353378296, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9986783862113953, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}] ``` Here, we get a list of objects detected in the image, with a box surrounding the object and a confidence score. Here is the original image on the left, with the predictions displayed on the right: <h3 align="center"> <a><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/coco_sample.png" width="400"></a> <a><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/coco_sample_post_processed.png" width="400"></a> </h3> You can learn more about the tasks supported by the `pipeline` API in [this tutorial](https://huggingface.co/docs/transformers/task_summary). In addition to `pipeline`, to download and use any of the pretrained models on your given task, all it takes is three lines of code. Here is the PyTorch version: ```python >>> from transformers import AutoTokenizer, AutoModel >>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") >>> model = AutoModel.from_pretrained("bert-base-uncased") >>> inputs = tokenizer("Hello world!", return_tensors="pt") >>> outputs = model(**inputs) ``` And here is the equivalent code for TensorFlow: ```python >>> from transformers import AutoTokenizer, TFAutoModel >>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") >>> model = TFAutoModel.from_pretrained("bert-base-uncased") >>> inputs = tokenizer("Hello world!", return_tensors="tf") >>> outputs = model(**inputs) ``` The tokenizer is responsible for all the preprocessing the pretrained model expects and can be called directly on a single string (as in the above examples) or a list. It will output a dictionary that you can use in downstream code or simply directly pass to your model using the ** argument unpacking operator. The model itself is a regular [Pytorch `nn.Module`](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) or a [TensorFlow `tf.keras.Model`](https://www.tensorflow.org/api_docs/python/tf/keras/Model) (depending on your backend) which you can use as usual. [This tutorial](https://huggingface.co/docs/transformers/training) explains how to integrate such a model into a classic PyTorch or TensorFlow training loop, or how to use our `Trainer` API to quickly fine-tune on a new dataset. ## Why should I use transformers? 1. Easy-to-use state-of-the-art models: - High performance on natural language understanding & generation, computer vision, and audio tasks. - Low barrier to entry for educators and practitioners. - Few user-facing abstractions with just three classes to learn. - A unified API for using all our pretrained models. 1. Lower compute costs, smaller carbon footprint: - Researchers can share trained models instead of always retraining. - Practitioners can reduce compute time and production costs. - Dozens of architectures with over 60,000 pretrained models across all modalities. 1. Choose the right framework for every part of a model's lifetime: - Train state-of-the-art models in 3 lines of code. - Move a single model between TF2.0/PyTorch/JAX frameworks at will. - Seamlessly pick the right framework for training, evaluation, and production. 1. Easily customize a model or an example to your needs: - We provide examples for each architecture to reproduce the results published by its original authors. - Model internals are exposed as consistently as possible. - Model files can be used independently of the library for quick experiments. ## Why shouldn't I use transformers? - This library is not a modular toolbox of building blocks for neural nets. The code in the model files is not refactored with additional abstractions on purpose, so that researchers can quickly iterate on each of the models without diving into additional abstractions/files. - The training API is not intended to work on any model but is optimized to work with the models provided by the library. For generic machine learning loops, you should use another library (possibly, [Accelerate](https://huggingface.co/docs/accelerate)). - While we strive to present as many use cases as possible, the scripts in our [examples folder](https://github.com/huggingface/transformers/tree/main/examples) are just that: examples. It is expected that they won't work out-of-the-box on your specific problem and that you will be required to change a few lines of code to adapt them to your needs. ## Installation ### With pip This repository is tested on Python 3.8+, Flax 0.4.1+, PyTorch 1.10+, and TensorFlow 2.6+. You should install 🤗 Transformers in a [virtual environment](https://docs.python.org/3/library/venv.html). If you're unfamiliar with Python virtual environments, check out the [user guide](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/). First, create a virtual environment with the version of Python you're going to use and activate it. Then, you will need to install at least one of Flax, PyTorch, or TensorFlow. Please refer to [TensorFlow installation page](https://www.tensorflow.org/install/), [PyTorch installation page](https://pytorch.org/get-started/locally/#start-locally) and/or [Flax](https://github.com/google/flax#quick-install) and [Jax](https://github.com/google/jax#installation) installation pages regarding the specific installation command for your platform. When one of those backends has been installed, 🤗 Transformers can be installed using pip as follows: ```bash pip install transformers ``` If you'd like to play with the examples or need the bleeding edge of the code and can't wait for a new release, you must [install the library from source](https://huggingface.co/docs/transformers/installation#installing-from-source). ### With conda Since Transformers version v4.0.0, we now have a conda channel: `huggingface`. 🤗 Transformers can be installed using conda as follows: ```shell script conda install -c huggingface transformers ``` Follow the installation pages of Flax, PyTorch or TensorFlow to see how to install them with conda. > **_NOTE:_** On Windows, you may be prompted to activate Developer Mode in order to benefit from caching. If this is not an option for you, please let us know in [this issue](https://github.com/huggingface/huggingface_hub/issues/1062). ## Model architectures **[All the model checkpoints](https://huggingface.co/models)** provided by 🤗 Transformers are seamlessly integrated from the huggingface.co [model hub](https://huggingface.co/models), where they are uploaded directly by [users](https://huggingface.co/users) and [organizations](https://huggingface.co/organizations). Current number of checkpoints: ![](https://img.shields.io/endpoint?url=https://huggingface.co/api/shields/models&color=brightgreen) 🤗 Transformers currently provides the following architectures (see [here](https://huggingface.co/docs/transformers/model_summary) for a high-level summary of each them): 1. **[ALBERT](https://huggingface.co/docs/transformers/model_doc/albert)** (from Google Research and the Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut. 1. **[ALIGN](https://huggingface.co/docs/transformers/model_doc/align)** (from Google Research) released with the paper [Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision](https://arxiv.org/abs/2102.05918) by Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc V. Le, Yunhsuan Sung, Zhen Li, Tom Duerig. 1. **[AltCLIP](https://huggingface.co/docs/transformers/model_doc/altclip)** (from BAAI) released with the paper [AltCLIP: Altering the Language Encoder in CLIP for Extended Language Capabilities](https://arxiv.org/abs/2211.06679) by Chen, Zhongzhi and Liu, Guang and Zhang, Bo-Wen and Ye, Fulong and Yang, Qinghong and Wu, Ledell. 1. **[Audio Spectrogram Transformer](https://huggingface.co/docs/transformers/model_doc/audio-spectrogram-transformer)** (from MIT) released with the paper [AST: Audio Spectrogram Transformer](https://arxiv.org/abs/2104.01778) by Yuan Gong, Yu-An Chung, James Glass. 1. **[Autoformer](https://huggingface.co/docs/transformers/model_doc/autoformer)** (from Tsinghua University) released with the paper [Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting](https://arxiv.org/abs/2106.13008) by Haixu Wu, Jiehui Xu, Jianmin Wang, Mingsheng Long. 1. **[Bark](https://huggingface.co/docs/transformers/model_doc/bark)** (from Suno) released in the repository [suno-ai/bark](https://github.com/suno-ai/bark) by Suno AI team. 1. **[BART](https://huggingface.co/docs/transformers/model_doc/bart)** (from Facebook) released with the paper [BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension](https://arxiv.org/abs/1910.13461) by Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov, and Luke Zettlemoyer. 1. **[BARThez](https://huggingface.co/docs/transformers/model_doc/barthez)** (from École polytechnique) released with the paper [BARThez: a Skilled Pretrained French Sequence-to-Sequence Model](https://arxiv.org/abs/2010.12321) by Moussa Kamal Eddine, Antoine J.-P. Tixier, Michalis Vazirgiannis. 1. **[BARTpho](https://huggingface.co/docs/transformers/model_doc/bartpho)** (from VinAI Research) released with the paper [BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnamese](https://arxiv.org/abs/2109.09701) by Nguyen Luong Tran, Duong Minh Le and Dat Quoc Nguyen. 1. **[BEiT](https://huggingface.co/docs/transformers/model_doc/beit)** (from Microsoft) released with the paper [BEiT: BERT Pre-Training of Image Transformers](https://arxiv.org/abs/2106.08254) by Hangbo Bao, Li Dong, Furu Wei. 1. **[BERT](https://huggingface.co/docs/transformers/model_doc/bert)** (from Google) released with the paper [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805) by Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 1. **[BERT For Sequence Generation](https://huggingface.co/docs/transformers/model_doc/bert-generation)** (from Google) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn. 1. **[BERTweet](https://huggingface.co/docs/transformers/model_doc/bertweet)** (from VinAI Research) released with the paper [BERTweet: A pre-trained language model for English Tweets](https://aclanthology.org/2020.emnlp-demos.2/) by Dat Quoc Nguyen, Thanh Vu and Anh Tuan Nguyen. 1. **[BigBird-Pegasus](https://huggingface.co/docs/transformers/model_doc/bigbird_pegasus)** (from Google Research) released with the paper [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed. 1. **[BigBird-RoBERTa](https://huggingface.co/docs/transformers/model_doc/big_bird)** (from Google Research) released with the paper [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed. 1. **[BioGpt](https://huggingface.co/docs/transformers/model_doc/biogpt)** (from Microsoft Research AI4Science) released with the paper [BioGPT: generative pre-trained transformer for biomedical text generation and mining](https://academic.oup.com/bib/advance-article/doi/10.1093/bib/bbac409/6713511?guestAccessKey=a66d9b5d-4f83-4017-bb52-405815c907b9) by Renqian Luo, Liai Sun, Yingce Xia, Tao Qin, Sheng Zhang, Hoifung Poon and Tie-Yan Liu. 1. **[BiT](https://huggingface.co/docs/transformers/model_doc/bit)** (from Google AI) released with the paper [Big Transfer (BiT): General Visual Representation Learning](https://arxiv.org/abs/1912.11370) by Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica Yung, Sylvain Gelly, Neil Houlsby. 1. **[Blenderbot](https://huggingface.co/docs/transformers/model_doc/blenderbot)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston. 1. **[BlenderbotSmall](https://huggingface.co/docs/transformers/model_doc/blenderbot-small)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston. 1. **[BLIP](https://huggingface.co/docs/transformers/model_doc/blip)** (from Salesforce) released with the paper [BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation](https://arxiv.org/abs/2201.12086) by Junnan Li, Dongxu Li, Caiming Xiong, Steven Hoi. 1. **[BLIP-2](https://huggingface.co/docs/transformers/model_doc/blip-2)** (from Salesforce) released with the paper [BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models](https://arxiv.org/abs/2301.12597) by Junnan Li, Dongxu Li, Silvio Savarese, Steven Hoi. 1. **[BLOOM](https://huggingface.co/docs/transformers/model_doc/bloom)** (from BigScience workshop) released by the [BigScience Workshop](https://bigscience.huggingface.co/). 1. **[BORT](https://huggingface.co/docs/transformers/model_doc/bort)** (from Alexa) released with the paper [Optimal Subarchitecture Extraction For BERT](https://arxiv.org/abs/2010.10499) by Adrian de Wynter and Daniel J. Perry. 1. **[BridgeTower](https://huggingface.co/docs/transformers/model_doc/bridgetower)** (from Harbin Institute of Technology/Microsoft Research Asia/Intel Labs) released with the paper [BridgeTower: Building Bridges Between Encoders in Vision-Language Representation Learning](https://arxiv.org/abs/2206.08657) by Xiao Xu, Chenfei Wu, Shachar Rosenman, Vasudev Lal, Wanxiang Che, Nan Duan. 1. **[BROS](https://huggingface.co/docs/transformers/model_doc/bros)** (from NAVER CLOVA) released with the paper [BROS: A Pre-trained Language Model Focusing on Text and Layout for Better Key Information Extraction from Documents](https://arxiv.org/abs/2108.04539) by Teakgyu Hong, Donghyun Kim, Mingi Ji, Wonseok Hwang, Daehyun Nam, Sungrae Park. 1. **[ByT5](https://huggingface.co/docs/transformers/model_doc/byt5)** (from Google Research) released with the paper [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://arxiv.org/abs/2105.13626) by Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel. 1. **[CamemBERT](https://huggingface.co/docs/transformers/model_doc/camembert)** (from Inria/Facebook/Sorbonne) released with the paper [CamemBERT: a Tasty French Language Model](https://arxiv.org/abs/1911.03894) by Louis Martin*, Benjamin Muller*, Pedro Javier Ortiz Suárez*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot. 1. **[CANINE](https://huggingface.co/docs/transformers/model_doc/canine)** (from Google Research) released with the paper [CANINE: Pre-training an Efficient Tokenization-Free Encoder for Language Representation](https://arxiv.org/abs/2103.06874) by Jonathan H. Clark, Dan Garrette, Iulia Turc, John Wieting. 1. **[Chinese-CLIP](https://huggingface.co/docs/transformers/model_doc/chinese_clip)** (from OFA-Sys) released with the paper [Chinese CLIP: Contrastive Vision-Language Pretraining in Chinese](https://arxiv.org/abs/2211.01335) by An Yang, Junshu Pan, Junyang Lin, Rui Men, Yichang Zhang, Jingren Zhou, Chang Zhou. 1. **[CLAP](https://huggingface.co/docs/transformers/model_doc/clap)** (from LAION-AI) released with the paper [Large-scale Contrastive Language-Audio Pretraining with Feature Fusion and Keyword-to-Caption Augmentation](https://arxiv.org/abs/2211.06687) by Yusong Wu, Ke Chen, Tianyu Zhang, Yuchen Hui, Taylor Berg-Kirkpatrick, Shlomo Dubnov. 1. **[CLIP](https://huggingface.co/docs/transformers/model_doc/clip)** (from OpenAI) released with the paper [Learning Transferable Visual Models From Natural Language Supervision](https://arxiv.org/abs/2103.00020) by Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever. 1. **[CLIPSeg](https://huggingface.co/docs/transformers/model_doc/clipseg)** (from University of Göttingen) released with the paper [Image Segmentation Using Text and Image Prompts](https://arxiv.org/abs/2112.10003) by Timo Lüddecke and Alexander Ecker. 1. **[CLVP](https://huggingface.co/docs/transformers/model_doc/clvp)** released with the paper [Better speech synthesis through scaling](https://arxiv.org/abs/2305.07243) by James Betker. 1. **[CodeGen](https://huggingface.co/docs/transformers/model_doc/codegen)** (from Salesforce) released with the paper [A Conversational Paradigm for Program Synthesis](https://arxiv.org/abs/2203.13474) by Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, Caiming Xiong. 1. **[CodeLlama](https://huggingface.co/docs/transformers/model_doc/llama_code)** (from MetaAI) released with the paper [Code Llama: Open Foundation Models for Code](https://ai.meta.com/research/publications/code-llama-open-foundation-models-for-code/) by Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas Scialom, Gabriel Synnaeve. 1. **[Conditional DETR](https://huggingface.co/docs/transformers/model_doc/conditional_detr)** (from Microsoft Research Asia) released with the paper [Conditional DETR for Fast Training Convergence](https://arxiv.org/abs/2108.06152) by Depu Meng, Xiaokang Chen, Zejia Fan, Gang Zeng, Houqiang Li, Yuhui Yuan, Lei Sun, Jingdong Wang. 1. **[ConvBERT](https://huggingface.co/docs/transformers/model_doc/convbert)** (from YituTech) released with the paper [ConvBERT: Improving BERT with Span-based Dynamic Convolution](https://arxiv.org/abs/2008.02496) by Zihang Jiang, Weihao Yu, Daquan Zhou, Yunpeng Chen, Jiashi Feng, Shuicheng Yan. 1. **[ConvNeXT](https://huggingface.co/docs/transformers/model_doc/convnext)** (from Facebook AI) released with the paper [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545) by Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, Saining Xie. 1. **[ConvNeXTV2](https://huggingface.co/docs/transformers/model_doc/convnextv2)** (from Facebook AI) released with the paper [ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders](https://arxiv.org/abs/2301.00808) by Sanghyun Woo, Shoubhik Debnath, Ronghang Hu, Xinlei Chen, Zhuang Liu, In So Kweon, Saining Xie. 1. **[CPM](https://huggingface.co/docs/transformers/model_doc/cpm)** (from Tsinghua University) released with the paper [CPM: A Large-scale Generative Chinese Pre-trained Language Model](https://arxiv.org/abs/2012.00413) by Zhengyan Zhang, Xu Han, Hao Zhou, Pei Ke, Yuxian Gu, Deming Ye, Yujia Qin, Yusheng Su, Haozhe Ji, Jian Guan, Fanchao Qi, Xiaozhi Wang, Yanan Zheng, Guoyang Zeng, Huanqi Cao, Shengqi Chen, Daixuan Li, Zhenbo Sun, Zhiyuan Liu, Minlie Huang, Wentao Han, Jie Tang, Juanzi Li, Xiaoyan Zhu, Maosong Sun. 1. **[CPM-Ant](https://huggingface.co/docs/transformers/model_doc/cpmant)** (from OpenBMB) released by the [OpenBMB](https://www.openbmb.org/). 1. **[CTRL](https://huggingface.co/docs/transformers/model_doc/ctrl)** (from Salesforce) released with the paper [CTRL: A Conditional Transformer Language Model for Controllable Generation](https://arxiv.org/abs/1909.05858) by Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher. 1. **[CvT](https://huggingface.co/docs/transformers/model_doc/cvt)** (from Microsoft) released with the paper [CvT: Introducing Convolutions to Vision Transformers](https://arxiv.org/abs/2103.15808) by Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, Lei Zhang. 1. **[Data2Vec](https://huggingface.co/docs/transformers/model_doc/data2vec)** (from Facebook) released with the paper [Data2Vec: A General Framework for Self-supervised Learning in Speech, Vision and Language](https://arxiv.org/abs/2202.03555) by Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, Michael Auli. 1. **[DeBERTa](https://huggingface.co/docs/transformers/model_doc/deberta)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen. 1. **[DeBERTa-v2](https://huggingface.co/docs/transformers/model_doc/deberta-v2)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen. 1. **[Decision Transformer](https://huggingface.co/docs/transformers/model_doc/decision_transformer)** (from Berkeley/Facebook/Google) released with the paper [Decision Transformer: Reinforcement Learning via Sequence Modeling](https://arxiv.org/abs/2106.01345) by Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas, Igor Mordatch. 1. **[Deformable DETR](https://huggingface.co/docs/transformers/model_doc/deformable_detr)** (from SenseTime Research) released with the paper [Deformable DETR: Deformable Transformers for End-to-End Object Detection](https://arxiv.org/abs/2010.04159) by Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, Jifeng Dai. 1. **[DeiT](https://huggingface.co/docs/transformers/model_doc/deit)** (from Facebook) released with the paper [Training data-efficient image transformers & distillation through attention](https://arxiv.org/abs/2012.12877) by Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, Hervé Jégou. 1. **[DePlot](https://huggingface.co/docs/transformers/model_doc/deplot)** (from Google AI) released with the paper [DePlot: One-shot visual language reasoning by plot-to-table translation](https://arxiv.org/abs/2212.10505) by Fangyu Liu, Julian Martin Eisenschlos, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Wenhu Chen, Nigel Collier, Yasemin Altun. 1. **[DETA](https://huggingface.co/docs/transformers/model_doc/deta)** (from The University of Texas at Austin) released with the paper [NMS Strikes Back](https://arxiv.org/abs/2212.06137) by Jeffrey Ouyang-Zhang, Jang Hyun Cho, Xingyi Zhou, Philipp Krähenbühl. 1. **[DETR](https://huggingface.co/docs/transformers/model_doc/detr)** (from Facebook) released with the paper [End-to-End Object Detection with Transformers](https://arxiv.org/abs/2005.12872) by Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, Sergey Zagoruyko. 1. **[DialoGPT](https://huggingface.co/docs/transformers/model_doc/dialogpt)** (from Microsoft Research) released with the paper [DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation](https://arxiv.org/abs/1911.00536) by Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing Liu, Bill Dolan. 1. **[DiNAT](https://huggingface.co/docs/transformers/model_doc/dinat)** (from SHI Labs) released with the paper [Dilated Neighborhood Attention Transformer](https://arxiv.org/abs/2209.15001) by Ali Hassani and Humphrey Shi. 1. **[DINOv2](https://huggingface.co/docs/transformers/model_doc/dinov2)** (from Meta AI) released with the paper [DINOv2: Learning Robust Visual Features without Supervision](https://arxiv.org/abs/2304.07193) by Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Mahmoud Assran, Nicolas Ballas, Wojciech Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra, Michael Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Hervé Jegou, Julien Mairal, Patrick Labatut, Armand Joulin, Piotr Bojanowski. 1. **[DistilBERT](https://huggingface.co/docs/transformers/model_doc/distilbert)** (from HuggingFace), released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same method has been applied to compress GPT2 into [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation), RoBERTa into [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation), Multilingual BERT into [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation) and a German version of DistilBERT. 1. **[DiT](https://huggingface.co/docs/transformers/model_doc/dit)** (from Microsoft Research) released with the paper [DiT: Self-supervised Pre-training for Document Image Transformer](https://arxiv.org/abs/2203.02378) by Junlong Li, Yiheng Xu, Tengchao Lv, Lei Cui, Cha Zhang, Furu Wei. 1. **[Donut](https://huggingface.co/docs/transformers/model_doc/donut)** (from NAVER), released together with the paper [OCR-free Document Understanding Transformer](https://arxiv.org/abs/2111.15664) by Geewook Kim, Teakgyu Hong, Moonbin Yim, Jeongyeon Nam, Jinyoung Park, Jinyeong Yim, Wonseok Hwang, Sangdoo Yun, Dongyoon Han, Seunghyun Park. 1. **[DPR](https://huggingface.co/docs/transformers/model_doc/dpr)** (from Facebook) released with the paper [Dense Passage Retrieval for Open-Domain Question Answering](https://arxiv.org/abs/2004.04906) by Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih. 1. **[DPT](https://huggingface.co/docs/transformers/master/model_doc/dpt)** (from Intel Labs) released with the paper [Vision Transformers for Dense Prediction](https://arxiv.org/abs/2103.13413) by René Ranftl, Alexey Bochkovskiy, Vladlen Koltun. 1. **[EfficientFormer](https://huggingface.co/docs/transformers/model_doc/efficientformer)** (from Snap Research) released with the paper [EfficientFormer: Vision Transformers at MobileNetSpeed](https://arxiv.org/abs/2206.01191) by Yanyu Li, Geng Yuan, Yang Wen, Ju Hu, Georgios Evangelidis, Sergey Tulyakov, Yanzhi Wang, Jian Ren. 1. **[EfficientNet](https://huggingface.co/docs/transformers/model_doc/efficientnet)** (from Google Brain) released with the paper [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks](https://arxiv.org/abs/1905.11946) by Mingxing Tan, Quoc V. Le. 1. **[ELECTRA](https://huggingface.co/docs/transformers/model_doc/electra)** (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang Luong, Quoc V. Le, Christopher D. Manning. 1. **[EnCodec](https://huggingface.co/docs/transformers/model_doc/encodec)** (from Meta AI) released with the paper [High Fidelity Neural Audio Compression](https://arxiv.org/abs/2210.13438) by Alexandre Défossez, Jade Copet, Gabriel Synnaeve, Yossi Adi. 1. **[EncoderDecoder](https://huggingface.co/docs/transformers/model_doc/encoder-decoder)** (from Google Research) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn. 1. **[ERNIE](https://huggingface.co/docs/transformers/model_doc/ernie)** (from Baidu) released with the paper [ERNIE: Enhanced Representation through Knowledge Integration](https://arxiv.org/abs/1904.09223) by Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Xuyi Chen, Han Zhang, Xin Tian, Danxiang Zhu, Hao Tian, Hua Wu. 1. **[ErnieM](https://huggingface.co/docs/transformers/model_doc/ernie_m)** (from Baidu) released with the paper [ERNIE-M: Enhanced Multilingual Representation by Aligning Cross-lingual Semantics with Monolingual Corpora](https://arxiv.org/abs/2012.15674) by Xuan Ouyang, Shuohuan Wang, Chao Pang, Yu Sun, Hao Tian, Hua Wu, Haifeng Wang. 1. **[ESM](https://huggingface.co/docs/transformers/model_doc/esm)** (from Meta AI) are transformer protein language models. **ESM-1b** was released with the paper [Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences](https://www.pnas.org/content/118/15/e2016239118) by Alexander Rives, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin, Jason Liu, Demi Guo, Myle Ott, C. Lawrence Zitnick, Jerry Ma, and Rob Fergus. **ESM-1v** was released with the paper [Language models enable zero-shot prediction of the effects of mutations on protein function](https://doi.org/10.1101/2021.07.09.450648) by Joshua Meier, Roshan Rao, Robert Verkuil, Jason Liu, Tom Sercu and Alexander Rives. **ESM-2 and ESMFold** were released with the paper [Language models of protein sequences at the scale of evolution enable accurate structure prediction](https://doi.org/10.1101/2022.07.20.500902) by Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Allan dos Santos Costa, Maryam Fazel-Zarandi, Tom Sercu, Sal Candido, Alexander Rives. 1. **[Falcon](https://huggingface.co/docs/transformers/model_doc/falcon)** (from Technology Innovation Institute) by Almazrouei, Ebtesam and Alobeidli, Hamza and Alshamsi, Abdulaziz and Cappelli, Alessandro and Cojocaru, Ruxandra and Debbah, Merouane and Goffinet, Etienne and Heslow, Daniel and Launay, Julien and Malartic, Quentin and Noune, Badreddine and Pannier, Baptiste and Penedo, Guilherme. 1. **[FLAN-T5](https://huggingface.co/docs/transformers/model_doc/flan-t5)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-t5-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei 1. **[FLAN-UL2](https://huggingface.co/docs/transformers/model_doc/flan-ul2)** (from Google AI) released in the repository [google-research/t5x](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-ul2-checkpoints) by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei 1. **[FlauBERT](https://huggingface.co/docs/transformers/model_doc/flaubert)** (from CNRS) released with the paper [FlauBERT: Unsupervised Language Model Pre-training for French](https://arxiv.org/abs/1912.05372) by Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoît Crabbé, Laurent Besacier, Didier Schwab. 1. **[FLAVA](https://huggingface.co/docs/transformers/model_doc/flava)** (from Facebook AI) released with the paper [FLAVA: A Foundational Language And Vision Alignment Model](https://arxiv.org/abs/2112.04482) by Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guillaume Couairon, Wojciech Galuba, Marcus Rohrbach, and Douwe Kiela. 1. **[FNet](https://huggingface.co/docs/transformers/model_doc/fnet)** (from Google Research) released with the paper [FNet: Mixing Tokens with Fourier Transforms](https://arxiv.org/abs/2105.03824) by James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon. 1. **[FocalNet](https://huggingface.co/docs/transformers/model_doc/focalnet)** (from Microsoft Research) released with the paper [Focal Modulation Networks](https://arxiv.org/abs/2203.11926) by Jianwei Yang, Chunyuan Li, Xiyang Dai, Lu Yuan, Jianfeng Gao. 1. **[Funnel Transformer](https://huggingface.co/docs/transformers/model_doc/funnel)** (from CMU/Google Brain) released with the paper [Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing](https://arxiv.org/abs/2006.03236) by Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le. 1. **[Fuyu](https://huggingface.co/docs/transformers/model_doc/fuyu)** (from ADEPT) Rohan Bavishi, Erich Elsen, Curtis Hawthorne, Maxwell Nye, Augustus Odena, Arushi Somani, Sağnak Taşırlar. Released with the paper [blog post](https://www.adept.ai/blog/fuyu-8b) 1. **[GIT](https://huggingface.co/docs/transformers/model_doc/git)** (from Microsoft Research) released with the paper [GIT: A Generative Image-to-text Transformer for Vision and Language](https://arxiv.org/abs/2205.14100) by Jianfeng Wang, Zhengyuan Yang, Xiaowei Hu, Linjie Li, Kevin Lin, Zhe Gan, Zicheng Liu, Ce Liu, Lijuan Wang. 1. **[GLPN](https://huggingface.co/docs/transformers/model_doc/glpn)** (from KAIST) released with the paper [Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth](https://arxiv.org/abs/2201.07436) by Doyeon Kim, Woonghyun Ga, Pyungwhan Ahn, Donggyu Joo, Sehwan Chun, Junmo Kim. 1. **[GPT](https://huggingface.co/docs/transformers/model_doc/openai-gpt)** (from OpenAI) released with the paper [Improving Language Understanding by Generative Pre-Training](https://openai.com/research/language-unsupervised/) by Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever. 1. **[GPT Neo](https://huggingface.co/docs/transformers/model_doc/gpt_neo)** (from EleutherAI) released in the repository [EleutherAI/gpt-neo](https://github.com/EleutherAI/gpt-neo) by Sid Black, Stella Biderman, Leo Gao, Phil Wang and Connor Leahy. 1. **[GPT NeoX](https://huggingface.co/docs/transformers/model_doc/gpt_neox)** (from EleutherAI) released with the paper [GPT-NeoX-20B: An Open-Source Autoregressive Language Model](https://arxiv.org/abs/2204.06745) by Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Horace He, Connor Leahy, Kyle McDonell, Jason Phang, Michael Pieler, USVSN Sai Prashanth, Shivanshu Purohit, Laria Reynolds, Jonathan Tow, Ben Wang, Samuel Weinbach 1. **[GPT NeoX Japanese](https://huggingface.co/docs/transformers/model_doc/gpt_neox_japanese)** (from ABEJA) released by Shinya Otani, Takayoshi Makabe, Anuj Arora, and Kyo Hattori. 1. **[GPT-2](https://huggingface.co/docs/transformers/model_doc/gpt2)** (from OpenAI) released with the paper [Language Models are Unsupervised Multitask Learners](https://openai.com/research/better-language-models/) by Alec Radford*, Jeffrey Wu*, Rewon Child, David Luan, Dario Amodei** and Ilya Sutskever**. 1. **[GPT-J](https://huggingface.co/docs/transformers/model_doc/gptj)** (from EleutherAI) released in the repository [kingoflolz/mesh-transformer-jax](https://github.com/kingoflolz/mesh-transformer-jax/) by Ben Wang and Aran Komatsuzaki. 1. **[GPT-Sw3](https://huggingface.co/docs/transformers/model_doc/gpt-sw3)** (from AI-Sweden) released with the paper [Lessons Learned from GPT-SW3: Building the First Large-Scale Generative Language Model for Swedish](http://www.lrec-conf.org/proceedings/lrec2022/pdf/2022.lrec-1.376.pdf) by Ariel Ekgren, Amaru Cuba Gyllensten, Evangelia Gogoulou, Alice Heiman, Severine Verlinden, Joey Öhman, Fredrik Carlsson, Magnus Sahlgren. 1. **[GPTBigCode](https://huggingface.co/docs/transformers/model_doc/gpt_bigcode)** (from BigCode) released with the paper [SantaCoder: don't reach for the stars!](https://arxiv.org/abs/2301.03988) by Loubna Ben Allal, Raymond Li, Denis Kocetkov, Chenghao Mou, Christopher Akiki, Carlos Munoz Ferrandis, Niklas Muennighoff, Mayank Mishra, Alex Gu, Manan Dey, Logesh Kumar Umapathi, Carolyn Jane Anderson, Yangtian Zi, Joel Lamy Poirier, Hailey Schoelkopf, Sergey Troshin, Dmitry Abulkhanov, Manuel Romero, Michael Lappert, Francesco De Toni, Bernardo García del Río, Qian Liu, Shamik Bose, Urvashi Bhattacharyya, Terry Yue Zhuo, Ian Yu, Paulo Villegas, Marco Zocca, Sourab Mangrulkar, David Lansky, Huu Nguyen, Danish Contractor, Luis Villa, Jia Li, Dzmitry Bahdanau, Yacine Jernite, Sean Hughes, Daniel Fried, Arjun Guha, Harm de Vries, Leandro von Werra. 1. **[GPTSAN-japanese](https://huggingface.co/docs/transformers/model_doc/gptsan-japanese)** released in the repository [tanreinama/GPTSAN](https://github.com/tanreinama/GPTSAN/blob/main/report/model.md) by Toshiyuki Sakamoto(tanreinama). 1. **[Graphormer](https://huggingface.co/docs/transformers/model_doc/graphormer)** (from Microsoft) released with the paper [Do Transformers Really Perform Bad for Graph Representation?](https://arxiv.org/abs/2106.05234) by Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, Tie-Yan Liu. 1. **[GroupViT](https://huggingface.co/docs/transformers/model_doc/groupvit)** (from UCSD, NVIDIA) released with the paper [GroupViT: Semantic Segmentation Emerges from Text Supervision](https://arxiv.org/abs/2202.11094) by Jiarui Xu, Shalini De Mello, Sifei Liu, Wonmin Byeon, Thomas Breuel, Jan Kautz, Xiaolong Wang. 1. **[HerBERT](https://huggingface.co/docs/transformers/model_doc/herbert)** (from Allegro.pl, AGH University of Science and Technology) released with the paper [KLEJ: Comprehensive Benchmark for Polish Language Understanding](https://www.aclweb.org/anthology/2020.acl-main.111.pdf) by Piotr Rybak, Robert Mroczkowski, Janusz Tracz, Ireneusz Gawlik. 1. **[Hubert](https://huggingface.co/docs/transformers/model_doc/hubert)** (from Facebook) released with the paper [HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units](https://arxiv.org/abs/2106.07447) by Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, Abdelrahman Mohamed. 1. **[I-BERT](https://huggingface.co/docs/transformers/model_doc/ibert)** (from Berkeley) released with the paper [I-BERT: Integer-only BERT Quantization](https://arxiv.org/abs/2101.01321) by Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W. Mahoney, Kurt Keutzer. 1. **[IDEFICS](https://huggingface.co/docs/transformers/model_doc/idefics)** (from HuggingFace) released with the paper [OBELICS: An Open Web-Scale Filtered Dataset of Interleaved Image-Text Documents](https://huggingface.co/papers/2306.16527) by Hugo Laurençon, Lucile Saulnier, Léo Tronchon, Stas Bekman, Amanpreet Singh, Anton Lozhkov, Thomas Wang, Siddharth Karamcheti, Alexander M. Rush, Douwe Kiela, Matthieu Cord, Victor Sanh. 1. **[ImageGPT](https://huggingface.co/docs/transformers/model_doc/imagegpt)** (from OpenAI) released with the paper [Generative Pretraining from Pixels](https://openai.com/blog/image-gpt/) by Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, Ilya Sutskever. 1. **[Informer](https://huggingface.co/docs/transformers/model_doc/informer)** (from Beihang University, UC Berkeley, Rutgers University, SEDD Company) released with the paper [Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting](https://arxiv.org/abs/2012.07436) by Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang. 1. **[InstructBLIP](https://huggingface.co/docs/transformers/model_doc/instructblip)** (from Salesforce) released with the paper [InstructBLIP: Towards General-purpose Vision-Language Models with Instruction Tuning](https://arxiv.org/abs/2305.06500) by Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao, Weisheng Wang, Boyang Li, Pascale Fung, Steven Hoi. 1. **[Jukebox](https://huggingface.co/docs/transformers/model_doc/jukebox)** (from OpenAI) released with the paper [Jukebox: A Generative Model for Music](https://arxiv.org/pdf/2005.00341.pdf) by Prafulla Dhariwal, Heewoo Jun, Christine Payne, Jong Wook Kim, Alec Radford, Ilya Sutskever. 1. **[KOSMOS-2](https://huggingface.co/docs/transformers/model_doc/kosmos-2)** (from Microsoft Research Asia) released with the paper [Kosmos-2: Grounding Multimodal Large Language Models to the World](https://arxiv.org/abs/2306.14824) by Zhiliang Peng, Wenhui Wang, Li Dong, Yaru Hao, Shaohan Huang, Shuming Ma, Furu Wei. 1. **[LayoutLM](https://huggingface.co/docs/transformers/model_doc/layoutlm)** (from Microsoft Research Asia) released with the paper [LayoutLM: Pre-training of Text and Layout for Document Image Understanding](https://arxiv.org/abs/1912.13318) by Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou. 1. **[LayoutLMv2](https://huggingface.co/docs/transformers/model_doc/layoutlmv2)** (from Microsoft Research Asia) released with the paper [LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding](https://arxiv.org/abs/2012.14740) by Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Wanxiang Che, Min Zhang, Lidong Zhou. 1. **[LayoutLMv3](https://huggingface.co/docs/transformers/model_doc/layoutlmv3)** (from Microsoft Research Asia) released with the paper [LayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking](https://arxiv.org/abs/2204.08387) by Yupan Huang, Tengchao Lv, Lei Cui, Yutong Lu, Furu Wei. 1. **[LayoutXLM](https://huggingface.co/docs/transformers/model_doc/layoutxlm)** (from Microsoft Research Asia) released with the paper [LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding](https://arxiv.org/abs/2104.08836) by Yiheng Xu, Tengchao Lv, Lei Cui, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Furu Wei. 1. **[LED](https://huggingface.co/docs/transformers/model_doc/led)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan. 1. **[LeViT](https://huggingface.co/docs/transformers/model_doc/levit)** (from Meta AI) released with the paper [LeViT: A Vision Transformer in ConvNet's Clothing for Faster Inference](https://arxiv.org/abs/2104.01136) by Ben Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand Joulin, Hervé Jégou, Matthijs Douze. 1. **[LiLT](https://huggingface.co/docs/transformers/model_doc/lilt)** (from South China University of Technology) released with the paper [LiLT: A Simple yet Effective Language-Independent Layout Transformer for Structured Document Understanding](https://arxiv.org/abs/2202.13669) by Jiapeng Wang, Lianwen Jin, Kai Ding. 1. **[LLaMA](https://huggingface.co/docs/transformers/model_doc/llama)** (from The FAIR team of Meta AI) released with the paper [LLaMA: Open and Efficient Foundation Language Models](https://arxiv.org/abs/2302.13971) by Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, Guillaume Lample. 1. **[Llama2](https://huggingface.co/docs/transformers/model_doc/llama2)** (from The FAIR team of Meta AI) released with the paper [Llama2: Open Foundation and Fine-Tuned Chat Models](https://ai.meta.com/research/publications/llama-2-open-foundation-and-fine-tuned-chat-models/) by Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushka rMishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing EllenTan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, Sergey Edunov, Thomas Scialom. 1. **[LLaVa](https://huggingface.co/docs/transformers/model_doc/llava)** (from Microsoft Research & University of Wisconsin-Madison) released with the paper [Visual Instruction Tuning](https://arxiv.org/abs/2304.08485) by Haotian Liu, Chunyuan Li, Yuheng Li and Yong Jae Lee. 1. **[Longformer](https://huggingface.co/docs/transformers/model_doc/longformer)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan. 1. **[LongT5](https://huggingface.co/docs/transformers/model_doc/longt5)** (from Google AI) released with the paper [LongT5: Efficient Text-To-Text Transformer for Long Sequences](https://arxiv.org/abs/2112.07916) by Mandy Guo, Joshua Ainslie, David Uthus, Santiago Ontanon, Jianmo Ni, Yun-Hsuan Sung, Yinfei Yang. 1. **[LUKE](https://huggingface.co/docs/transformers/model_doc/luke)** (from Studio Ousia) released with the paper [LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention](https://arxiv.org/abs/2010.01057) by Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, Yuji Matsumoto. 1. **[LXMERT](https://huggingface.co/docs/transformers/model_doc/lxmert)** (from UNC Chapel Hill) released with the paper [LXMERT: Learning Cross-Modality Encoder Representations from Transformers for Open-Domain Question Answering](https://arxiv.org/abs/1908.07490) by Hao Tan and Mohit Bansal. 1. **[M-CTC-T](https://huggingface.co/docs/transformers/model_doc/mctct)** (from Facebook) released with the paper [Pseudo-Labeling For Massively Multilingual Speech Recognition](https://arxiv.org/abs/2111.00161) by Loren Lugosch, Tatiana Likhomanenko, Gabriel Synnaeve, and Ronan Collobert. 1. **[M2M100](https://huggingface.co/docs/transformers/model_doc/m2m_100)** (from Facebook) released with the paper [Beyond English-Centric Multilingual Machine Translation](https://arxiv.org/abs/2010.11125) by Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi Ma, Ahmed El-Kishky, Siddharth Goyal, Mandeep Baines, Onur Celebi, Guillaume Wenzek, Vishrav Chaudhary, Naman Goyal, Tom Birch, Vitaliy Liptchinsky, Sergey Edunov, Edouard Grave, Michael Auli, Armand Joulin. 1. **[MADLAD-400](https://huggingface.co/docs/transformers/model_doc/madlad-400)** (from Google) released with the paper [MADLAD-400: A Multilingual And Document-Level Large Audited Dataset](https://arxiv.org/abs/2309.04662) by Sneha Kudugunta, Isaac Caswell, Biao Zhang, Xavier Garcia, Christopher A. Choquette-Choo, Katherine Lee, Derrick Xin, Aditya Kusupati, Romi Stella, Ankur Bapna, Orhan Firat. 1. **[MarianMT](https://huggingface.co/docs/transformers/model_doc/marian)** Machine translation models trained using [OPUS](http://opus.nlpl.eu/) data by Jörg Tiedemann. The [Marian Framework](https://marian-nmt.github.io/) is being developed by the Microsoft Translator Team. 1. **[MarkupLM](https://huggingface.co/docs/transformers/model_doc/markuplm)** (from Microsoft Research Asia) released with the paper [MarkupLM: Pre-training of Text and Markup Language for Visually-rich Document Understanding](https://arxiv.org/abs/2110.08518) by Junlong Li, Yiheng Xu, Lei Cui, Furu Wei. 1. **[Mask2Former](https://huggingface.co/docs/transformers/model_doc/mask2former)** (from FAIR and UIUC) released with the paper [Masked-attention Mask Transformer for Universal Image Segmentation](https://arxiv.org/abs/2112.01527) by Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexander Kirillov, Rohit Girdhar. 1. **[MaskFormer](https://huggingface.co/docs/transformers/model_doc/maskformer)** (from Meta and UIUC) released with the paper [Per-Pixel Classification is Not All You Need for Semantic Segmentation](https://arxiv.org/abs/2107.06278) by Bowen Cheng, Alexander G. Schwing, Alexander Kirillov. 1. **[MatCha](https://huggingface.co/docs/transformers/model_doc/matcha)** (from Google AI) released with the paper [MatCha: Enhancing Visual Language Pretraining with Math Reasoning and Chart Derendering](https://arxiv.org/abs/2212.09662) by Fangyu Liu, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Yasemin Altun, Nigel Collier, Julian Martin Eisenschlos. 1. **[mBART](https://huggingface.co/docs/transformers/model_doc/mbart)** (from Facebook) released with the paper [Multilingual Denoising Pre-training for Neural Machine Translation](https://arxiv.org/abs/2001.08210) by Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad, Mike Lewis, Luke Zettlemoyer. 1. **[mBART-50](https://huggingface.co/docs/transformers/model_doc/mbart)** (from Facebook) released with the paper [Multilingual Translation with Extensible Multilingual Pretraining and Finetuning](https://arxiv.org/abs/2008.00401) by Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Naman Goyal, Vishrav Chaudhary, Jiatao Gu, Angela Fan. 1. **[MEGA](https://huggingface.co/docs/transformers/model_doc/mega)** (from Meta/USC/CMU/SJTU) released with the paper [Mega: Moving Average Equipped Gated Attention](https://arxiv.org/abs/2209.10655) by Xuezhe Ma, Chunting Zhou, Xiang Kong, Junxian He, Liangke Gui, Graham Neubig, Jonathan May, and Luke Zettlemoyer. 1. **[Megatron-BERT](https://huggingface.co/docs/transformers/model_doc/megatron-bert)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro. 1. **[Megatron-GPT2](https://huggingface.co/docs/transformers/model_doc/megatron_gpt2)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro. 1. **[MGP-STR](https://huggingface.co/docs/transformers/model_doc/mgp-str)** (from Alibaba Research) released with the paper [Multi-Granularity Prediction for Scene Text Recognition](https://arxiv.org/abs/2209.03592) by Peng Wang, Cheng Da, and Cong Yao. 1. **[Mistral](https://huggingface.co/docs/transformers/model_doc/mistral)** (from Mistral AI) by The [Mistral AI](https://mistral.ai) team: Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed. 1. **[Mixtral](https://huggingface.co/docs/transformers/model_doc/mixtral)** (from Mistral AI) by The [Mistral AI](https://mistral.ai) team: Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed. 1. **[mLUKE](https://huggingface.co/docs/transformers/model_doc/mluke)** (from Studio Ousia) released with the paper [mLUKE: The Power of Entity Representations in Multilingual Pretrained Language Models](https://arxiv.org/abs/2110.08151) by Ryokan Ri, Ikuya Yamada, and Yoshimasa Tsuruoka. 1. **[MMS](https://huggingface.co/docs/transformers/model_doc/mms)** (from Facebook) released with the paper [Scaling Speech Technology to 1,000+ Languages](https://arxiv.org/abs/2305.13516) by Vineel Pratap, Andros Tjandra, Bowen Shi, Paden Tomasello, Arun Babu, Sayani Kundu, Ali Elkahky, Zhaoheng Ni, Apoorv Vyas, Maryam Fazel-Zarandi, Alexei Baevski, Yossi Adi, Xiaohui Zhang, Wei-Ning Hsu, Alexis Conneau, Michael Auli. 1. **[MobileBERT](https://huggingface.co/docs/transformers/model_doc/mobilebert)** (from CMU/Google Brain) released with the paper [MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices](https://arxiv.org/abs/2004.02984) by Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou. 1. **[MobileNetV1](https://huggingface.co/docs/transformers/model_doc/mobilenet_v1)** (from Google Inc.) released with the paper [MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications](https://arxiv.org/abs/1704.04861) by Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam. 1. **[MobileNetV2](https://huggingface.co/docs/transformers/model_doc/mobilenet_v2)** (from Google Inc.) released with the paper [MobileNetV2: Inverted Residuals and Linear Bottlenecks](https://arxiv.org/abs/1801.04381) by Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen. 1. **[MobileViT](https://huggingface.co/docs/transformers/model_doc/mobilevit)** (from Apple) released with the paper [MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer](https://arxiv.org/abs/2110.02178) by Sachin Mehta and Mohammad Rastegari. 1. **[MobileViTV2](https://huggingface.co/docs/transformers/model_doc/mobilevitv2)** (from Apple) released with the paper [Separable Self-attention for Mobile Vision Transformers](https://arxiv.org/abs/2206.02680) by Sachin Mehta and Mohammad Rastegari. 1. **[MPNet](https://huggingface.co/docs/transformers/model_doc/mpnet)** (from Microsoft Research) released with the paper [MPNet: Masked and Permuted Pre-training for Language Understanding](https://arxiv.org/abs/2004.09297) by Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu. 1. **[MPT](https://huggingface.co/docs/transformers/model_doc/mpt)** (from MosaiML) released with the repository [llm-foundry](https://github.com/mosaicml/llm-foundry/) by the MosaicML NLP Team. 1. **[MRA](https://huggingface.co/docs/transformers/model_doc/mra)** (from the University of Wisconsin - Madison) released with the paper [Multi Resolution Analysis (MRA) for Approximate Self-Attention](https://arxiv.org/abs/2207.10284) by Zhanpeng Zeng, Sourav Pal, Jeffery Kline, Glenn M Fung, Vikas Singh. 1. **[MT5](https://huggingface.co/docs/transformers/model_doc/mt5)** (from Google AI) released with the paper [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934) by Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel. 1. **[MusicGen](https://huggingface.co/docs/transformers/model_doc/musicgen)** (from Meta) released with the paper [Simple and Controllable Music Generation](https://arxiv.org/abs/2306.05284) by Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi and Alexandre Défossez. 1. **[MVP](https://huggingface.co/docs/transformers/model_doc/mvp)** (from RUC AI Box) released with the paper [MVP: Multi-task Supervised Pre-training for Natural Language Generation](https://arxiv.org/abs/2206.12131) by Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen. 1. **[NAT](https://huggingface.co/docs/transformers/model_doc/nat)** (from SHI Labs) released with the paper [Neighborhood Attention Transformer](https://arxiv.org/abs/2204.07143) by Ali Hassani, Steven Walton, Jiachen Li, Shen Li, and Humphrey Shi. 1. **[Nezha](https://huggingface.co/docs/transformers/model_doc/nezha)** (from Huawei Noah’s Ark Lab) released with the paper [NEZHA: Neural Contextualized Representation for Chinese Language Understanding](https://arxiv.org/abs/1909.00204) by Junqiu Wei, Xiaozhe Ren, Xiaoguang Li, Wenyong Huang, Yi Liao, Yasheng Wang, Jiashu Lin, Xin Jiang, Xiao Chen and Qun Liu. 1. **[NLLB](https://huggingface.co/docs/transformers/model_doc/nllb)** (from Meta) released with the paper [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) by the NLLB team. 1. **[NLLB-MOE](https://huggingface.co/docs/transformers/model_doc/nllb-moe)** (from Meta) released with the paper [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) by the NLLB team. 1. **[Nougat](https://huggingface.co/docs/transformers/model_doc/nougat)** (from Meta AI) released with the paper [Nougat: Neural Optical Understanding for Academic Documents](https://arxiv.org/abs/2308.13418) by Lukas Blecher, Guillem Cucurull, Thomas Scialom, Robert Stojnic. 1. **[Nyströmformer](https://huggingface.co/docs/transformers/model_doc/nystromformer)** (from the University of Wisconsin - Madison) released with the paper [Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention](https://arxiv.org/abs/2102.03902) by Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, Vikas Singh. 1. **[OneFormer](https://huggingface.co/docs/transformers/model_doc/oneformer)** (from SHI Labs) released with the paper [OneFormer: One Transformer to Rule Universal Image Segmentation](https://arxiv.org/abs/2211.06220) by Jitesh Jain, Jiachen Li, MangTik Chiu, Ali Hassani, Nikita Orlov, Humphrey Shi. 1. **[OpenLlama](https://huggingface.co/docs/transformers/model_doc/open-llama)** (from [s-JoL](https://huggingface.co/s-JoL)) released on GitHub (now removed). 1. **[OPT](https://huggingface.co/docs/transformers/master/model_doc/opt)** (from Meta AI) released with the paper [OPT: Open Pre-trained Transformer Language Models](https://arxiv.org/abs/2205.01068) by Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen et al. 1. **[OWL-ViT](https://huggingface.co/docs/transformers/model_doc/owlvit)** (from Google AI) released with the paper [Simple Open-Vocabulary Object Detection with Vision Transformers](https://arxiv.org/abs/2205.06230) by Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, Xiao Wang, Xiaohua Zhai, Thomas Kipf, and Neil Houlsby. 1. **[OWLv2](https://huggingface.co/docs/transformers/model_doc/owlv2)** (from Google AI) released with the paper [Scaling Open-Vocabulary Object Detection](https://arxiv.org/abs/2306.09683) by Matthias Minderer, Alexey Gritsenko, Neil Houlsby. 1. **[PatchTSMixer](https://huggingface.co/docs/transformers/model_doc/patchtsmixer)** (from IBM Research) released with the paper [TSMixer: Lightweight MLP-Mixer Model for Multivariate Time Series Forecasting](https://arxiv.org/pdf/2306.09364.pdf) by Vijay Ekambaram, Arindam Jati, Nam Nguyen, Phanwadee Sinthong, Jayant Kalagnanam. 1. **[PatchTST](https://huggingface.co/docs/transformers/model_doc/patchtst)** (from IBM) released with the paper [A Time Series is Worth 64 Words: Long-term Forecasting with Transformers](https://arxiv.org/abs/2211.14730) by Yuqi Nie, Nam H. Nguyen, Phanwadee Sinthong, Jayant Kalagnanam. 1. **[Pegasus](https://huggingface.co/docs/transformers/model_doc/pegasus)** (from Google) released with the paper [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777) by Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu. 1. **[PEGASUS-X](https://huggingface.co/docs/transformers/model_doc/pegasus_x)** (from Google) released with the paper [Investigating Efficiently Extending Transformers for Long Input Summarization](https://arxiv.org/abs/2208.04347) by Jason Phang, Yao Zhao, and Peter J. Liu. 1. **[Perceiver IO](https://huggingface.co/docs/transformers/model_doc/perceiver)** (from Deepmind) released with the paper [Perceiver IO: A General Architecture for Structured Inputs & Outputs](https://arxiv.org/abs/2107.14795) by Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu, David Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, Olivier Hénaff, Matthew M. Botvinick, Andrew Zisserman, Oriol Vinyals, João Carreira. 1. **[Persimmon](https://huggingface.co/docs/transformers/model_doc/persimmon)** (from ADEPT) released in a [blog post](https://www.adept.ai/blog/persimmon-8b) by Erich Elsen, Augustus Odena, Maxwell Nye, Sağnak Taşırlar, Tri Dao, Curtis Hawthorne, Deepak Moparthi, Arushi Somani. 1. **[Phi](https://huggingface.co/docs/transformers/model_doc/phi)** (from Microsoft) released with the papers - [Textbooks Are All You Need](https://arxiv.org/abs/2306.11644) by Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio César Teodoro Mendes, Allie Del Giorno, Sivakanth Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo de Rosa, Olli Saarikivi, Adil Salim, Shital Shah, Harkirat Singh Behl, Xin Wang, Sébastien Bubeck, Ronen Eldan, Adam Tauman Kalai, Yin Tat Lee and Yuanzhi Li, [Textbooks Are All You Need II: phi-1.5 technical report](https://arxiv.org/abs/2309.05463) by Yuanzhi Li, Sébastien Bubeck, Ronen Eldan, Allie Del Giorno, Suriya Gunasekar and Yin Tat Lee. 1. **[PhoBERT](https://huggingface.co/docs/transformers/model_doc/phobert)** (from VinAI Research) released with the paper [PhoBERT: Pre-trained language models for Vietnamese](https://www.aclweb.org/anthology/2020.findings-emnlp.92/) by Dat Quoc Nguyen and Anh Tuan Nguyen. 1. **[Pix2Struct](https://huggingface.co/docs/transformers/model_doc/pix2struct)** (from Google) released with the paper [Pix2Struct: Screenshot Parsing as Pretraining for Visual Language Understanding](https://arxiv.org/abs/2210.03347) by Kenton Lee, Mandar Joshi, Iulia Turc, Hexiang Hu, Fangyu Liu, Julian Eisenschlos, Urvashi Khandelwal, Peter Shaw, Ming-Wei Chang, Kristina Toutanova. 1. **[PLBart](https://huggingface.co/docs/transformers/model_doc/plbart)** (from UCLA NLP) released with the paper [Unified Pre-training for Program Understanding and Generation](https://arxiv.org/abs/2103.06333) by Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, Kai-Wei Chang. 1. **[PoolFormer](https://huggingface.co/docs/transformers/model_doc/poolformer)** (from Sea AI Labs) released with the paper [MetaFormer is Actually What You Need for Vision](https://arxiv.org/abs/2111.11418) by Yu, Weihao and Luo, Mi and Zhou, Pan and Si, Chenyang and Zhou, Yichen and Wang, Xinchao and Feng, Jiashi and Yan, Shuicheng. 1. **[Pop2Piano](https://huggingface.co/docs/transformers/model_doc/pop2piano)** released with the paper [Pop2Piano : Pop Audio-based Piano Cover Generation](https://arxiv.org/abs/2211.00895) by Jongho Choi and Kyogu Lee. 1. **[ProphetNet](https://huggingface.co/docs/transformers/model_doc/prophetnet)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou. 1. **[PVT](https://huggingface.co/docs/transformers/model_doc/pvt)** (from Nanjing University, The University of Hong Kong etc.) released with the paper [Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions](https://arxiv.org/pdf/2102.12122.pdf) by Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao. 1. **[QDQBert](https://huggingface.co/docs/transformers/model_doc/qdqbert)** (from NVIDIA) released with the paper [Integer Quantization for Deep Learning Inference: Principles and Empirical Evaluation](https://arxiv.org/abs/2004.09602) by Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev and Paulius Micikevicius. 1. **[RAG](https://huggingface.co/docs/transformers/model_doc/rag)** (from Facebook) released with the paper [Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks](https://arxiv.org/abs/2005.11401) by Patrick Lewis, Ethan Perez, Aleksandara Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, Douwe Kiela. 1. **[REALM](https://huggingface.co/docs/transformers/model_doc/realm.html)** (from Google Research) released with the paper [REALM: Retrieval-Augmented Language Model Pre-Training](https://arxiv.org/abs/2002.08909) by Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat and Ming-Wei Chang. 1. **[Reformer](https://huggingface.co/docs/transformers/model_doc/reformer)** (from Google Research) released with the paper [Reformer: The Efficient Transformer](https://arxiv.org/abs/2001.04451) by Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya. 1. **[RegNet](https://huggingface.co/docs/transformers/model_doc/regnet)** (from META Platforms) released with the paper [Designing Network Design Space](https://arxiv.org/abs/2003.13678) by Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, Piotr Dollár. 1. **[RemBERT](https://huggingface.co/docs/transformers/model_doc/rembert)** (from Google Research) released with the paper [Rethinking embedding coupling in pre-trained language models](https://arxiv.org/abs/2010.12821) by Hyung Won Chung, Thibault Févry, Henry Tsai, M. Johnson, Sebastian Ruder. 1. **[ResNet](https://huggingface.co/docs/transformers/model_doc/resnet)** (from Microsoft Research) released with the paper [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) by Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun. 1. **[RoBERTa](https://huggingface.co/docs/transformers/model_doc/roberta)** (from Facebook), released together with the paper [RoBERTa: A Robustly Optimized BERT Pretraining Approach](https://arxiv.org/abs/1907.11692) by Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov. 1. **[RoBERTa-PreLayerNorm](https://huggingface.co/docs/transformers/model_doc/roberta-prelayernorm)** (from Facebook) released with the paper [fairseq: A Fast, Extensible Toolkit for Sequence Modeling](https://arxiv.org/abs/1904.01038) by Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier, Michael Auli. 1. **[RoCBert](https://huggingface.co/docs/transformers/model_doc/roc_bert)** (from WeChatAI) released with the paper [RoCBert: Robust Chinese Bert with Multimodal Contrastive Pretraining](https://aclanthology.org/2022.acl-long.65.pdf) by HuiSu, WeiweiShi, XiaoyuShen, XiaoZhou, TuoJi, JiaruiFang, JieZhou. 1. **[RoFormer](https://huggingface.co/docs/transformers/model_doc/roformer)** (from ZhuiyiTechnology), released together with the paper [RoFormer: Enhanced Transformer with Rotary Position Embedding](https://arxiv.org/abs/2104.09864) by Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu. 1. **[RWKV](https://huggingface.co/docs/transformers/model_doc/rwkv)** (from Bo Peng), released on [this repo](https://github.com/BlinkDL/RWKV-LM) by Bo Peng. 1. **[SeamlessM4T](https://huggingface.co/docs/transformers/model_doc/seamless_m4t)** (from Meta AI) released with the paper [SeamlessM4T — Massively Multilingual & Multimodal Machine Translation](https://dl.fbaipublicfiles.com/seamless/seamless_m4t_paper.pdf) by the Seamless Communication team. 1. **[SeamlessM4Tv2](https://huggingface.co/docs/transformers/model_doc/seamless_m4t_v2)** (from Meta AI) released with the paper [Seamless: Multilingual Expressive and Streaming Speech Translation](https://ai.meta.com/research/publications/seamless-multilingual-expressive-and-streaming-speech-translation/) by the Seamless Communication team. 1. **[SegFormer](https://huggingface.co/docs/transformers/model_doc/segformer)** (from NVIDIA) released with the paper [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203) by Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M. Alvarez, Ping Luo. 1. **[Segment Anything](https://huggingface.co/docs/transformers/model_doc/sam)** (from Meta AI) released with the paper [Segment Anything](https://arxiv.org/pdf/2304.02643v1.pdf) by Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer Whitehead, Alex Berg, Wan-Yen Lo, Piotr Dollar, Ross Girshick. 1. **[SEW](https://huggingface.co/docs/transformers/model_doc/sew)** (from ASAPP) released with the paper [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi. 1. **[SEW-D](https://huggingface.co/docs/transformers/model_doc/sew_d)** (from ASAPP) released with the paper [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi. 1. **[SpeechT5](https://huggingface.co/docs/transformers/model_doc/speecht5)** (from Microsoft Research) released with the paper [SpeechT5: Unified-Modal Encoder-Decoder Pre-Training for Spoken Language Processing](https://arxiv.org/abs/2110.07205) by Junyi Ao, Rui Wang, Long Zhou, Chengyi Wang, Shuo Ren, Yu Wu, Shujie Liu, Tom Ko, Qing Li, Yu Zhang, Zhihua Wei, Yao Qian, Jinyu Li, Furu Wei. 1. **[SpeechToTextTransformer](https://huggingface.co/docs/transformers/model_doc/speech_to_text)** (from Facebook), released together with the paper [fairseq S2T: Fast Speech-to-Text Modeling with fairseq](https://arxiv.org/abs/2010.05171) by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Dmytro Okhonko, Juan Pino. 1. **[SpeechToTextTransformer2](https://huggingface.co/docs/transformers/model_doc/speech_to_text_2)** (from Facebook), released together with the paper [Large-Scale Self- and Semi-Supervised Learning for Speech Translation](https://arxiv.org/abs/2104.06678) by Changhan Wang, Anne Wu, Juan Pino, Alexei Baevski, Michael Auli, Alexis Conneau. 1. **[Splinter](https://huggingface.co/docs/transformers/model_doc/splinter)** (from Tel Aviv University), released together with the paper [Few-Shot Question Answering by Pretraining Span Selection](https://arxiv.org/abs/2101.00438) by Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Globerson, Omer Levy. 1. **[SqueezeBERT](https://huggingface.co/docs/transformers/model_doc/squeezebert)** (from Berkeley) released with the paper [SqueezeBERT: What can computer vision teach NLP about efficient neural networks?](https://arxiv.org/abs/2006.11316) by Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer. 1. **[SwiftFormer](https://huggingface.co/docs/transformers/model_doc/swiftformer)** (from MBZUAI) released with the paper [SwiftFormer: Efficient Additive Attention for Transformer-based Real-time Mobile Vision Applications](https://arxiv.org/abs/2303.15446) by Abdelrahman Shaker, Muhammad Maaz, Hanoona Rasheed, Salman Khan, Ming-Hsuan Yang, Fahad Shahbaz Khan. 1. **[Swin Transformer](https://huggingface.co/docs/transformers/model_doc/swin)** (from Microsoft) released with the paper [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030) by Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo. 1. **[Swin Transformer V2](https://huggingface.co/docs/transformers/model_doc/swinv2)** (from Microsoft) released with the paper [Swin Transformer V2: Scaling Up Capacity and Resolution](https://arxiv.org/abs/2111.09883) by Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong, Furu Wei, Baining Guo. 1. **[Swin2SR](https://huggingface.co/docs/transformers/model_doc/swin2sr)** (from University of Würzburg) released with the paper [Swin2SR: SwinV2 Transformer for Compressed Image Super-Resolution and Restoration](https://arxiv.org/abs/2209.11345) by Marcos V. Conde, Ui-Jin Choi, Maxime Burchi, Radu Timofte. 1. **[SwitchTransformers](https://huggingface.co/docs/transformers/model_doc/switch_transformers)** (from Google) released with the paper [Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity](https://arxiv.org/abs/2101.03961) by William Fedus, Barret Zoph, Noam Shazeer. 1. **[T5](https://huggingface.co/docs/transformers/model_doc/t5)** (from Google AI) released with the paper [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/abs/1910.10683) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu. 1. **[T5v1.1](https://huggingface.co/docs/transformers/model_doc/t5v1.1)** (from Google AI) released in the repository [google-research/text-to-text-transfer-transformer](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#t511) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu. 1. **[Table Transformer](https://huggingface.co/docs/transformers/model_doc/table-transformer)** (from Microsoft Research) released with the paper [PubTables-1M: Towards Comprehensive Table Extraction From Unstructured Documents](https://arxiv.org/abs/2110.00061) by Brandon Smock, Rohith Pesala, Robin Abraham. 1. **[TAPAS](https://huggingface.co/docs/transformers/model_doc/tapas)** (from Google AI) released with the paper [TAPAS: Weakly Supervised Table Parsing via Pre-training](https://arxiv.org/abs/2004.02349) by Jonathan Herzig, Paweł Krzysztof Nowak, Thomas Müller, Francesco Piccinno and Julian Martin Eisenschlos. 1. **[TAPEX](https://huggingface.co/docs/transformers/model_doc/tapex)** (from Microsoft Research) released with the paper [TAPEX: Table Pre-training via Learning a Neural SQL Executor](https://arxiv.org/abs/2107.07653) by Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi Lin, Weizhu Chen, Jian-Guang Lou. 1. **[Time Series Transformer](https://huggingface.co/docs/transformers/model_doc/time_series_transformer)** (from HuggingFace). 1. **[TimeSformer](https://huggingface.co/docs/transformers/model_doc/timesformer)** (from Facebook) released with the paper [Is Space-Time Attention All You Need for Video Understanding?](https://arxiv.org/abs/2102.05095) by Gedas Bertasius, Heng Wang, Lorenzo Torresani. 1. **[Trajectory Transformer](https://huggingface.co/docs/transformers/model_doc/trajectory_transformers)** (from the University of California at Berkeley) released with the paper [Offline Reinforcement Learning as One Big Sequence Modeling Problem](https://arxiv.org/abs/2106.02039) by Michael Janner, Qiyang Li, Sergey Levine 1. **[Transformer-XL](https://huggingface.co/docs/transformers/model_doc/transfo-xl)** (from Google/CMU) released with the paper [Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context](https://arxiv.org/abs/1901.02860) by Zihang Dai*, Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov. 1. **[TrOCR](https://huggingface.co/docs/transformers/model_doc/trocr)** (from Microsoft), released together with the paper [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282) by Minghao Li, Tengchao Lv, Lei Cui, Yijuan Lu, Dinei Florencio, Cha Zhang, Zhoujun Li, Furu Wei. 1. **[TVLT](https://huggingface.co/docs/transformers/model_doc/tvlt)** (from UNC Chapel Hill) released with the paper [TVLT: Textless Vision-Language Transformer](https://arxiv.org/abs/2209.14156) by Zineng Tang, Jaemin Cho, Yixin Nie, Mohit Bansal. 1. **[TVP](https://huggingface.co/docs/transformers/model_doc/tvp)** (from Intel) released with the paper [Text-Visual Prompting for Efficient 2D Temporal Video Grounding](https://arxiv.org/abs/2303.04995) by Yimeng Zhang, Xin Chen, Jinghan Jia, Sijia Liu, Ke Ding. 1. **[UL2](https://huggingface.co/docs/transformers/model_doc/ul2)** (from Google Research) released with the paper [Unifying Language Learning Paradigms](https://arxiv.org/abs/2205.05131v1) by Yi Tay, Mostafa Dehghani, Vinh Q. Tran, Xavier Garcia, Dara Bahri, Tal Schuster, Huaixiu Steven Zheng, Neil Houlsby, Donald Metzler 1. **[UMT5](https://huggingface.co/docs/transformers/model_doc/umt5)** (from Google Research) released with the paper [UniMax: Fairer and More Effective Language Sampling for Large-Scale Multilingual Pretraining](https://openreview.net/forum?id=kXwdL1cWOAi) by Hyung Won Chung, Xavier Garcia, Adam Roberts, Yi Tay, Orhan Firat, Sharan Narang, Noah Constant. 1. **[UniSpeech](https://huggingface.co/docs/transformers/model_doc/unispeech)** (from Microsoft Research) released with the paper [UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data](https://arxiv.org/abs/2101.07597) by Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang. 1. **[UniSpeechSat](https://huggingface.co/docs/transformers/model_doc/unispeech-sat)** (from Microsoft Research) released with the paper [UNISPEECH-SAT: UNIVERSAL SPEECH REPRESENTATION LEARNING WITH SPEAKER AWARE PRE-TRAINING](https://arxiv.org/abs/2110.05752) by Sanyuan Chen, Yu Wu, Chengyi Wang, Zhengyang Chen, Zhuo Chen, Shujie Liu, Jian Wu, Yao Qian, Furu Wei, Jinyu Li, Xiangzhan Yu. 1. **[UnivNet](https://huggingface.co/docs/transformers/model_doc/univnet)** (from Kakao Corporation) released with the paper [UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation](https://arxiv.org/abs/2106.07889) by Won Jang, Dan Lim, Jaesam Yoon, Bongwan Kim, and Juntae Kim. 1. **[UPerNet](https://huggingface.co/docs/transformers/model_doc/upernet)** (from Peking University) released with the paper [Unified Perceptual Parsing for Scene Understanding](https://arxiv.org/abs/1807.10221) by Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, Jian Sun. 1. **[VAN](https://huggingface.co/docs/transformers/model_doc/van)** (from Tsinghua University and Nankai University) released with the paper [Visual Attention Network](https://arxiv.org/abs/2202.09741) by Meng-Hao Guo, Cheng-Ze Lu, Zheng-Ning Liu, Ming-Ming Cheng, Shi-Min Hu. 1. **[VideoMAE](https://huggingface.co/docs/transformers/model_doc/videomae)** (from Multimedia Computing Group, Nanjing University) released with the paper [VideoMAE: Masked Autoencoders are Data-Efficient Learners for Self-Supervised Video Pre-Training](https://arxiv.org/abs/2203.12602) by Zhan Tong, Yibing Song, Jue Wang, Limin Wang. 1. **[ViLT](https://huggingface.co/docs/transformers/model_doc/vilt)** (from NAVER AI Lab/Kakao Enterprise/Kakao Brain) released with the paper [ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision](https://arxiv.org/abs/2102.03334) by Wonjae Kim, Bokyung Son, Ildoo Kim. 1. **[VipLlava](https://huggingface.co/docs/transformers/model_doc/vipllava)** (from University of Wisconsin–Madison) released with the paper [Making Large Multimodal Models Understand Arbitrary Visual Prompts](https://arxiv.org/abs/2312.00784) by Mu Cai, Haotian Liu, Siva Karthik Mustikovela, Gregory P. Meyer, Yuning Chai, Dennis Park, Yong Jae Lee. 1. **[Vision Transformer (ViT)](https://huggingface.co/docs/transformers/model_doc/vit)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby. 1. **[VisualBERT](https://huggingface.co/docs/transformers/model_doc/visual_bert)** (from UCLA NLP) released with the paper [VisualBERT: A Simple and Performant Baseline for Vision and Language](https://arxiv.org/pdf/1908.03557) by Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang. 1. **[ViT Hybrid](https://huggingface.co/docs/transformers/model_doc/vit_hybrid)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby. 1. **[VitDet](https://huggingface.co/docs/transformers/model_doc/vitdet)** (from Meta AI) released with the paper [Exploring Plain Vision Transformer Backbones for Object Detection](https://arxiv.org/abs/2203.16527) by Yanghao Li, Hanzi Mao, Ross Girshick, Kaiming He. 1. **[ViTMAE](https://huggingface.co/docs/transformers/model_doc/vit_mae)** (from Meta AI) released with the paper [Masked Autoencoders Are Scalable Vision Learners](https://arxiv.org/abs/2111.06377) by Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick. 1. **[ViTMatte](https://huggingface.co/docs/transformers/model_doc/vitmatte)** (from HUST-VL) released with the paper [ViTMatte: Boosting Image Matting with Pretrained Plain Vision Transformers](https://arxiv.org/abs/2305.15272) by Jingfeng Yao, Xinggang Wang, Shusheng Yang, Baoyuan Wang. 1. **[ViTMSN](https://huggingface.co/docs/transformers/model_doc/vit_msn)** (from Meta AI) released with the paper [Masked Siamese Networks for Label-Efficient Learning](https://arxiv.org/abs/2204.07141) by Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bojanowski, Florian Bordes, Pascal Vincent, Armand Joulin, Michael Rabbat, Nicolas Ballas. 1. **[VITS](https://huggingface.co/docs/transformers/model_doc/vits)** (from Kakao Enterprise) released with the paper [Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech](https://arxiv.org/abs/2106.06103) by Jaehyeon Kim, Jungil Kong, Juhee Son. 1. **[ViViT](https://huggingface.co/docs/transformers/model_doc/vivit)** (from Google Research) released with the paper [ViViT: A Video Vision Transformer](https://arxiv.org/abs/2103.15691) by Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lučić, Cordelia Schmid. 1. **[Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/wav2vec2)** (from Facebook AI) released with the paper [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations](https://arxiv.org/abs/2006.11477) by Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli. 1. **[Wav2Vec2-Conformer](https://huggingface.co/docs/transformers/model_doc/wav2vec2-conformer)** (from Facebook AI) released with the paper [FAIRSEQ S2T: Fast Speech-to-Text Modeling with FAIRSEQ](https://arxiv.org/abs/2010.05171) by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Sravya Popuri, Dmytro Okhonko, Juan Pino. 1. **[Wav2Vec2Phoneme](https://huggingface.co/docs/transformers/model_doc/wav2vec2_phoneme)** (from Facebook AI) released with the paper [Simple and Effective Zero-shot Cross-lingual Phoneme Recognition](https://arxiv.org/abs/2109.11680) by Qiantong Xu, Alexei Baevski, Michael Auli. 1. **[WavLM](https://huggingface.co/docs/transformers/model_doc/wavlm)** (from Microsoft Research) released with the paper [WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing](https://arxiv.org/abs/2110.13900) by Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki Kanda, Takuya Yoshioka, Xiong Xiao, Jian Wu, Long Zhou, Shuo Ren, Yanmin Qian, Yao Qian, Jian Wu, Michael Zeng, Furu Wei. 1. **[Whisper](https://huggingface.co/docs/transformers/model_doc/whisper)** (from OpenAI) released with the paper [Robust Speech Recognition via Large-Scale Weak Supervision](https://cdn.openai.com/papers/whisper.pdf) by Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, Ilya Sutskever. 1. **[X-CLIP](https://huggingface.co/docs/transformers/model_doc/xclip)** (from Microsoft Research) released with the paper [Expanding Language-Image Pretrained Models for General Video Recognition](https://arxiv.org/abs/2208.02816) by Bolin Ni, Houwen Peng, Minghao Chen, Songyang Zhang, Gaofeng Meng, Jianlong Fu, Shiming Xiang, Haibin Ling. 1. **[X-MOD](https://huggingface.co/docs/transformers/model_doc/xmod)** (from Meta AI) released with the paper [Lifting the Curse of Multilinguality by Pre-training Modular Transformers](http://dx.doi.org/10.18653/v1/2022.naacl-main.255) by Jonas Pfeiffer, Naman Goyal, Xi Lin, Xian Li, James Cross, Sebastian Riedel, Mikel Artetxe. 1. **[XGLM](https://huggingface.co/docs/transformers/model_doc/xglm)** (From Facebook AI) released with the paper [Few-shot Learning with Multilingual Language Models](https://arxiv.org/abs/2112.10668) by Xi Victoria Lin, Todor Mihaylov, Mikel Artetxe, Tianlu Wang, Shuohui Chen, Daniel Simig, Myle Ott, Naman Goyal, Shruti Bhosale, Jingfei Du, Ramakanth Pasunuru, Sam Shleifer, Punit Singh Koura, Vishrav Chaudhary, Brian O'Horo, Jeff Wang, Luke Zettlemoyer, Zornitsa Kozareva, Mona Diab, Veselin Stoyanov, Xian Li. 1. **[XLM](https://huggingface.co/docs/transformers/model_doc/xlm)** (from Facebook) released together with the paper [Cross-lingual Language Model Pretraining](https://arxiv.org/abs/1901.07291) by Guillaume Lample and Alexis Conneau. 1. **[XLM-ProphetNet](https://huggingface.co/docs/transformers/model_doc/xlm-prophetnet)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou. 1. **[XLM-RoBERTa](https://huggingface.co/docs/transformers/model_doc/xlm-roberta)** (from Facebook AI), released together with the paper [Unsupervised Cross-lingual Representation Learning at Scale](https://arxiv.org/abs/1911.02116) by Alexis Conneau*, Kartikay Khandelwal*, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer and Veselin Stoyanov. 1. **[XLM-RoBERTa-XL](https://huggingface.co/docs/transformers/model_doc/xlm-roberta-xl)** (from Facebook AI), released together with the paper [Larger-Scale Transformers for Multilingual Masked Language Modeling](https://arxiv.org/abs/2105.00572) by Naman Goyal, Jingfei Du, Myle Ott, Giri Anantharaman, Alexis Conneau. 1. **[XLM-V](https://huggingface.co/docs/transformers/model_doc/xlm-v)** (from Meta AI) released with the paper [XLM-V: Overcoming the Vocabulary Bottleneck in Multilingual Masked Language Models](https://arxiv.org/abs/2301.10472) by Davis Liang, Hila Gonen, Yuning Mao, Rui Hou, Naman Goyal, Marjan Ghazvininejad, Luke Zettlemoyer, Madian Khabsa. 1. **[XLNet](https://huggingface.co/docs/transformers/model_doc/xlnet)** (from Google/CMU) released with the paper [​XLNet: Generalized Autoregressive Pretraining for Language Understanding](https://arxiv.org/abs/1906.08237) by Zhilin Yang*, Zihang Dai*, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le. 1. **[XLS-R](https://huggingface.co/docs/transformers/model_doc/xls_r)** (from Facebook AI) released with the paper [XLS-R: Self-supervised Cross-lingual Speech Representation Learning at Scale](https://arxiv.org/abs/2111.09296) by Arun Babu, Changhan Wang, Andros Tjandra, Kushal Lakhotia, Qiantong Xu, Naman Goyal, Kritika Singh, Patrick von Platen, Yatharth Saraf, Juan Pino, Alexei Baevski, Alexis Conneau, Michael Auli. 1. **[XLSR-Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/xlsr_wav2vec2)** (from Facebook AI) released with the paper [Unsupervised Cross-Lingual Representation Learning For Speech Recognition](https://arxiv.org/abs/2006.13979) by Alexis Conneau, Alexei Baevski, Ronan Collobert, Abdelrahman Mohamed, Michael Auli. 1. **[YOLOS](https://huggingface.co/docs/transformers/model_doc/yolos)** (from Huazhong University of Science & Technology) released with the paper [You Only Look at One Sequence: Rethinking Transformer in Vision through Object Detection](https://arxiv.org/abs/2106.00666) by Yuxin Fang, Bencheng Liao, Xinggang Wang, Jiemin Fang, Jiyang Qi, Rui Wu, Jianwei Niu, Wenyu Liu. 1. **[YOSO](https://huggingface.co/docs/transformers/model_doc/yoso)** (from the University of Wisconsin - Madison) released with the paper [You Only Sample (Almost) Once: Linear Cost Self-Attention Via Bernoulli Sampling](https://arxiv.org/abs/2111.09714) by Zhanpeng Zeng, Yunyang Xiong, Sathya N. Ravi, Shailesh Acharya, Glenn Fung, Vikas Singh. 1. Want to contribute a new model? We have added a **detailed guide and templates** to guide you in the process of adding a new model. You can find them in the [`templates`](./templates) folder of the repository. Be sure to check the [contributing guidelines](./CONTRIBUTING.md) and contact the maintainers or open an issue to collect feedback before starting your PR. To check if each model has an implementation in Flax, PyTorch or TensorFlow, or has an associated tokenizer backed by the 🤗 Tokenizers library, refer to [this table](https://huggingface.co/docs/transformers/index#supported-frameworks). These implementations have been tested on several datasets (see the example scripts) and should match the performance of the original implementations. You can find more details on performance in the Examples section of the [documentation](https://github.com/huggingface/transformers/tree/main/examples). ## Learn more | Section | Description | |-|-| | [Documentation](https://huggingface.co/docs/transformers/) | Full API documentation and tutorials | | [Task summary](https://huggingface.co/docs/transformers/task_summary) | Tasks supported by 🤗 Transformers | | [Preprocessing tutorial](https://huggingface.co/docs/transformers/preprocessing) | Using the `Tokenizer` class to prepare data for the models | | [Training and fine-tuning](https://huggingface.co/docs/transformers/training) | Using the models provided by 🤗 Transformers in a PyTorch/TensorFlow training loop and the `Trainer` API | | [Quick tour: Fine-tuning/usage scripts](https://github.com/huggingface/transformers/tree/main/examples) | Example scripts for fine-tuning models on a wide range of tasks | | [Model sharing and uploading](https://huggingface.co/docs/transformers/model_sharing) | Upload and share your fine-tuned models with the community | ## Citation We now have a [paper](https://www.aclweb.org/anthology/2020.emnlp-demos.6/) you can cite for the 🤗 Transformers library: ```bibtex @inproceedings{wolf-etal-2020-transformers, title = "Transformers: State-of-the-Art Natural Language Processing", author = "Thomas Wolf and Lysandre Debut and Victor Sanh and Julien Chaumond and Clement Delangue and Anthony Moi and Pierric Cistac and Tim Rault and Rémi Louf and Morgan Funtowicz and Joe Davison and Sam Shleifer and Patrick von Platen and Clara Ma and Yacine Jernite and Julien Plu and Canwen Xu and Teven Le Scao and Sylvain Gugger and Mariama Drame and Quentin Lhoest and Alexander M. Rush", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations", month = oct, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.emnlp-demos.6", pages = "38--45" } ```
huggingface/transformers/blob/main/README.md
CodeParrot 🦜 <p align="center"> <img src="https://huggingface.co/datasets/lvwerra/repo-images/raw/main/code-highlighting-streamlit.png" alt="drawing" width="350"/> </p> ## What is this about? This is an open-source effort to train and evaluate code generation models. CodeParrot 🦜 is a GPT-2 model trained from scratch on Python code. The highlights of this project are: - initialize and train a GPT-2 language model from scratch for code generation - train a custom tokenizer adapted for Python code - clean and deduplicate a large (>100GB) dataset with `datasets` - train with `accelerate` on multiple GPUs using data parallelism and mixed precision - continuously push checkpoints to the hub with `huggingface_hub` - stream the dataset with `datasets` during training to avoid disk bottlenecks - apply the `code_eval` metric in `datasets` to evaluate on [OpenAI's _HumanEval_ benchmark](https://huggingface.co/datasets/openai_humaneval) - showcase examples for downstream tasks with code models in [examples](https://github.com/huggingface/transformers/tree/main/examples/research_projects/codeparrot/examples) folder: - Algorithmic complexity prediction - Code generation from english text - Code explanation ## Installation To install the dependencies simply run the following command: ```bash pip install -r requirements.txt ``` To reproduce the results you can follow the scripts in the following sections. Note that we don't always show all possible arguments to the scripts. To get the full list of arguments with descriptions you can run the following command on any script: ```bash python scripts/some_script.py --help ``` Before you run any of the scripts make sure you are logged in and can push to the hub: ```bash huggingface-cli login ``` Additionally, sure you have git-lfs installed. You can find instructions for how to install it [here](https://git-lfs.github.com/). ## Dataset The source of the dataset is the GitHub dump available on Google's [BigQuery](https://cloud.google.com/blog/topics/public-datasets/github-on-bigquery-analyze-all-the-open-source-code). The database was queried for all Python files with less than 1MB in size resulting in a 180GB dataset with over 20M files. The dataset is available on the Hugging Face Hub [here](https://huggingface.co/datasets/transformersbook/codeparrot). ### Preprocessing The raw dataset contains many duplicates. We deduplicated and filtered the dataset using the heuristics proposed in OpenAI's Codex [paper](https://arxiv.org/abs/2107.03374) and some new ones: - exact deduplication using each file's hash after having removed whistespaces. - near deduplication using MinHash and Jaccard similarity. MinHash with a Jaccard threshold (default=0.85) is first used to create duplicate clusters. Then these clusters are then reduced to unique files based on the exact Jaccard similarity. See `deduplicate_dataset` in `minhash_deduplication.py` for a detailed description. - filtering files with max line length > 1000 - filtering files with mean line length > 100 - fraction of alphanumeric characters < 0.25 - containing the word "auto-generated" or similar in the first 5 lines - filtering with a probability of 0.7 of files with a mention of "test file" or "configuration file" or similar in the first 5 lines - filtering with a probability of 0.7 of files with high occurence of the keywords "test " or "config" - filtering with a probability of 0.7 of files without a mention of the keywords `def` , `for`, `while` and `class` - filtering files that use the assignment operator `=` less than 5 times - filtering files with ratio between number of characters and number of tokens after tokenization < 1.5 (the average ratio is 3.6) The script to process the full dataset can be found in `scripts/preprocessing.py`. Executing the script on 16 vCPUs takes roughly 3h and removes 70% of the original dataset. The cleaned [train](https://huggingface.co/datasets/codeparrot/codeparrot-clean-train-v2) and [validation](https://huggingface.co/datasets/codeparrot/codeparrot-clean-valid-v2) splits are also available on the Hub if you want to skip this step or use the data for another project. To execute the preprocessing run the following command: ```bash python scripts/preprocessing.py \ --dataset_name transformersbook/codeparrot \ --output_dir codeparrot-clean ``` During preprocessing the dataset is downloaded and stored locally as well as caches of the computations. Make sure you have more than 500GB free disk space to execute it. ### Pretokenization The tokenization of the data might be slow during the training especially for small models. We provide code to pretokenize the data beforehand in `scripts/pretokenizing.py`, but this step is optional. The dataset is downloaded and stored locally and the tokenized data is pushed to the hub. The tokenized clean [train](https://huggingface.co/datasets/codeparrot/tokenized-codeparrot-train) and [validation](https://huggingface.co/datasets/codeparrot/tokenized-codeparrot-valid) datasets are available if you want to use them directly. To execute the pretokenization, for the clean train data for instance, run the following command: ```bash python scripts/pretokenizing.py \ --dataset_name codeparrot/codeparrot-clean-train \ --tokenized_data_repo tokenized-codeparrot-train ``` ## Tokenizer Before training a new model for code we create a new tokenizer that is efficient at code tokenization. To train the tokenizer you can run the following command: ```bash python scripts/bpe_training.py \ --base_tokenizer gpt2 \ --dataset_name codeparrot/codeparrot-clean-train ``` _Note:_ We originally trained the tokenizer on the unprocessed train split of the dataset `transformersbook/codeparrot-train`. ## Training The models are randomly initialized and trained from scratch. To initialize a new model you can run: ```bash python scripts/initialize_model.py \ --config_name gpt2-large \ --tokenizer_name codeparrot/codeparrot \ --model_name codeparrot \ --push_to_hub True ``` This will initialize a new model with the architecture and configuration of `gpt2-large` and use the tokenizer to appropriately size the input embeddings. Finally, the initilaized model is pushed the hub. We can either pass the name of a text dataset or a pretokenized dataset which speeds up training a bit. Now that the tokenizer and model are also ready we can start training the model. The main training script is built with `accelerate` to scale across a wide range of platforms and infrastructure scales. We train two models with [110M](https://huggingface.co/codeparrot/codeparrot-small/) and [1.5B](https://huggingface.co/codeparrot/codeparrot/) parameters for 25-30B tokens on a 16xA100 (40GB) machine which takes 1 day and 1 week, respectively. First you need to configure `accelerate` and login to Weights & Biases: ```bash accelerate config wandb login ``` Note that during the `accelerate` configuration we enabled FP16. Then to train the large model you can run ```bash accelerate launch scripts/codeparrot_training.py ``` If you want to train the small model you need to make some modifications: ```bash accelerate launch scripts/codeparrot_training.py \ --model_ckpt codeparrot/codeparrot-small \ --train_batch_size 12 \ --valid_batch_size 12 \ --learning_rate 5e-4 \ --num_warmup_steps 2000 \ --gradient_accumulation 1 \ --gradient_checkpointing False \ --max_train_steps 150000 \ --save_checkpoint_steps 15000 ``` Recall that you can see the full set of possible options with descriptions (for all scripts) by running: ```bash python scripts/codeparrot_training.py --help ``` Instead of streaming the dataset from the hub you can also stream it from disk. This can be helpful for long training runs where the connection can be interrupted sometimes. To stream locally you simply need to clone the datasets and replace the dataset name with their path. In this example we store the data in a folder called `data`: ```bash git lfs install mkdir data git -C "./data" clone https://huggingface.co/datasets/codeparrot/codeparrot-clean-train git -C "./data" clone https://huggingface.co/datasets/codeparrot/codeparrot-clean-valid ``` And then pass the paths to the datasets when we run the training script: ```bash accelerate launch scripts/codeparrot_training.py \ --model_ckpt codeparrot/codeparrot-small \ --dataset_name_train ./data/codeparrot-clean-train \ --dataset_name_valid ./data/codeparrot-clean-valid \ --train_batch_size 12 \ --valid_batch_size 12 \ --learning_rate 5e-4 \ --num_warmup_steps 2000 \ --gradient_accumulation 1 \ --gradient_checkpointing False \ --max_train_steps 150000 \ --save_checkpoint_steps 15000 ``` ## Evaluation For evaluating the language modeling loss on the validation set or any other dataset you can use the following command: ```bash python scripts/validation_loss.py \ --model_ckpt codeparrot/codeparrot \ --dataset_name codeparrot/codeparrot-clean-valid ``` In addition we evaluate the model on OpenAI's _HumanEval_ benchmark. You can run the evaluation with the following command: ```bash accelerate launch scripts/human_eval.py --model_ckpt codeparrot/codeparrot \ --do_sample True \ --temperature 0.2 \ --top_p 0.95 \ --n_samples=200 \ --HF_ALLOW_CODE_EVAL="0" ``` The results as well as reference values are shown in the following table: | Model | pass@1 | pass@10 | pass@100| |-------|--------|---------|---------| |CodeParrot 🦜 (110M) | 3.80% | 6.57% | 12.78% | |CodeParrot 🦜 (1.5B) | 3.99% | 8.69% | 17.88% | ||||| |Codex (25M)| 3.21% | 7.1% | 12.89%| |Codex (85M)| 8.22% | 12.81% | 22.40% | |Codex (300M)| 13.17%| 20.37% | 36.27% | |Codex (12B)| 28.81%| 46.81% | 72.31% | ||||| |GPT-neo (125M)| 0.75% | 1.88% | 2.97% | |GPT-neo (1.5B)| 4.79% | 7.47% | 16.30% | |GPT-neo (2.7B)| 6.41% | 11.27% | 21.37% | |GPT-J (6B)| 11.62% | 15.74% | 27.74% | The numbers were obtained by sampling with `T = [0.2, 0.6, 0.8]` and picking the best value for each metric. Both CodeParrot 🦜 models are still underfitted and longer training would likely improve the performance. ## Demo Give the model a shot yourself! There are three demos to interact with CodeParrot 🦜: - [Code generation](https://huggingface.co/spaces/codeparrot/codeparrot-generation) - [Code highlighting](https://huggingface.co/spaces/codeparrot/codeparrot-highlighting) - [Comparison to other code models](https://huggingface.co/spaces/codeparrot/loubnabnl/code-generation-models) ## Training with Megatron [Megatron](https://github.com/NVIDIA/Megatron-LM) is a framework developed by NVIDIA for training large transformer models. While the CodeParrot code is easy to follow and modify to your needs the Megatron framework lets you train models faster. Below we explain how to use it. ### Setup You can pull an NVIDIA PyTorch Container that comes with all the required installations from [NGC](https://catalog.ngc.nvidia.com/orgs/nvidia/containers/pytorch). See [documentation](https://docs.nvidia.com/deeplearning/frameworks/pytorch-release-notes/index.html) for more details: With the following Docker command you can run the container (`xx.xx` denotes your Docker version), and clone [Megatron repository](https://github.com/NVIDIA/Megatron-LM) into it: ```bash docker run --gpus all -it --rm nvcr.io/nvidia/pytorch:xx.xx-py3 git clone https://github.com/NVIDIA/Megatron-LM ``` You also need to add the vocabulary file and merges table of the tokenizer that you trained on code into the container. You can also find these files in [vocab.json](https://huggingface.co/codeparrot/codeparrot/raw/main/vocab.json) and [merges.txt](https://huggingface.co/codeparrot/codeparrot/raw/main/merges.txt). ```bash sudo docker cp vocab.json CONTAINER_ID:/workspace/Megatron-LM sudo docker cp merges.txt CONTAINER_ID:/workspace/Megatron-LM ``` ### Data preprocessing The training data requires preprocessing. First, you need to convert it into a loose json format, with one json containing a text sample per line. In python this can be done this way: ```python from datasets import load_dataset train_data = load_dataset('codeparrot/codeparrot-clean-train', split='train') train_data.to_json("codeparrot_data.json", lines=True) ``` The data is then tokenized, shuffled and processed into a binary format for training using the following command: ```bash pip install nltk cd Megatron-LM python tools/preprocess_data.py \ --input codeparrot_data.json \ --output-prefix codeparrot \ --vocab vocab.json \ --dataset-impl mmap \ --tokenizer-type GPT2BPETokenizer \ --merge-file merges.txt \ --json-keys content \ --workers 32 \ --chunk-size 25 \ --append-eod ``` This outputs two files `codeparrot_content_document.idx` and `codeparrot_content_document.bin` which are used in the training. ### Training You can configure the model architecture and training parameters as shown below, or put it in a bash script that you will run. This runs on 8 GPUs the 110M parameter CodeParrot pretraining, with the same settings as before. Note that the data is partitioned by default into a 969:30:1 ratio for training/validation/test sets. ```bash GPUS_PER_NODE=8 MASTER_ADDR=localhost MASTER_PORT=6001 NNODES=1 NODE_RANK=0 WORLD_SIZE=$(($GPUS_PER_NODE*$NNODES)) DISTRIBUTED_ARGS="--nproc_per_node $GPUS_PER_NODE --nnodes $NNODES --node_rank $NODE_RANK --master_addr $MASTER_ADDR --master_port $MASTER_PORT" CHECKPOINT_PATH=/workspace/Megatron-LM/experiments/codeparrot-small VOCAB_FILE=vocab.json MERGE_FILE=merges.txt DATA_PATH=codeparrot_content_document GPT_ARGS="--num-layers 12 --hidden-size 768 --num-attention-heads 12 --seq-length 1024 --max-position-embeddings 1024 --micro-batch-size 12 --global-batch-size 192 --lr 0.0005 --train-iters 150000 --lr-decay-iters 150000 --lr-decay-style cosine --lr-warmup-iters 2000 --weight-decay .1 --adam-beta2 .999 --fp16 --log-interval 10 --save-interval 2000 --eval-interval 200 --eval-iters 10 " TENSORBOARD_ARGS="--tensorboard-dir experiments/tensorboard" python3 -m torch.distributed.launch $DISTRIBUTED_ARGS \ pretrain_gpt.py \ --tensor-model-parallel-size 1 \ --pipeline-model-parallel-size 1 \ $GPT_ARGS \ --vocab-file $VOCAB_FILE \ --merge-file $MERGE_FILE \ --save $CHECKPOINT_PATH \ --load $CHECKPOINT_PATH \ --data-path $DATA_PATH \ $TENSORBOARD_ARGS ``` The training takes almost 12 hours in this setting. ### Convert model to `transformers` After training we want to use the model in `transformers` e.g. to evaluate it on HumanEval. You can convert it to `transformers` following [this](https://huggingface.co/nvidia/megatron-gpt2-345m) tutorial. For instance, after the training is finished you can copy the weights of the last iteration 150k and convert the `model_optim_rng.pt` file to a `pytorch_model.bin` file that is supported by `transformers`. ```bash mkdir -p nvidia/megatron-codeparrot-small sudo docker cp CONTAINER_ID:/workspace/Megatron-LM/experiments/codeparrot-small/iter_0150000/mp_rank_00/model_optim_rng.pt nvidia/megatron-codeparrot-small git clone https://github.com/huggingface/transformers.git git clone https://github.com/NVIDIA/Megatron-LM.git export PYTHONPATH=Megatron-LM python transformers/src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py nvidia/megatron-codeparrot-small/model_optim_rng.pt ``` Be careful, you will need to replace the generated vocabulary file and merges table after the conversion, with the original ones if you plan to load the tokenizer from there. ## Further Resources A detailed description of the project can be found in the chapter "Training Transformers from Scratch" in the upcoming O'Reilly book [Natural Language Processing with Transformers](https://learning.oreilly.com/library/view/natural-language-processing/9781098103231/). This example was provided by [Leandro von Werra](www.github.com/lvwerra).
huggingface/transformers/blob/main/examples/research_projects/codeparrot/README.md
!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Efficient Training on CPU This guide focuses on training large models efficiently on CPU. ## Mixed precision with IPEX IPEX is optimized for CPUs with AVX-512 or above, and functionally works for CPUs with only AVX2. So, it is expected to bring performance benefit for Intel CPU generations with AVX-512 or above while CPUs with only AVX2 (e.g., AMD CPUs or older Intel CPUs) might result in a better performance under IPEX, but not guaranteed. IPEX provides performance optimizations for CPU training with both Float32 and BFloat16. The usage of BFloat16 is the main focus of the following sections. Low precision data type BFloat16 has been natively supported on the 3rd Generation Xeon® Scalable Processors (aka Cooper Lake) with AVX512 instruction set and will be supported on the next generation of Intel® Xeon® Scalable Processors with Intel® Advanced Matrix Extensions (Intel® AMX) instruction set with further boosted performance. The Auto Mixed Precision for CPU backend has been enabled since PyTorch-1.10. At the same time, the support of Auto Mixed Precision with BFloat16 for CPU and BFloat16 optimization of operators has been massively enabled in Intel® Extension for PyTorch, and partially upstreamed to PyTorch master branch. Users can get better performance and user experience with IPEX Auto Mixed Precision. Check more detailed information for [Auto Mixed Precision](https://intel.github.io/intel-extension-for-pytorch/cpu/latest/tutorials/features/amp.html). ### IPEX installation: IPEX release is following PyTorch, to install via pip: | PyTorch Version | IPEX version | | :---------------: | :----------: | | 1.13 | 1.13.0+cpu | | 1.12 | 1.12.300+cpu | | 1.11 | 1.11.200+cpu | | 1.10 | 1.10.100+cpu | ``` pip install intel_extension_for_pytorch==<version_name> -f https://developer.intel.com/ipex-whl-stable-cpu ``` Check more approaches for [IPEX installation](https://intel.github.io/intel-extension-for-pytorch/cpu/latest/tutorials/installation.html). ### Usage in Trainer To enable auto mixed precision with IPEX in Trainer, users should add `use_ipex`, `bf16` and `no_cuda` in training command arguments. Take an example of the use cases on [Transformers question-answering](https://github.com/huggingface/transformers/tree/main/examples/pytorch/question-answering) - Training with IPEX using BF16 auto mixed precision on CPU: <pre> python run_qa.py \ --model_name_or_path bert-base-uncased \ --dataset_name squad \ --do_train \ --do_eval \ --per_device_train_batch_size 12 \ --learning_rate 3e-5 \ --num_train_epochs 2 \ --max_seq_length 384 \ --doc_stride 128 \ --output_dir /tmp/debug_squad/ \ <b>--use_ipex \</b> <b>--bf16 --no_cuda</b></pre> ### Practice example Blog: [Accelerating PyTorch Transformers with Intel Sapphire Rapids](https://huggingface.co/blog/intel-sapphire-rapids)
huggingface/transformers/blob/main/docs/source/en/perf_train_cpu.md
!--- Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> # Model training anatomy To understand performance optimization techniques that one can apply to improve efficiency of model training speed and memory utilization, it's helpful to get familiar with how GPU is utilized during training, and how compute intensity varies depending on an operation performed. Let's start by exploring a motivating example of GPU utilization and the training run of a model. For the demonstration, we'll need to install a few libraries: ```bash pip install transformers datasets accelerate nvidia-ml-py3 ``` The `nvidia-ml-py3` library allows us to monitor the memory usage of the models from within Python. You might be familiar with the `nvidia-smi` command in the terminal - this library allows to access the same information in Python directly. Then, we create some dummy data: random token IDs between 100 and 30000 and binary labels for a classifier. In total, we get 512 sequences each with length 512 and store them in a [`~datasets.Dataset`] with PyTorch format. ```py >>> import numpy as np >>> from datasets import Dataset >>> seq_len, dataset_size = 512, 512 >>> dummy_data = { ... "input_ids": np.random.randint(100, 30000, (dataset_size, seq_len)), ... "labels": np.random.randint(0, 1, (dataset_size)), ... } >>> ds = Dataset.from_dict(dummy_data) >>> ds.set_format("pt") ``` To print summary statistics for the GPU utilization and the training run with the [`Trainer`] we define two helper functions: ```py >>> from pynvml import * >>> def print_gpu_utilization(): ... nvmlInit() ... handle = nvmlDeviceGetHandleByIndex(0) ... info = nvmlDeviceGetMemoryInfo(handle) ... print(f"GPU memory occupied: {info.used//1024**2} MB.") >>> def print_summary(result): ... print(f"Time: {result.metrics['train_runtime']:.2f}") ... print(f"Samples/second: {result.metrics['train_samples_per_second']:.2f}") ... print_gpu_utilization() ``` Let's verify that we start with a free GPU memory: ```py >>> print_gpu_utilization() GPU memory occupied: 0 MB. ``` That looks good: the GPU memory is not occupied as we would expect before we load any models. If that's not the case on your machine make sure to stop all processes that are using GPU memory. However, not all free GPU memory can be used by the user. When a model is loaded to the GPU the kernels are also loaded, which can take up 1-2GB of memory. To see how much it is we load a tiny tensor into the GPU which triggers the kernels to be loaded as well. ```py >>> import torch >>> torch.ones((1, 1)).to("cuda") >>> print_gpu_utilization() GPU memory occupied: 1343 MB. ``` We see that the kernels alone take up 1.3GB of GPU memory. Now let's see how much space the model uses. ## Load Model First, we load the `bert-large-uncased` model. We load the model weights directly to the GPU so that we can check how much space just the weights use. ```py >>> from transformers import AutoModelForSequenceClassification >>> model = AutoModelForSequenceClassification.from_pretrained("bert-large-uncased").to("cuda") >>> print_gpu_utilization() GPU memory occupied: 2631 MB. ``` We can see that the model weights alone take up 1.3 GB of GPU memory. The exact number depends on the specific GPU you are using. Note that on newer GPUs a model can sometimes take up more space since the weights are loaded in an optimized fashion that speeds up the usage of the model. Now we can also quickly check if we get the same result as with `nvidia-smi` CLI: ```bash nvidia-smi ``` ```bash Tue Jan 11 08:58:05 2022 +-----------------------------------------------------------------------------+ | NVIDIA-SMI 460.91.03 Driver Version: 460.91.03 CUDA Version: 11.2 | |-------------------------------+----------------------+----------------------+ | GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC | | Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. | | | | MIG M. | |===============================+======================+======================| | 0 Tesla V100-SXM2... On | 00000000:00:04.0 Off | 0 | | N/A 37C P0 39W / 300W | 2631MiB / 16160MiB | 0% Default | | | | N/A | +-------------------------------+----------------------+----------------------+ +-----------------------------------------------------------------------------+ | Processes: | | GPU GI CI PID Type Process name GPU Memory | | ID ID Usage | |=============================================================================| | 0 N/A N/A 3721 C ...nvs/codeparrot/bin/python 2629MiB | +-----------------------------------------------------------------------------+ ``` We get the same number as before and you can also see that we are using a V100 GPU with 16GB of memory. So now we can start training the model and see how the GPU memory consumption changes. First, we set up a few standard training arguments: ```py default_args = { "output_dir": "tmp", "evaluation_strategy": "steps", "num_train_epochs": 1, "log_level": "error", "report_to": "none", } ``` <Tip> If you plan to run multiple experiments, in order to properly clear the memory between experiments, restart the Python kernel between experiments. </Tip> ## Memory utilization at vanilla training Let's use the [`Trainer`] and train the model without using any GPU performance optimization techniques and a batch size of 4: ```py >>> from transformers import TrainingArguments, Trainer, logging >>> logging.set_verbosity_error() >>> training_args = TrainingArguments(per_device_train_batch_size=4, **default_args) >>> trainer = Trainer(model=model, args=training_args, train_dataset=ds) >>> result = trainer.train() >>> print_summary(result) ``` ``` Time: 57.82 Samples/second: 8.86 GPU memory occupied: 14949 MB. ``` We see that already a relatively small batch size almost fills up our GPU's entire memory. However, a larger batch size can often result in faster model convergence or better end performance. So ideally we want to tune the batch size to our model's needs and not to the GPU limitations. What's interesting is that we use much more memory than the size of the model. To understand a bit better why this is the case let's have a look at a model's operations and memory needs. ## Anatomy of Model's Operations Transformers architecture includes 3 main groups of operations grouped below by compute-intensity. 1. **Tensor Contractions** Linear layers and components of Multi-Head Attention all do batched **matrix-matrix multiplications**. These operations are the most compute-intensive part of training a transformer. 2. **Statistical Normalizations** Softmax and layer normalization are less compute-intensive than tensor contractions, and involve one or more **reduction operations**, the result of which is then applied via a map. 3. **Element-wise Operators** These are the remaining operators: **biases, dropout, activations, and residual connections**. These are the least compute-intensive operations. This knowledge can be helpful to know when analyzing performance bottlenecks. This summary is derived from [Data Movement Is All You Need: A Case Study on Optimizing Transformers 2020](https://arxiv.org/abs/2007.00072) ## Anatomy of Model's Memory We've seen that training the model uses much more memory than just putting the model on the GPU. This is because there are many components during training that use GPU memory. The components on GPU memory are the following: 1. model weights 2. optimizer states 3. gradients 4. forward activations saved for gradient computation 5. temporary buffers 6. functionality-specific memory A typical model trained in mixed precision with AdamW requires 18 bytes per model parameter plus activation memory. For inference there are no optimizer states and gradients, so we can subtract those. And thus we end up with 6 bytes per model parameter for mixed precision inference, plus activation memory. Let's look at the details. **Model Weights:** - 4 bytes * number of parameters for fp32 training - 6 bytes * number of parameters for mixed precision training (maintains a model in fp32 and one in fp16 in memory) **Optimizer States:** - 8 bytes * number of parameters for normal AdamW (maintains 2 states) - 2 bytes * number of parameters for 8-bit AdamW optimizers like [bitsandbytes](https://github.com/TimDettmers/bitsandbytes) - 4 bytes * number of parameters for optimizers like SGD with momentum (maintains only 1 state) **Gradients** - 4 bytes * number of parameters for either fp32 or mixed precision training (gradients are always kept in fp32) **Forward Activations** - size depends on many factors, the key ones being sequence length, hidden size and batch size. There are the input and output that are being passed and returned by the forward and the backward functions and the forward activations saved for gradient computation. **Temporary Memory** Additionally, there are all kinds of temporary variables which get released once the calculation is done, but in the moment these could require additional memory and could push to OOM. Therefore, when coding it's crucial to think strategically about such temporary variables and sometimes to explicitly free those as soon as they are no longer needed. **Functionality-specific memory** Then, your software could have special memory needs. For example, when generating text using beam search, the software needs to maintain multiple copies of inputs and outputs. **`forward` vs `backward` Execution Speed** For convolutions and linear layers there are 2x flops in the backward compared to the forward, which generally translates into ~2x slower (sometimes more, because sizes in the backward tend to be more awkward). Activations are usually bandwidth-limited, and it’s typical for an activation to have to read more data in the backward than in the forward (e.g. activation forward reads once, writes once, activation backward reads twice, gradOutput and output of the forward, and writes once, gradInput). As you can see, there are potentially a few places where we could save GPU memory or speed up operations. Now that you understand what affects GPU utilization and computation speed, refer to the [Methods and tools for efficient training on a single GPU](perf_train_gpu_one) documentation page to learn about performance optimization techniques.
huggingface/transformers/blob/main/docs/source/en/model_memory_anatomy.md
!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Text classification [[open-in-colab]] <Youtube id="leNG9fN9FQU"/> Text classification is a common NLP task that assigns a label or class to text. Some of the largest companies run text classification in production for a wide range of practical applications. One of the most popular forms of text classification is sentiment analysis, which assigns a label like 🙂 positive, 🙁 negative, or 😐 neutral to a sequence of text. This guide will show you how to: 1. Finetune [DistilBERT](https://huggingface.co/distilbert-base-uncased) on the [IMDb](https://huggingface.co/datasets/imdb) dataset to determine whether a movie review is positive or negative. 2. Use your finetuned model for inference. <Tip> The task illustrated in this tutorial is supported by the following model architectures: <!--This tip is automatically generated by `make fix-copies`, do not fill manually!--> [ALBERT](../model_doc/albert), [BART](../model_doc/bart), [BERT](../model_doc/bert), [BigBird](../model_doc/big_bird), [BigBird-Pegasus](../model_doc/bigbird_pegasus), [BioGpt](../model_doc/biogpt), [BLOOM](../model_doc/bloom), [CamemBERT](../model_doc/camembert), [CANINE](../model_doc/canine), [CodeLlama](../model_doc/code_llama), [ConvBERT](../model_doc/convbert), [CTRL](../model_doc/ctrl), [Data2VecText](../model_doc/data2vec-text), [DeBERTa](../model_doc/deberta), [DeBERTa-v2](../model_doc/deberta-v2), [DistilBERT](../model_doc/distilbert), [ELECTRA](../model_doc/electra), [ERNIE](../model_doc/ernie), [ErnieM](../model_doc/ernie_m), [ESM](../model_doc/esm), [Falcon](../model_doc/falcon), [FlauBERT](../model_doc/flaubert), [FNet](../model_doc/fnet), [Funnel Transformer](../model_doc/funnel), [GPT-Sw3](../model_doc/gpt-sw3), [OpenAI GPT-2](../model_doc/gpt2), [GPTBigCode](../model_doc/gpt_bigcode), [GPT Neo](../model_doc/gpt_neo), [GPT NeoX](../model_doc/gpt_neox), [GPT-J](../model_doc/gptj), [I-BERT](../model_doc/ibert), [LayoutLM](../model_doc/layoutlm), [LayoutLMv2](../model_doc/layoutlmv2), [LayoutLMv3](../model_doc/layoutlmv3), [LED](../model_doc/led), [LiLT](../model_doc/lilt), [LLaMA](../model_doc/llama), [Longformer](../model_doc/longformer), [LUKE](../model_doc/luke), [MarkupLM](../model_doc/markuplm), [mBART](../model_doc/mbart), [MEGA](../model_doc/mega), [Megatron-BERT](../model_doc/megatron-bert), [Mistral](../model_doc/mistral), [Mixtral](../model_doc/mixtral), [MobileBERT](../model_doc/mobilebert), [MPNet](../model_doc/mpnet), [MPT](../model_doc/mpt), [MRA](../model_doc/mra), [MT5](../model_doc/mt5), [MVP](../model_doc/mvp), [Nezha](../model_doc/nezha), [Nyströmformer](../model_doc/nystromformer), [OpenLlama](../model_doc/open-llama), [OpenAI GPT](../model_doc/openai-gpt), [OPT](../model_doc/opt), [Perceiver](../model_doc/perceiver), [Persimmon](../model_doc/persimmon), [Phi](../model_doc/phi), [PLBart](../model_doc/plbart), [QDQBert](../model_doc/qdqbert), [Reformer](../model_doc/reformer), [RemBERT](../model_doc/rembert), [RoBERTa](../model_doc/roberta), [RoBERTa-PreLayerNorm](../model_doc/roberta-prelayernorm), [RoCBert](../model_doc/roc_bert), [RoFormer](../model_doc/roformer), [SqueezeBERT](../model_doc/squeezebert), [T5](../model_doc/t5), [TAPAS](../model_doc/tapas), [Transformer-XL](../model_doc/transfo-xl), [UMT5](../model_doc/umt5), [XLM](../model_doc/xlm), [XLM-RoBERTa](../model_doc/xlm-roberta), [XLM-RoBERTa-XL](../model_doc/xlm-roberta-xl), [XLNet](../model_doc/xlnet), [X-MOD](../model_doc/xmod), [YOSO](../model_doc/yoso) <!--End of the generated tip--> </Tip> Before you begin, make sure you have all the necessary libraries installed: ```bash pip install transformers datasets evaluate accelerate ``` We encourage you to login to your Hugging Face account so you can upload and share your model with the community. When prompted, enter your token to login: ```py >>> from huggingface_hub import notebook_login >>> notebook_login() ``` ## Load IMDb dataset Start by loading the IMDb dataset from the 🤗 Datasets library: ```py >>> from datasets import load_dataset >>> imdb = load_dataset("imdb") ``` Then take a look at an example: ```py >>> imdb["test"][0] { "label": 0, "text": "I love sci-fi and am willing to put up with a lot. Sci-fi movies/TV are usually underfunded, under-appreciated and misunderstood. I tried to like this, I really did, but it is to good TV sci-fi as Babylon 5 is to Star Trek (the original). Silly prosthetics, cheap cardboard sets, stilted dialogues, CG that doesn't match the background, and painfully one-dimensional characters cannot be overcome with a 'sci-fi' setting. (I'm sure there are those of you out there who think Babylon 5 is good sci-fi TV. It's not. It's clichéd and uninspiring.) While US viewers might like emotion and character development, sci-fi is a genre that does not take itself seriously (cf. Star Trek). It may treat important issues, yet not as a serious philosophy. It's really difficult to care about the characters here as they are not simply foolish, just missing a spark of life. Their actions and reactions are wooden and predictable, often painful to watch. The makers of Earth KNOW it's rubbish as they have to always say \"Gene Roddenberry's Earth...\" otherwise people would not continue watching. Roddenberry's ashes must be turning in their orbit as this dull, cheap, poorly edited (watching it without advert breaks really brings this home) trudging Trabant of a show lumbers into space. Spoiler. So, kill off a main character. And then bring him back as another actor. Jeeez! Dallas all over again.", } ``` There are two fields in this dataset: - `text`: the movie review text. - `label`: a value that is either `0` for a negative review or `1` for a positive review. ## Preprocess The next step is to load a DistilBERT tokenizer to preprocess the `text` field: ```py >>> from transformers import AutoTokenizer >>> tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased") ``` Create a preprocessing function to tokenize `text` and truncate sequences to be no longer than DistilBERT's maximum input length: ```py >>> def preprocess_function(examples): ... return tokenizer(examples["text"], truncation=True) ``` To apply the preprocessing function over the entire dataset, use 🤗 Datasets [`~datasets.Dataset.map`] function. You can speed up `map` by setting `batched=True` to process multiple elements of the dataset at once: ```py tokenized_imdb = imdb.map(preprocess_function, batched=True) ``` Now create a batch of examples using [`DataCollatorWithPadding`]. It's more efficient to *dynamically pad* the sentences to the longest length in a batch during collation, instead of padding the whole dataset to the maximum length. <frameworkcontent> <pt> ```py >>> from transformers import DataCollatorWithPadding >>> data_collator = DataCollatorWithPadding(tokenizer=tokenizer) ``` </pt> <tf> ```py >>> from transformers import DataCollatorWithPadding >>> data_collator = DataCollatorWithPadding(tokenizer=tokenizer, return_tensors="tf") ``` </tf> </frameworkcontent> ## Evaluate Including a metric during training is often helpful for evaluating your model's performance. You can quickly load a evaluation method with the 🤗 [Evaluate](https://huggingface.co/docs/evaluate/index) library. For this task, load the [accuracy](https://huggingface.co/spaces/evaluate-metric/accuracy) metric (see the 🤗 Evaluate [quick tour](https://huggingface.co/docs/evaluate/a_quick_tour) to learn more about how to load and compute a metric): ```py >>> import evaluate >>> accuracy = evaluate.load("accuracy") ``` Then create a function that passes your predictions and labels to [`~evaluate.EvaluationModule.compute`] to calculate the accuracy: ```py >>> import numpy as np >>> def compute_metrics(eval_pred): ... predictions, labels = eval_pred ... predictions = np.argmax(predictions, axis=1) ... return accuracy.compute(predictions=predictions, references=labels) ``` Your `compute_metrics` function is ready to go now, and you'll return to it when you setup your training. ## Train Before you start training your model, create a map of the expected ids to their labels with `id2label` and `label2id`: ```py >>> id2label = {0: "NEGATIVE", 1: "POSITIVE"} >>> label2id = {"NEGATIVE": 0, "POSITIVE": 1} ``` <frameworkcontent> <pt> <Tip> If you aren't familiar with finetuning a model with the [`Trainer`], take a look at the basic tutorial [here](../training#train-with-pytorch-trainer)! </Tip> You're ready to start training your model now! Load DistilBERT with [`AutoModelForSequenceClassification`] along with the number of expected labels, and the label mappings: ```py >>> from transformers import AutoModelForSequenceClassification, TrainingArguments, Trainer >>> model = AutoModelForSequenceClassification.from_pretrained( ... "distilbert-base-uncased", num_labels=2, id2label=id2label, label2id=label2id ... ) ``` At this point, only three steps remain: 1. Define your training hyperparameters in [`TrainingArguments`]. The only required parameter is `output_dir` which specifies where to save your model. You'll push this model to the Hub by setting `push_to_hub=True` (you need to be signed in to Hugging Face to upload your model). At the end of each epoch, the [`Trainer`] will evaluate the accuracy and save the training checkpoint. 2. Pass the training arguments to [`Trainer`] along with the model, dataset, tokenizer, data collator, and `compute_metrics` function. 3. Call [`~Trainer.train`] to finetune your model. ```py >>> training_args = TrainingArguments( ... output_dir="my_awesome_model", ... learning_rate=2e-5, ... per_device_train_batch_size=16, ... per_device_eval_batch_size=16, ... num_train_epochs=2, ... weight_decay=0.01, ... evaluation_strategy="epoch", ... save_strategy="epoch", ... load_best_model_at_end=True, ... push_to_hub=True, ... ) >>> trainer = Trainer( ... model=model, ... args=training_args, ... train_dataset=tokenized_imdb["train"], ... eval_dataset=tokenized_imdb["test"], ... tokenizer=tokenizer, ... data_collator=data_collator, ... compute_metrics=compute_metrics, ... ) >>> trainer.train() ``` <Tip> [`Trainer`] applies dynamic padding by default when you pass `tokenizer` to it. In this case, you don't need to specify a data collator explicitly. </Tip> Once training is completed, share your model to the Hub with the [`~transformers.Trainer.push_to_hub`] method so everyone can use your model: ```py >>> trainer.push_to_hub() ``` </pt> <tf> <Tip> If you aren't familiar with finetuning a model with Keras, take a look at the basic tutorial [here](../training#train-a-tensorflow-model-with-keras)! </Tip> To finetune a model in TensorFlow, start by setting up an optimizer function, learning rate schedule, and some training hyperparameters: ```py >>> from transformers import create_optimizer >>> import tensorflow as tf >>> batch_size = 16 >>> num_epochs = 5 >>> batches_per_epoch = len(tokenized_imdb["train"]) // batch_size >>> total_train_steps = int(batches_per_epoch * num_epochs) >>> optimizer, schedule = create_optimizer(init_lr=2e-5, num_warmup_steps=0, num_train_steps=total_train_steps) ``` Then you can load DistilBERT with [`TFAutoModelForSequenceClassification`] along with the number of expected labels, and the label mappings: ```py >>> from transformers import TFAutoModelForSequenceClassification >>> model = TFAutoModelForSequenceClassification.from_pretrained( ... "distilbert-base-uncased", num_labels=2, id2label=id2label, label2id=label2id ... ) ``` Convert your datasets to the `tf.data.Dataset` format with [`~transformers.TFPreTrainedModel.prepare_tf_dataset`]: ```py >>> tf_train_set = model.prepare_tf_dataset( ... tokenized_imdb["train"], ... shuffle=True, ... batch_size=16, ... collate_fn=data_collator, ... ) >>> tf_validation_set = model.prepare_tf_dataset( ... tokenized_imdb["test"], ... shuffle=False, ... batch_size=16, ... collate_fn=data_collator, ... ) ``` Configure the model for training with [`compile`](https://keras.io/api/models/model_training_apis/#compile-method). Note that Transformers models all have a default task-relevant loss function, so you don't need to specify one unless you want to: ```py >>> import tensorflow as tf >>> model.compile(optimizer=optimizer) # No loss argument! ``` The last two things to setup before you start training is to compute the accuracy from the predictions, and provide a way to push your model to the Hub. Both are done by using [Keras callbacks](../main_classes/keras_callbacks). Pass your `compute_metrics` function to [`~transformers.KerasMetricCallback`]: ```py >>> from transformers.keras_callbacks import KerasMetricCallback >>> metric_callback = KerasMetricCallback(metric_fn=compute_metrics, eval_dataset=tf_validation_set) ``` Specify where to push your model and tokenizer in the [`~transformers.PushToHubCallback`]: ```py >>> from transformers.keras_callbacks import PushToHubCallback >>> push_to_hub_callback = PushToHubCallback( ... output_dir="my_awesome_model", ... tokenizer=tokenizer, ... ) ``` Then bundle your callbacks together: ```py >>> callbacks = [metric_callback, push_to_hub_callback] ``` Finally, you're ready to start training your model! Call [`fit`](https://keras.io/api/models/model_training_apis/#fit-method) with your training and validation datasets, the number of epochs, and your callbacks to finetune the model: ```py >>> model.fit(x=tf_train_set, validation_data=tf_validation_set, epochs=3, callbacks=callbacks) ``` Once training is completed, your model is automatically uploaded to the Hub so everyone can use it! </tf> </frameworkcontent> <Tip> For a more in-depth example of how to finetune a model for text classification, take a look at the corresponding [PyTorch notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/text_classification.ipynb) or [TensorFlow notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/text_classification-tf.ipynb). </Tip> ## Inference Great, now that you've finetuned a model, you can use it for inference! Grab some text you'd like to run inference on: ```py >>> text = "This was a masterpiece. Not completely faithful to the books, but enthralling from beginning to end. Might be my favorite of the three." ``` The simplest way to try out your finetuned model for inference is to use it in a [`pipeline`]. Instantiate a `pipeline` for sentiment analysis with your model, and pass your text to it: ```py >>> from transformers import pipeline >>> classifier = pipeline("sentiment-analysis", model="stevhliu/my_awesome_model") >>> classifier(text) [{'label': 'POSITIVE', 'score': 0.9994940757751465}] ``` You can also manually replicate the results of the `pipeline` if you'd like: <frameworkcontent> <pt> Tokenize the text and return PyTorch tensors: ```py >>> from transformers import AutoTokenizer >>> tokenizer = AutoTokenizer.from_pretrained("stevhliu/my_awesome_model") >>> inputs = tokenizer(text, return_tensors="pt") ``` Pass your inputs to the model and return the `logits`: ```py >>> from transformers import AutoModelForSequenceClassification >>> model = AutoModelForSequenceClassification.from_pretrained("stevhliu/my_awesome_model") >>> with torch.no_grad(): ... logits = model(**inputs).logits ``` Get the class with the highest probability, and use the model's `id2label` mapping to convert it to a text label: ```py >>> predicted_class_id = logits.argmax().item() >>> model.config.id2label[predicted_class_id] 'POSITIVE' ``` </pt> <tf> Tokenize the text and return TensorFlow tensors: ```py >>> from transformers import AutoTokenizer >>> tokenizer = AutoTokenizer.from_pretrained("stevhliu/my_awesome_model") >>> inputs = tokenizer(text, return_tensors="tf") ``` Pass your inputs to the model and return the `logits`: ```py >>> from transformers import TFAutoModelForSequenceClassification >>> model = TFAutoModelForSequenceClassification.from_pretrained("stevhliu/my_awesome_model") >>> logits = model(**inputs).logits ``` Get the class with the highest probability, and use the model's `id2label` mapping to convert it to a text label: ```py >>> predicted_class_id = int(tf.math.argmax(logits, axis=-1)[0]) >>> model.config.id2label[predicted_class_id] 'POSITIVE' ``` </tf> </frameworkcontent>
huggingface/transformers/blob/main/docs/source/en/tasks/sequence_classification.md
!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # MEGA ## Overview The MEGA model was proposed in [Mega: Moving Average Equipped Gated Attention](https://arxiv.org/abs/2209.10655) by Xuezhe Ma, Chunting Zhou, Xiang Kong, Junxian He, Liangke Gui, Graham Neubig, Jonathan May, and Luke Zettlemoyer. MEGA proposes a new approach to self-attention with each encoder layer having a multi-headed exponential moving average in addition to a single head of standard dot-product attention, giving the attention mechanism stronger positional biases. This allows MEGA to perform competitively to Transformers on standard benchmarks including LRA while also having significantly fewer parameters. MEGA's compute efficiency allows it to scale to very long sequences, making it an attractive option for long-document NLP tasks. The abstract from the paper is the following: *The design choices in the Transformer attention mechanism, including weak inductive bias and quadratic computational complexity, have limited its application for modeling long sequences. In this paper, we introduce Mega, a simple, theoretically grounded, single-head gated attention mechanism equipped with (exponential) moving average to incorporate inductive bias of position-aware local dependencies into the position-agnostic attention mechanism. We further propose a variant of Mega that offers linear time and space complexity yet yields only minimal quality loss, by efficiently splitting the whole sequence into multiple chunks with fixed length. Extensive experiments on a wide range of sequence modeling benchmarks, including the Long Range Arena, neural machine translation, auto-regressive language modeling, and image and speech classification, show that Mega achieves significant improvements over other sequence models, including variants of Transformers and recent state space models. * This model was contributed by [mnaylor](https://huggingface.co/mnaylor). The original code can be found [here](https://github.com/facebookresearch/mega). ## Usage tips - MEGA can perform quite well with relatively few parameters. See Appendix D in the MEGA paper for examples of architectural specs which perform well in various settings. If using MEGA as a decoder, be sure to set `bidirectional=False` to avoid errors with default bidirectional. - Mega-chunk is a variant of mega that reduces time and spaces complexity from quadratic to linear. Utilize chunking with MegaConfig.use_chunking and control chunk size with MegaConfig.chunk_size ## Implementation Notes - The original implementation of MEGA had an inconsistent expectation of attention masks for padding and causal self-attention between the softmax attention and Laplace/squared ReLU method. This implementation addresses that inconsistency. - The original implementation did not include token type embeddings; this implementation adds support for these, with the option controlled by MegaConfig.add_token_type_embeddings ## MegaConfig [[autodoc]] MegaConfig ## MegaModel [[autodoc]] MegaModel - forward ## MegaForCausalLM [[autodoc]] MegaForCausalLM - forward ## MegaForMaskedLM [[autodoc]] MegaForMaskedLM - forward ## MegaForSequenceClassification [[autodoc]] MegaForSequenceClassification - forward ## MegaForMultipleChoice [[autodoc]] MegaForMultipleChoice - forward ## MegaForTokenClassification [[autodoc]] MegaForTokenClassification - forward ## MegaForQuestionAnswering [[autodoc]] MegaForQuestionAnswering - forward
huggingface/transformers/blob/main/docs/source/en/model_doc/mega.md
!--Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # XLM-ProphetNet <div class="flex flex-wrap space-x-1"> <a href="https://huggingface.co/models?filter=xprophetnet"> <img alt="Models" src="https://img.shields.io/badge/All_model_pages-xprophetnet-blueviolet"> </a> <a href="https://huggingface.co/spaces/docs-demos/xprophetnet-large-wiki100-cased-xglue-ntg"> <img alt="Spaces" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue"> </a> </div> **DISCLAIMER:** If you see something strange, file a [Github Issue](https://github.com/huggingface/transformers/issues/new?assignees=&labels=&template=bug-report.md&title) and assign @patrickvonplaten ## Overview The XLM-ProphetNet model was proposed in [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training,](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang, Ming Zhou on 13 Jan, 2020. XLM-ProphetNet is an encoder-decoder model and can predict n-future tokens for "ngram" language modeling instead of just the next token. Its architecture is identical to ProhpetNet, but the model was trained on the multi-lingual "wiki100" Wikipedia dump. XLM-ProphetNet's model architecture and pretraining objective is same as ProphetNet, but XLM-ProphetNet was pre-trained on the cross-lingual dataset XGLUE. The abstract from the paper is the following: *In this paper, we present a new sequence-to-sequence pretraining model called ProphetNet, which introduces a novel self-supervised objective named future n-gram prediction and the proposed n-stream self-attention mechanism. Instead of the optimization of one-step ahead prediction in traditional sequence-to-sequence model, the ProphetNet is optimized by n-step ahead prediction which predicts the next n tokens simultaneously based on previous context tokens at each time step. The future n-gram prediction explicitly encourages the model to plan for the future tokens and prevent overfitting on strong local correlations. We pre-train ProphetNet using a base scale dataset (16GB) and a large scale dataset (160GB) respectively. Then we conduct experiments on CNN/DailyMail, Gigaword, and SQuAD 1.1 benchmarks for abstractive summarization and question generation tasks. Experimental results show that ProphetNet achieves new state-of-the-art results on all these datasets compared to the models using the same scale pretraining corpus.* The Authors' code can be found [here](https://github.com/microsoft/ProphetNet). ## Resources - [Causal language modeling task guide](../tasks/language_modeling) - [Translation task guide](../tasks/translation) - [Summarization task guide](../tasks/summarization) ## XLMProphetNetConfig [[autodoc]] XLMProphetNetConfig ## XLMProphetNetTokenizer [[autodoc]] XLMProphetNetTokenizer ## XLMProphetNetModel [[autodoc]] XLMProphetNetModel ## XLMProphetNetEncoder [[autodoc]] XLMProphetNetEncoder ## XLMProphetNetDecoder [[autodoc]] XLMProphetNetDecoder ## XLMProphetNetForConditionalGeneration [[autodoc]] XLMProphetNetForConditionalGeneration ## XLMProphetNetForCausalLM [[autodoc]] XLMProphetNetForCausalLM
huggingface/transformers/blob/main/docs/source/en/model_doc/xlm-prophetnet.md
!--Copyright 2022 NVIDIA and The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # GroupViT ## Overview The GroupViT model was proposed in [GroupViT: Semantic Segmentation Emerges from Text Supervision](https://arxiv.org/abs/2202.11094) by Jiarui Xu, Shalini De Mello, Sifei Liu, Wonmin Byeon, Thomas Breuel, Jan Kautz, Xiaolong Wang. Inspired by [CLIP](clip), GroupViT is a vision-language model that can perform zero-shot semantic segmentation on any given vocabulary categories. The abstract from the paper is the following: *Grouping and recognition are important components of visual scene understanding, e.g., for object detection and semantic segmentation. With end-to-end deep learning systems, grouping of image regions usually happens implicitly via top-down supervision from pixel-level recognition labels. Instead, in this paper, we propose to bring back the grouping mechanism into deep networks, which allows semantic segments to emerge automatically with only text supervision. We propose a hierarchical Grouping Vision Transformer (GroupViT), which goes beyond the regular grid structure representation and learns to group image regions into progressively larger arbitrary-shaped segments. We train GroupViT jointly with a text encoder on a large-scale image-text dataset via contrastive losses. With only text supervision and without any pixel-level annotations, GroupViT learns to group together semantic regions and successfully transfers to the task of semantic segmentation in a zero-shot manner, i.e., without any further fine-tuning. It achieves a zero-shot accuracy of 52.3% mIoU on the PASCAL VOC 2012 and 22.4% mIoU on PASCAL Context datasets, and performs competitively to state-of-the-art transfer-learning methods requiring greater levels of supervision.* This model was contributed by [xvjiarui](https://huggingface.co/xvjiarui). The TensorFlow version was contributed by [ariG23498](https://huggingface.co/ariG23498) with the help of [Yih-Dar SHIEH](https://huggingface.co/ydshieh), [Amy Roberts](https://huggingface.co/amyeroberts), and [Joao Gante](https://huggingface.co/joaogante). The original code can be found [here](https://github.com/NVlabs/GroupViT). ## Usage tips - You may specify `output_segmentation=True` in the forward of `GroupViTModel` to get the segmentation logits of input texts. ## Resources A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with GroupViT. - The quickest way to get started with GroupViT is by checking the [example notebooks](https://github.com/xvjiarui/GroupViT/blob/main/demo/GroupViT_hf_inference_notebook.ipynb) (which showcase zero-shot segmentation inference). - One can also check out the [HuggingFace Spaces demo](https://huggingface.co/spaces/xvjiarui/GroupViT) to play with GroupViT. ## GroupViTConfig [[autodoc]] GroupViTConfig - from_text_vision_configs ## GroupViTTextConfig [[autodoc]] GroupViTTextConfig ## GroupViTVisionConfig [[autodoc]] GroupViTVisionConfig <frameworkcontent> <pt> ## GroupViTModel [[autodoc]] GroupViTModel - forward - get_text_features - get_image_features ## GroupViTTextModel [[autodoc]] GroupViTTextModel - forward ## GroupViTVisionModel [[autodoc]] GroupViTVisionModel - forward </pt> <tf> ## TFGroupViTModel [[autodoc]] TFGroupViTModel - call - get_text_features - get_image_features ## TFGroupViTTextModel [[autodoc]] TFGroupViTTextModel - call ## TFGroupViTVisionModel [[autodoc]] TFGroupViTVisionModel - call </tf> </frameworkcontent>
huggingface/transformers/blob/main/docs/source/en/model_doc/groupvit.md
!--- Copyright 2021 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> # Image Classification training examples The following example showcases how to train/fine-tune `ViT` for image-classification using the JAX/Flax backend. JAX/Flax allows you to trace pure functions and compile them into efficient, fused accelerator code on both GPU and TPU. Models written in JAX/Flax are **immutable** and updated in a purely functional way which enables simple and efficient model parallelism. In this example we will train/fine-tune the model on the [imagenette](https://github.com/fastai/imagenette) dataset. ## Prepare the dataset We will use the [imagenette](https://github.com/fastai/imagenette) dataset to train/fine-tune our model. Imagenette is a subset of 10 easily classified classes from Imagenet (tench, English springer, cassette player, chain saw, church, French horn, garbage truck, gas pump, golf ball, parachute). ### Download and extract the data. ```bash wget https://s3.amazonaws.com/fast-ai-imageclas/imagenette2.tgz tar -xvzf imagenette2.tgz ``` This will create a `imagenette2` dir with two subdirectories `train` and `val` each with multiple subdirectories per class. The training script expects the following directory structure ```bash root/dog/xxx.png root/dog/xxy.png root/dog/[...]/xxz.png root/cat/123.png root/cat/nsdf3.png root/cat/[...]/asd932_.png ``` ## Train the model Next we can run the example script to fine-tune the model: ```bash python run_image_classification.py \ --output_dir ./vit-base-patch16-imagenette \ --model_name_or_path google/vit-base-patch16-224-in21k \ --train_dir="imagenette2/train" \ --validation_dir="imagenette2/val" \ --num_train_epochs 5 \ --learning_rate 1e-3 \ --per_device_train_batch_size 128 --per_device_eval_batch_size 128 \ --overwrite_output_dir \ --preprocessing_num_workers 32 \ --push_to_hub ``` This should finish in ~7mins with 99% validation accuracy.
huggingface/transformers/blob/main/examples/flax/vision/README.md
!--Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Models The base classes [`PreTrainedModel`], [`TFPreTrainedModel`], and [`FlaxPreTrainedModel`] implement the common methods for loading/saving a model either from a local file or directory, or from a pretrained model configuration provided by the library (downloaded from HuggingFace's AWS S3 repository). [`PreTrainedModel`] and [`TFPreTrainedModel`] also implement a few methods which are common among all the models to: - resize the input token embeddings when new tokens are added to the vocabulary - prune the attention heads of the model. The other methods that are common to each model are defined in [`~modeling_utils.ModuleUtilsMixin`] (for the PyTorch models) and [`~modeling_tf_utils.TFModuleUtilsMixin`] (for the TensorFlow models) or for text generation, [`~generation.GenerationMixin`] (for the PyTorch models), [`~generation.TFGenerationMixin`] (for the TensorFlow models) and [`~generation.FlaxGenerationMixin`] (for the Flax/JAX models). ## PreTrainedModel [[autodoc]] PreTrainedModel - push_to_hub - all <a id='from_pretrained-torch-dtype'></a> ### Large model loading In Transformers 4.20.0, the [`~PreTrainedModel.from_pretrained`] method has been reworked to accommodate large models using [Accelerate](https://huggingface.co/docs/accelerate/big_modeling). This requires Accelerate >= 0.9.0 and PyTorch >= 1.9.0. Instead of creating the full model, then loading the pretrained weights inside it (which takes twice the size of the model in RAM, one for the randomly initialized model, one for the weights), there is an option to create the model as an empty shell, then only materialize its parameters when the pretrained weights are loaded. This option can be activated with `low_cpu_mem_usage=True`. The model is first created on the Meta device (with empty weights) and the state dict is then loaded inside it (shard by shard in the case of a sharded checkpoint). This way the maximum RAM used is the full size of the model only. ```py from transformers import AutoModelForSeq2SeqLM t0pp = AutoModelForSeq2SeqLM.from_pretrained("bigscience/T0pp", low_cpu_mem_usage=True) ``` Moreover, you can directly place the model on different devices if it doesn't fully fit in RAM (only works for inference for now). With `device_map="auto"`, Accelerate will determine where to put each layer to maximize the use of your fastest devices (GPUs) and offload the rest on the CPU, or even the hard drive if you don't have enough GPU RAM (or CPU RAM). Even if the model is split across several devices, it will run as you would normally expect. When passing a `device_map`, `low_cpu_mem_usage` is automatically set to `True`, so you don't need to specify it: ```py from transformers import AutoModelForSeq2SeqLM t0pp = AutoModelForSeq2SeqLM.from_pretrained("bigscience/T0pp", device_map="auto") ``` You can inspect how the model was split across devices by looking at its `hf_device_map` attribute: ```py t0pp.hf_device_map ``` ```python out {'shared': 0, 'decoder.embed_tokens': 0, 'encoder': 0, 'decoder.block.0': 0, 'decoder.block.1': 1, 'decoder.block.2': 1, 'decoder.block.3': 1, 'decoder.block.4': 1, 'decoder.block.5': 1, 'decoder.block.6': 1, 'decoder.block.7': 1, 'decoder.block.8': 1, 'decoder.block.9': 1, 'decoder.block.10': 1, 'decoder.block.11': 1, 'decoder.block.12': 1, 'decoder.block.13': 1, 'decoder.block.14': 1, 'decoder.block.15': 1, 'decoder.block.16': 1, 'decoder.block.17': 1, 'decoder.block.18': 1, 'decoder.block.19': 1, 'decoder.block.20': 1, 'decoder.block.21': 1, 'decoder.block.22': 'cpu', 'decoder.block.23': 'cpu', 'decoder.final_layer_norm': 'cpu', 'decoder.dropout': 'cpu', 'lm_head': 'cpu'} ``` You can also write your own device map following the same format (a dictionary layer name to device). It should map all parameters of the model to a given device, but you don't have to detail where all the submodules of one layer go if that layer is entirely on the same device. For instance, the following device map would work properly for T0pp (as long as you have the GPU memory): ```python device_map = {"shared": 0, "encoder": 0, "decoder": 1, "lm_head": 1} ``` Another way to minimize the memory impact of your model is to instantiate it at a lower precision dtype (like `torch.float16`) or use direct quantization techniques as described below. ### Model Instantiation dtype Under Pytorch a model normally gets instantiated with `torch.float32` format. This can be an issue if one tries to load a model whose weights are in fp16, since it'd require twice as much memory. To overcome this limitation, you can either explicitly pass the desired `dtype` using `torch_dtype` argument: ```python model = T5ForConditionalGeneration.from_pretrained("t5", torch_dtype=torch.float16) ``` or, if you want the model to always load in the most optimal memory pattern, you can use the special value `"auto"`, and then `dtype` will be automatically derived from the model's weights: ```python model = T5ForConditionalGeneration.from_pretrained("t5", torch_dtype="auto") ``` Models instantiated from scratch can also be told which `dtype` to use with: ```python config = T5Config.from_pretrained("t5") model = AutoModel.from_config(config) ``` Due to Pytorch design, this functionality is only available for floating dtypes. ## ModuleUtilsMixin [[autodoc]] modeling_utils.ModuleUtilsMixin ## TFPreTrainedModel [[autodoc]] TFPreTrainedModel - push_to_hub - all ## TFModelUtilsMixin [[autodoc]] modeling_tf_utils.TFModelUtilsMixin ## FlaxPreTrainedModel [[autodoc]] FlaxPreTrainedModel - push_to_hub - all ## Pushing to the Hub [[autodoc]] utils.PushToHubMixin ## Sharded checkpoints [[autodoc]] modeling_utils.load_sharded_checkpoint
huggingface/transformers/blob/main/docs/source/en/main_classes/model.md
!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # ConvNeXT ## Overview The ConvNeXT model was proposed in [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545) by Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, Saining Xie. ConvNeXT is a pure convolutional model (ConvNet), inspired by the design of Vision Transformers, that claims to outperform them. The abstract from the paper is the following: *The "Roaring 20s" of visual recognition began with the introduction of Vision Transformers (ViTs), which quickly superseded ConvNets as the state-of-the-art image classification model. A vanilla ViT, on the other hand, faces difficulties when applied to general computer vision tasks such as object detection and semantic segmentation. It is the hierarchical Transformers (e.g., Swin Transformers) that reintroduced several ConvNet priors, making Transformers practically viable as a generic vision backbone and demonstrating remarkable performance on a wide variety of vision tasks. However, the effectiveness of such hybrid approaches is still largely credited to the intrinsic superiority of Transformers, rather than the inherent inductive biases of convolutions. In this work, we reexamine the design spaces and test the limits of what a pure ConvNet can achieve. We gradually "modernize" a standard ResNet toward the design of a vision Transformer, and discover several key components that contribute to the performance difference along the way. The outcome of this exploration is a family of pure ConvNet models dubbed ConvNeXt. Constructed entirely from standard ConvNet modules, ConvNeXts compete favorably with Transformers in terms of accuracy and scalability, achieving 87.8% ImageNet top-1 accuracy and outperforming Swin Transformers on COCO detection and ADE20K segmentation, while maintaining the simplicity and efficiency of standard ConvNets.* <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/convnext_architecture.jpg" alt="drawing" width="600"/> <small> ConvNeXT architecture. Taken from the <a href="https://arxiv.org/abs/2201.03545">original paper</a>.</small> This model was contributed by [nielsr](https://huggingface.co/nielsr). TensorFlow version of the model was contributed by [ariG23498](https://github.com/ariG23498), [gante](https://github.com/gante), and [sayakpaul](https://github.com/sayakpaul) (equal contribution). The original code can be found [here](https://github.com/facebookresearch/ConvNeXt). ## Resources A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with ConvNeXT. <PipelineTag pipeline="image-classification"/> - [`ConvNextForImageClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/image-classification) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/image_classification.ipynb). - See also: [Image classification task guide](../tasks/image_classification) If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource. ## ConvNextConfig [[autodoc]] ConvNextConfig ## ConvNextFeatureExtractor [[autodoc]] ConvNextFeatureExtractor ## ConvNextImageProcessor [[autodoc]] ConvNextImageProcessor - preprocess <frameworkcontent> <pt> ## ConvNextModel [[autodoc]] ConvNextModel - forward ## ConvNextForImageClassification [[autodoc]] ConvNextForImageClassification - forward </pt> <tf> ## TFConvNextModel [[autodoc]] TFConvNextModel - call ## TFConvNextForImageClassification [[autodoc]] TFConvNextForImageClassification - call </tf> </frameworkcontent>
huggingface/transformers/blob/main/docs/source/en/model_doc/convnext.md
!--- Copyright 2021 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> # Vision-Text dual encoder model training examples > Note: This example is experimental and might not give the best possible results The following example showcases how to train a CLIP like vision-text dual encoder model using a pre-trained vision and text encoder using the JAX/Flax backend. Such a model can be used for natural language image search and potentially zero-shot image classification. The model is inspired by the [CLIP](https://openai.com/blog/clip/) approach, introduced by Alec Radford et al. The idea is to train a vision encoder and a text encoder jointly to project the representation of images and their captions into the same embedding space, such that the caption embeddings are located near the embeddings of the images they describe. JAX/Flax allows you to trace pure functions and compile them into efficient, fused accelerator code on both GPU and TPU. Models written in JAX/Flax are **immutable** and updated in a purely functional way which enables simple and efficient model parallelism. In this example we will use the vision model from [CLIP](https://huggingface.co/models?filter=clip) as the image encoder and [`roberta-base`](https://huggingface.co/roberta-base) as the text encoder. Note that one can also use the [ViT](https://huggingface.co/models?filter=vit) model as image encoder and any other BERT or ROBERTa model as text encoder. To train the model on languages other than English one should choose a text encoder trained on the desired language and a image-text dataset in that language. One such dataset is [WIT](https://github.com/google-research-datasets/wit). Let's start by creating a model repository to save the trained model and logs. Here we call the model `"clip-roberta-base"`, but you can change the model name as you like. You can do this either directly on [huggingface.co](https://huggingface.co/new) (assuming that you are logged in) or via the command line: ``` huggingface-cli repo create clip-roberta-base ``` Next we clone the model repository to add the tokenizer and model files. ``` git clone https://huggingface.co/<your-username>/clip-roberta-base ``` To ensure that all tensorboard traces will be uploaded correctly, we need to track them. You can run the following command inside your model repo to do so. ``` cd clip-roberta-base git lfs track "*tfevents*" ``` Great, we have set up our model repository. During training, we will automatically push the training logs and model weights to the repo. Next, let's add a symbolic link to the `run_hybrid_clip.py`. ```bash export MODEL_DIR="./clip-roberta-base ln -s ~/transformers/examples/research_projects/jax-projects/hybrid_clip/run_hybrid_clip.py run_hybrid_clip.py ``` ## How to use the `FlaxHybridCLIP` model: The `FlaxHybridCLIP` class let's you load any text and vision encoder model to create a dual encoder. Here is an example of how to load the model using pre-trained text and vision models. ```python from modeling_hybrid_clip import FlaxHybridCLIP model = FlaxHybridCLIP.from_text_vision_pretrained("bert-base-uncased", "openai/clip-vit-base-patch32") # save the model model.save_pretrained("bert-clip") # load the saved model model = FlaxHybridCLIP.from_pretrained("bert-clip") ``` If the checkpoints are in PyTorch then one could pass `text_from_pt=True` and `vision_from_pt=True`. This will load the model PyTorch checkpoints convert them to flax and load the model. ```python model = FlaxHybridCLIP.from_text_vision_pretrained("bert-base-uncased", "openai/clip-vit-base-patch32", text_from_pt=True, vision_from_pt=True) ``` This loads both the text and vision encoders using pre-trained weights, the projection layers are randomly initialized except for CLIP's vision model. If you use CLIP to initialize the vision model then the vision projection weights are also loaded using the pre-trained weights. ## Prepare the dataset We will use the MS-COCO dataset to train our dual encoder model. MS-COCO contains over 82,000 images, each of which has at least 5 different caption annotations. The dataset is usually used for image captioning tasks, but we can repurpose the image-caption pairs to train our dual encoder model for image search. ### Download and extract the data. It consists of two compressed folders: one with images, and the other—with associated image captions. Note that the compressed images folder is 13GB in size. ```bash wget http://images.cocodataset.org/annotations/annotations_trainval2014.zip wget http://images.cocodataset.org/zips/train2014.zip unzip annotations_trainval2014.zip unzip train2014.zip mkdir coco_dataset mv train2014 coco_dataset/ mv annotations coco_dataset/ ``` ### Prepare dataset files and split the dataset. ```python import json import collections images_dir = "coco_dataset/train2014" annotation_file = "coco_dataset/annotations/captions_train2014.json" with open(annotation_file, "r") as f: annotations = json.load(f)["annotations"] image_path_to_caption = collections.defaultdict(list) for element in annotations: caption = f"{element['caption'].lower().rstrip('.')}" image_path = images_dir + "/COCO_train2014_" + "%012d.jpg" % (element["image_id"]) image_path_to_caption[image_path].append(caption) lines = [] for image_path, captions in image_path_to_caption.items(): lines.append(json.dumps({"image_path": image_path, "captions": captions})) train_lines = lines[:-8000] valid_line = lines[-8000:] with open("coco_dataset/train_dataset.json", "w") as f: f.write("\n".join(train_lines)) with open("coco_dataset/valid_dataset.json", "w") as f: f.write("\n".join(valid_line)) ``` > Note: The data loading and processing part of this script can still be improved for maximum performance. In particular one should decode the images beforehand and use those instead decoding them each time. If the dataset is small or if you have huge disk space the you could also pre-process all the dataset beforehand and then use it. ## Train the model Next we can run the example script to train the model: ```bash python run_hybrid_clip.py \ --output_dir ${MODEL_DIR} \ --text_model_name_or_path="roberta-base" \ --vision_model_name_or_path="openai/clip-vit-base-patch32" \ --tokenizer_name="roberta-base" \ --train_file="coco_dataset/train_dataset.json" \ --validation_file="coco_dataset/validation_dataset.json" \ --do_train --do_eval \ --num_train_epochs="40" --max_seq_length 96 \ --per_device_train_batch_size="64" \ --per_device_eval_batch_size="64" \ --learning_rate="5e-5" --warmup_steps="0" --weight_decay 0.1 \ --overwrite_output_dir \ --preprocessing_num_workers 32 \ --push_to_hub ``` This should finish in ~1h50 mins with min validation loss 2.43. Training statistics can be accessed on [tfhub.de](https://tensorboard.dev/experiment/RUNPYd1yRgSD5kZSb9hDig/#scalars)
huggingface/transformers/blob/main/examples/research_projects/jax-projects/hybrid_clip/README.md
!--Copyright 2021 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # ViLT ## Overview The ViLT model was proposed in [ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision](https://arxiv.org/abs/2102.03334) by Wonjae Kim, Bokyung Son, Ildoo Kim. ViLT incorporates text embeddings into a Vision Transformer (ViT), allowing it to have a minimal design for Vision-and-Language Pre-training (VLP). The abstract from the paper is the following: *Vision-and-Language Pre-training (VLP) has improved performance on various joint vision-and-language downstream tasks. Current approaches to VLP heavily rely on image feature extraction processes, most of which involve region supervision (e.g., object detection) and the convolutional architecture (e.g., ResNet). Although disregarded in the literature, we find it problematic in terms of both (1) efficiency/speed, that simply extracting input features requires much more computation than the multimodal interaction steps; and (2) expressive power, as it is upper bounded to the expressive power of the visual embedder and its predefined visual vocabulary. In this paper, we present a minimal VLP model, Vision-and-Language Transformer (ViLT), monolithic in the sense that the processing of visual inputs is drastically simplified to just the same convolution-free manner that we process textual inputs. We show that ViLT is up to tens of times faster than previous VLP models, yet with competitive or better downstream task performance.* <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/vilt_architecture.jpg" alt="drawing" width="600"/> <small> ViLT architecture. Taken from the <a href="https://arxiv.org/abs/2102.03334">original paper</a>. </small> This model was contributed by [nielsr](https://huggingface.co/nielsr). The original code can be found [here](https://github.com/dandelin/ViLT). ## Usage tips - The quickest way to get started with ViLT is by checking the [example notebooks](https://github.com/NielsRogge/Transformers-Tutorials/tree/master/ViLT) (which showcase both inference and fine-tuning on custom data). - ViLT is a model that takes both `pixel_values` and `input_ids` as input. One can use [`ViltProcessor`] to prepare data for the model. This processor wraps a image processor (for the image modality) and a tokenizer (for the language modality) into one. - ViLT is trained with images of various sizes: the authors resize the shorter edge of input images to 384 and limit the longer edge to under 640 while preserving the aspect ratio. To make batching of images possible, the authors use a `pixel_mask` that indicates which pixel values are real and which are padding. [`ViltProcessor`] automatically creates this for you. - The design of ViLT is very similar to that of a standard Vision Transformer (ViT). The only difference is that the model includes additional embedding layers for the language modality. - The PyTorch version of this model is only available in torch 1.10 and higher. ## ViltConfig [[autodoc]] ViltConfig ## ViltFeatureExtractor [[autodoc]] ViltFeatureExtractor - __call__ ## ViltImageProcessor [[autodoc]] ViltImageProcessor - preprocess ## ViltProcessor [[autodoc]] ViltProcessor - __call__ ## ViltModel [[autodoc]] ViltModel - forward ## ViltForMaskedLM [[autodoc]] ViltForMaskedLM - forward ## ViltForQuestionAnswering [[autodoc]] ViltForQuestionAnswering - forward ## ViltForImagesAndTextClassification [[autodoc]] ViltForImagesAndTextClassification - forward ## ViltForImageAndTextRetrieval [[autodoc]] ViltForImageAndTextRetrieval - forward ## ViltForTokenClassification [[autodoc]] ViltForTokenClassification - forward
huggingface/transformers/blob/main/docs/source/en/model_doc/vilt.md
!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Zero-shot image classification [[open-in-colab]] Zero-shot image classification is a task that involves classifying images into different categories using a model that was not explicitly trained on data containing labeled examples from those specific categories. Traditionally, image classification requires training a model on a specific set of labeled images, and this model learns to "map" certain image features to labels. When there's a need to use such model for a classification task that introduces a new set of labels, fine-tuning is required to "recalibrate" the model. In contrast, zero-shot or open vocabulary image classification models are typically multi-modal models that have been trained on a large dataset of images and associated descriptions. These models learn aligned vision-language representations that can be used for many downstream tasks including zero-shot image classification. This is a more flexible approach to image classification that allows models to generalize to new and unseen categories without the need for additional training data and enables users to query images with free-form text descriptions of their target objects . In this guide you'll learn how to: * create a zero-shot image classification pipeline * run zero-shot image classification inference by hand Before you begin, make sure you have all the necessary libraries installed: ```bash pip install -q transformers ``` ## Zero-shot image classification pipeline The simplest way to try out inference with a model supporting zero-shot image classification is to use the corresponding [`pipeline`]. Instantiate a pipeline from a [checkpoint on the Hugging Face Hub](https://huggingface.co/models?pipeline_tag=zero-shot-image-classification&sort=downloads): ```python >>> from transformers import pipeline >>> checkpoint = "openai/clip-vit-large-patch14" >>> detector = pipeline(model=checkpoint, task="zero-shot-image-classification") ``` Next, choose an image you'd like to classify. ```py >>> from PIL import Image >>> import requests >>> url = "https://unsplash.com/photos/g8oS8-82DxI/download?ixid=MnwxMjA3fDB8MXx0b3BpY3x8SnBnNktpZGwtSGt8fHx8fDJ8fDE2NzgxMDYwODc&force=true&w=640" >>> image = Image.open(requests.get(url, stream=True).raw) >>> image ``` <div class="flex justify-center"> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/owl.jpg" alt="Photo of an owl"/> </div> Pass the image and the candidate object labels to the pipeline. Here we pass the image directly; other suitable options include a local path to an image or an image url. The candidate labels can be simple words like in this example, or more descriptive. ```py >>> predictions = detector(image, candidate_labels=["fox", "bear", "seagull", "owl"]) >>> predictions [{'score': 0.9996670484542847, 'label': 'owl'}, {'score': 0.000199399160919711, 'label': 'seagull'}, {'score': 7.392891711788252e-05, 'label': 'fox'}, {'score': 5.96074532950297e-05, 'label': 'bear'}] ``` ## Zero-shot image classification by hand Now that you've seen how to use the zero-shot image classification pipeline, let's take a look how you can run zero-shot image classification manually. Start by loading the model and associated processor from a [checkpoint on the Hugging Face Hub](https://huggingface.co/models?pipeline_tag=zero-shot-image-classification&sort=downloads). Here we'll use the same checkpoint as before: ```py >>> from transformers import AutoProcessor, AutoModelForZeroShotImageClassification >>> model = AutoModelForZeroShotImageClassification.from_pretrained(checkpoint) >>> processor = AutoProcessor.from_pretrained(checkpoint) ``` Let's take a different image to switch things up. ```py >>> from PIL import Image >>> import requests >>> url = "https://unsplash.com/photos/xBRQfR2bqNI/download?ixid=MnwxMjA3fDB8MXxhbGx8fHx8fHx8fHwxNjc4Mzg4ODEx&force=true&w=640" >>> image = Image.open(requests.get(url, stream=True).raw) >>> image ``` <div class="flex justify-center"> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg" alt="Photo of a car"/> </div> Use the processor to prepare the inputs for the model. The processor combines an image processor that prepares the image for the model by resizing and normalizing it, and a tokenizer that takes care of the text inputs. ```py >>> candidate_labels = ["tree", "car", "bike", "cat"] >>> inputs = processor(images=image, text=candidate_labels, return_tensors="pt", padding=True) ``` Pass the inputs through the model, and post-process the results: ```py >>> import torch >>> with torch.no_grad(): ... outputs = model(**inputs) >>> logits = outputs.logits_per_image[0] >>> probs = logits.softmax(dim=-1).numpy() >>> scores = probs.tolist() >>> result = [ ... {"score": score, "label": candidate_label} ... for score, candidate_label in sorted(zip(probs, candidate_labels), key=lambda x: -x[0]) ... ] >>> result [{'score': 0.998572, 'label': 'car'}, {'score': 0.0010570387, 'label': 'bike'}, {'score': 0.0003393686, 'label': 'tree'}, {'score': 3.1572064e-05, 'label': 'cat'}] ```
huggingface/transformers/blob/main/docs/source/en/tasks/zero_shot_image_classification.md
!--Copyright 2021 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Perceiver ## Overview The Perceiver IO model was proposed in [Perceiver IO: A General Architecture for Structured Inputs & Outputs](https://arxiv.org/abs/2107.14795) by Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu, David Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, Olivier Hénaff, Matthew M. Botvinick, Andrew Zisserman, Oriol Vinyals, João Carreira. Perceiver IO is a generalization of [Perceiver](https://arxiv.org/abs/2103.03206) to handle arbitrary outputs in addition to arbitrary inputs. The original Perceiver only produced a single classification label. In addition to classification labels, Perceiver IO can produce (for example) language, optical flow, and multimodal videos with audio. This is done using the same building blocks as the original Perceiver. The computational complexity of Perceiver IO is linear in the input and output size and the bulk of the processing occurs in the latent space, allowing us to process inputs and outputs that are much larger than can be handled by standard Transformers. This means, for example, Perceiver IO can do BERT-style masked language modeling directly using bytes instead of tokenized inputs. The abstract from the paper is the following: *The recently-proposed Perceiver model obtains good results on several domains (images, audio, multimodal, point clouds) while scaling linearly in compute and memory with the input size. While the Perceiver supports many kinds of inputs, it can only produce very simple outputs such as class scores. Perceiver IO overcomes this limitation without sacrificing the original's appealing properties by learning to flexibly query the model's latent space to produce outputs of arbitrary size and semantics. Perceiver IO still decouples model depth from data size and still scales linearly with data size, but now with respect to both input and output sizes. The full Perceiver IO model achieves strong results on tasks with highly structured output spaces, such as natural language and visual understanding, StarCraft II, and multi-task and multi-modal domains. As highlights, Perceiver IO matches a Transformer-based BERT baseline on the GLUE language benchmark without the need for input tokenization and achieves state-of-the-art performance on Sintel optical flow estimation.* Here's a TLDR explaining how Perceiver works: The main problem with the self-attention mechanism of the Transformer is that the time and memory requirements scale quadratically with the sequence length. Hence, models like BERT and RoBERTa are limited to a max sequence length of 512 tokens. Perceiver aims to solve this issue by, instead of performing self-attention on the inputs, perform it on a set of latent variables, and only use the inputs for cross-attention. In this way, the time and memory requirements don't depend on the length of the inputs anymore, as one uses a fixed amount of latent variables, like 256 or 512. These are randomly initialized, after which they are trained end-to-end using backpropagation. Internally, [`PerceiverModel`] will create the latents, which is a tensor of shape `(batch_size, num_latents, d_latents)`. One must provide `inputs` (which could be text, images, audio, you name it!) to the model, which it will use to perform cross-attention with the latents. The output of the Perceiver encoder is a tensor of the same shape. One can then, similar to BERT, convert the last hidden states of the latents to classification logits by averaging along the sequence dimension, and placing a linear layer on top of that to project the `d_latents` to `num_labels`. This was the idea of the original Perceiver paper. However, it could only output classification logits. In a follow-up work, PerceiverIO, they generalized it to let the model also produce outputs of arbitrary size. How, you might ask? The idea is actually relatively simple: one defines outputs of an arbitrary size, and then applies cross-attention with the last hidden states of the latents, using the outputs as queries, and the latents as keys and values. So let's say one wants to perform masked language modeling (BERT-style) with the Perceiver. As the Perceiver's input length will not have an impact on the computation time of the self-attention layers, one can provide raw bytes, providing `inputs` of length 2048 to the model. If one now masks out certain of these 2048 tokens, one can define the `outputs` as being of shape: `(batch_size, 2048, 768)`. Next, one performs cross-attention with the final hidden states of the latents to update the `outputs` tensor. After cross-attention, one still has a tensor of shape `(batch_size, 2048, 768)`. One can then place a regular language modeling head on top, to project the last dimension to the vocabulary size of the model, i.e. creating logits of shape `(batch_size, 2048, 262)` (as Perceiver uses a vocabulary size of 262 byte IDs). <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/perceiver_architecture.jpg" alt="drawing" width="600"/> <small> Perceiver IO architecture. Taken from the <a href="https://arxiv.org/abs/2105.15203">original paper</a> </small> This model was contributed by [nielsr](https://huggingface.co/nielsr). The original code can be found [here](https://github.com/deepmind/deepmind-research/tree/master/perceiver). <Tip warning={true}> Perceiver does **not** work with `torch.nn.DataParallel` due to a bug in PyTorch, see [issue #36035](https://github.com/pytorch/pytorch/issues/36035) </Tip> ## Resources - The quickest way to get started with the Perceiver is by checking the [tutorial notebooks](https://github.com/NielsRogge/Transformers-Tutorials/tree/master/Perceiver). - Refer to the [blog post](https://huggingface.co/blog/perceiver) if you want to fully understand how the model works and is implemented in the library. Note that the models available in the library only showcase some examples of what you can do with the Perceiver. There are many more use cases, including question answering, named-entity recognition, object detection, audio classification, video classification, etc. - [Text classification task guide](../tasks/sequence_classification) - [Masked language modeling task guide](../tasks/masked_language_modeling) - [Image classification task guide](../tasks/image_classification) ## Perceiver specific outputs [[autodoc]] models.perceiver.modeling_perceiver.PerceiverModelOutput [[autodoc]] models.perceiver.modeling_perceiver.PerceiverDecoderOutput [[autodoc]] models.perceiver.modeling_perceiver.PerceiverMaskedLMOutput [[autodoc]] models.perceiver.modeling_perceiver.PerceiverClassifierOutput ## PerceiverConfig [[autodoc]] PerceiverConfig ## PerceiverTokenizer [[autodoc]] PerceiverTokenizer - __call__ ## PerceiverFeatureExtractor [[autodoc]] PerceiverFeatureExtractor - __call__ ## PerceiverImageProcessor [[autodoc]] PerceiverImageProcessor - preprocess ## PerceiverTextPreprocessor [[autodoc]] models.perceiver.modeling_perceiver.PerceiverTextPreprocessor ## PerceiverImagePreprocessor [[autodoc]] models.perceiver.modeling_perceiver.PerceiverImagePreprocessor ## PerceiverOneHotPreprocessor [[autodoc]] models.perceiver.modeling_perceiver.PerceiverOneHotPreprocessor ## PerceiverAudioPreprocessor [[autodoc]] models.perceiver.modeling_perceiver.PerceiverAudioPreprocessor ## PerceiverMultimodalPreprocessor [[autodoc]] models.perceiver.modeling_perceiver.PerceiverMultimodalPreprocessor ## PerceiverProjectionDecoder [[autodoc]] models.perceiver.modeling_perceiver.PerceiverProjectionDecoder ## PerceiverBasicDecoder [[autodoc]] models.perceiver.modeling_perceiver.PerceiverBasicDecoder ## PerceiverClassificationDecoder [[autodoc]] models.perceiver.modeling_perceiver.PerceiverClassificationDecoder ## PerceiverOpticalFlowDecoder [[autodoc]] models.perceiver.modeling_perceiver.PerceiverOpticalFlowDecoder ## PerceiverBasicVideoAutoencodingDecoder [[autodoc]] models.perceiver.modeling_perceiver.PerceiverBasicVideoAutoencodingDecoder ## PerceiverMultimodalDecoder [[autodoc]] models.perceiver.modeling_perceiver.PerceiverMultimodalDecoder ## PerceiverProjectionPostprocessor [[autodoc]] models.perceiver.modeling_perceiver.PerceiverProjectionPostprocessor ## PerceiverAudioPostprocessor [[autodoc]] models.perceiver.modeling_perceiver.PerceiverAudioPostprocessor ## PerceiverClassificationPostprocessor [[autodoc]] models.perceiver.modeling_perceiver.PerceiverClassificationPostprocessor ## PerceiverMultimodalPostprocessor [[autodoc]] models.perceiver.modeling_perceiver.PerceiverMultimodalPostprocessor ## PerceiverModel [[autodoc]] PerceiverModel - forward ## PerceiverForMaskedLM [[autodoc]] PerceiverForMaskedLM - forward ## PerceiverForSequenceClassification [[autodoc]] PerceiverForSequenceClassification - forward ## PerceiverForImageClassificationLearned [[autodoc]] PerceiverForImageClassificationLearned - forward ## PerceiverForImageClassificationFourier [[autodoc]] PerceiverForImageClassificationFourier - forward ## PerceiverForImageClassificationConvProcessing [[autodoc]] PerceiverForImageClassificationConvProcessing - forward ## PerceiverForOpticalFlow [[autodoc]] PerceiverForOpticalFlow - forward ## PerceiverForMultimodalAutoencoding [[autodoc]] PerceiverForMultimodalAutoencoding - forward
huggingface/transformers/blob/main/docs/source/en/model_doc/perceiver.md
!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # GPT-NeoX-Japanese ## Overview We introduce GPT-NeoX-Japanese, which is an autoregressive language model for Japanese, trained on top of [https://github.com/EleutherAI/gpt-neox](https://github.com/EleutherAI/gpt-neox). Japanese is a unique language with its large vocabulary and a combination of hiragana, katakana, and kanji writing scripts. To address this distinct structure of the Japanese language, we use a [special sub-word tokenizer](https://github.com/tanreinama/Japanese-BPEEncoder_V2). We are very grateful to *tanreinama* for open-sourcing this incredibly helpful tokenizer. Following the recommendations from Google's research on [PaLM](https://ai.googleblog.com/2022/04/pathways-language-model-palm-scaling-to.html), we have removed bias parameters from transformer blocks, achieving better model performance. Please refer [this article](https://medium.com/ml-abeja/training-a-better-gpt-2-93b157662ae4) in detail. Development of the model was led by [Shinya Otani](https://github.com/SO0529), [Takayoshi Makabe](https://github.com/spider-man-tm), [Anuj Arora](https://github.com/Anuj040), and [Kyo Hattori](https://github.com/go5paopao) from [ABEJA, Inc.](https://www.abejainc.com/). For more information on this model-building activity, please refer [here (ja)](https://tech-blog.abeja.asia/entry/abeja-gpt-project-202207). ### Usage example The `generate()` method can be used to generate text using GPT NeoX Japanese model. ```python >>> from transformers import GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseTokenizer >>> model = GPTNeoXJapaneseForCausalLM.from_pretrained("abeja/gpt-neox-japanese-2.7b") >>> tokenizer = GPTNeoXJapaneseTokenizer.from_pretrained("abeja/gpt-neox-japanese-2.7b") >>> prompt = "人とAIが協調するためには、" >>> input_ids = tokenizer(prompt, return_tensors="pt").input_ids >>> gen_tokens = model.generate( ... input_ids, ... do_sample=True, ... temperature=0.9, ... max_length=100, ... ) >>> gen_text = tokenizer.batch_decode(gen_tokens, skip_special_tokens=True)[0] >>> print(gen_text) 人とAIが協調するためには、AIと人が共存し、AIを正しく理解する必要があります。 ``` ## Resources - [Causal language modeling task guide](../tasks/language_modeling) ## GPTNeoXJapaneseConfig [[autodoc]] GPTNeoXJapaneseConfig ## GPTNeoXJapaneseTokenizer [[autodoc]] GPTNeoXJapaneseTokenizer ## GPTNeoXJapaneseModel [[autodoc]] GPTNeoXJapaneseModel - forward ## GPTNeoXJapaneseForCausalLM [[autodoc]] GPTNeoXJapaneseForCausalLM - forward
huggingface/transformers/blob/main/docs/source/en/model_doc/gpt_neox_japanese.md
# Contributor Covenant Code of Conduct ## Our Pledge We as members, contributors, and leaders pledge to make participation in our community a harassment-free experience for everyone, regardless of age, body size, visible or invisible disability, ethnicity, sex characteristics, gender identity and expression, level of experience, education, socio-economic status, nationality, personal appearance, race, caste, color, religion, or sexual identity and orientation. We pledge to act and interact in ways that contribute to an open, welcoming, diverse, inclusive, and healthy community. ## Our Standards Examples of behavior that contributes to a positive environment for our community include: * Demonstrating empathy and kindness toward other people * Being respectful of differing opinions, viewpoints, and experiences * Giving and gracefully accepting constructive feedback * Accepting responsibility and apologizing to those affected by our mistakes, and learning from the experience * Focusing on what is best not just for us as individuals, but for the overall community Examples of unacceptable behavior include: * The use of sexualized language or imagery, and sexual attention or advances of any kind * Trolling, insulting or derogatory comments, and personal or political attacks * Public or private harassment * Publishing others' private information, such as a physical or email address, without their explicit permission * Other conduct which could reasonably be considered inappropriate in a professional setting ## Enforcement Responsibilities Community leaders are responsible for clarifying and enforcing our standards of acceptable behavior and will take appropriate and fair corrective action in response to any behavior that they deem inappropriate, threatening, offensive, or harmful. Community leaders have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits, issues, and other contributions that are not aligned to this Code of Conduct, and will communicate reasons for moderation decisions when appropriate. ## Scope This Code of Conduct applies within all community spaces, and also applies when an individual is officially representing the community in public spaces. Examples of representing our community include using an official e-mail address, posting via an official social media account, or acting as an appointed representative at an online or offline event. ## Enforcement Instances of abusive, harassing, or otherwise unacceptable behavior may be reported to the community leaders responsible for enforcement at [email protected]. All complaints will be reviewed and investigated promptly and fairly. All community leaders are obligated to respect the privacy and security of the reporter of any incident. ## Enforcement Guidelines Community leaders will follow these Community Impact Guidelines in determining the consequences for any action they deem in violation of this Code of Conduct: ### 1. Correction **Community Impact**: Use of inappropriate language or other behavior deemed unprofessional or unwelcome in the community. **Consequence**: A private, written warning from community leaders, providing clarity around the nature of the violation and an explanation of why the behavior was inappropriate. A public apology may be requested. ### 2. Warning **Community Impact**: A violation through a single incident or series of actions. **Consequence**: A warning with consequences for continued behavior. No interaction with the people involved, including unsolicited interaction with those enforcing the Code of Conduct, for a specified period of time. This includes avoiding interactions in community spaces as well as external channels like social media. Violating these terms may lead to a temporary or permanent ban. ### 3. Temporary Ban **Community Impact**: A serious violation of community standards, including sustained inappropriate behavior. **Consequence**: A temporary ban from any sort of interaction or public communication with the community for a specified period of time. No public or private interaction with the people involved, including unsolicited interaction with those enforcing the Code of Conduct, is allowed during this period. Violating these terms may lead to a permanent ban. ### 4. Permanent Ban **Community Impact**: Demonstrating a pattern of violation of community standards, including sustained inappropriate behavior, harassment of an individual, or aggression toward or disparagement of classes of individuals. **Consequence**: A permanent ban from any sort of public interaction within the community. ## Attribution This Code of Conduct is adapted from the [Contributor Covenant][homepage], version 2.1, available at [https://www.contributor-covenant.org/version/2/1/code_of_conduct.html][v2.1]. Community Impact Guidelines were inspired by [Mozilla's code of conduct enforcement ladder][Mozilla CoC]. For answers to common questions about this code of conduct, see the FAQ at [https://www.contributor-covenant.org/faq][FAQ]. Translations are available at [https://www.contributor-covenant.org/translations][translations]. [homepage]: https://www.contributor-covenant.org [v2.1]: https://www.contributor-covenant.org/version/2/1/code_of_conduct.html [Mozilla CoC]: https://github.com/mozilla/diversity [FAQ]: https://www.contributor-covenant.org/faq [translations]: https://www.contributor-covenant.org/translations
huggingface/transformers/blob/main/CODE_OF_CONDUCT.md
!--- Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> ## Summarization This directory contains examples for finetuning and evaluating transformers on summarization tasks. Please tag @patil-suraj with any issues/unexpected behaviors, or send a PR! For deprecated `bertabs` instructions, see [`bertabs/README.md`](https://github.com/huggingface/transformers/blob/main/examples/research_projects/bertabs/README.md). For the old `finetune_trainer.py` and related utils, see [`examples/legacy/seq2seq`](https://github.com/huggingface/transformers/blob/main/examples/legacy/seq2seq). ### Supported Architectures - `BartForConditionalGeneration` - `FSMTForConditionalGeneration` (translation only) - `MBartForConditionalGeneration` - `MarianMTModel` - `PegasusForConditionalGeneration` - `T5ForConditionalGeneration` - `MT5ForConditionalGeneration` `run_summarization.py` is a lightweight example of how to download and preprocess a dataset from the [🤗 Datasets](https://github.com/huggingface/datasets) library or use your own files (jsonlines or csv), then fine-tune one of the architectures above on it. For custom datasets in `jsonlines` format please see: https://huggingface.co/docs/datasets/loading_datasets#json-files and you also will find examples of these below. ## With Trainer Here is an example on a summarization task: ```bash python examples/pytorch/summarization/run_summarization.py \ --model_name_or_path t5-small \ --do_train \ --do_eval \ --dataset_name cnn_dailymail \ --dataset_config "3.0.0" \ --source_prefix "summarize: " \ --output_dir /tmp/tst-summarization \ --per_device_train_batch_size=4 \ --per_device_eval_batch_size=4 \ --overwrite_output_dir \ --predict_with_generate ``` Only T5 models `t5-small`, `t5-base`, `t5-large`, `t5-3b` and `t5-11b` must use an additional argument: `--source_prefix "summarize: "`. We used CNN/DailyMail dataset in this example as `t5-small` was trained on it and one can get good scores even when pre-training with a very small sample. Extreme Summarization (XSum) Dataset is another commonly used dataset for the task of summarization. To use it replace `--dataset_name cnn_dailymail --dataset_config "3.0.0"` with `--dataset_name xsum`. And here is how you would use it on your own files, after adjusting the values for the arguments `--train_file`, `--validation_file`, `--text_column` and `--summary_column` to match your setup: ```bash python examples/pytorch/summarization/run_summarization.py \ --model_name_or_path t5-small \ --do_train \ --do_eval \ --train_file path_to_csv_or_jsonlines_file \ --validation_file path_to_csv_or_jsonlines_file \ --source_prefix "summarize: " \ --output_dir /tmp/tst-summarization \ --overwrite_output_dir \ --per_device_train_batch_size=4 \ --per_device_eval_batch_size=4 \ --predict_with_generate ``` The task of summarization supports custom CSV and JSONLINES formats. #### Custom CSV Files If it's a csv file the training and validation files should have a column for the inputs texts and a column for the summaries. If the csv file has just two columns as in the following example: ```csv text,summary "I'm sitting here in a boring room. It's just another rainy Sunday afternoon. I'm wasting my time I got nothing to do. I'm hanging around I'm waiting for you. But nothing ever happens. And I wonder","I'm sitting in a room where I'm waiting for something to happen" "I see trees so green, red roses too. I see them bloom for me and you. And I think to myself what a wonderful world. I see skies so blue and clouds so white. The bright blessed day, the dark sacred night. And I think to myself what a wonderful world.","I'm a gardener and I'm a big fan of flowers." "Christmas time is here. Happiness and cheer. Fun for all that children call. Their favorite time of the year. Snowflakes in the air. Carols everywhere. Olden times and ancient rhymes. Of love and dreams to share","It's that time of year again." ``` The first column is assumed to be for `text` and the second is for summary. If the csv file has multiple columns, you can then specify the names of the columns to use: ```bash --text_column text_column_name \ --summary_column summary_column_name \ ``` For example if the columns were: ```csv id,date,text,summary ``` and you wanted to select only `text` and `summary`, then you'd pass these additional arguments: ```bash --text_column text \ --summary_column summary \ ``` #### Custom JSONLINES Files The second supported format is jsonlines. Here is an example of a jsonlines custom data file. ```json {"text": "I'm sitting here in a boring room. It's just another rainy Sunday afternoon. I'm wasting my time I got nothing to do. I'm hanging around I'm waiting for you. But nothing ever happens. And I wonder", "summary": "I'm sitting in a room where I'm waiting for something to happen"} {"text": "I see trees so green, red roses too. I see them bloom for me and you. And I think to myself what a wonderful world. I see skies so blue and clouds so white. The bright blessed day, the dark sacred night. And I think to myself what a wonderful world.", "summary": "I'm a gardener and I'm a big fan of flowers."} {"text": "Christmas time is here. Happiness and cheer. Fun for all that children call. Their favorite time of the year. Snowflakes in the air. Carols everywhere. Olden times and ancient rhymes. Of love and dreams to share", "summary": "It's that time of year again."} ``` Same as with the CSV files, by default the first value will be used as the text record and the second as the summary record. Therefore you can use any key names for the entries, in this example `text` and `summary` were used. And as with the CSV files, you can specify which values to select from the file, by explicitly specifying the corresponding key names. In our example this again would be: ```bash --text_column text \ --summary_column summary \ ``` ## With Accelerate Based on the script [`run_summarization_no_trainer.py`](https://github.com/huggingface/transformers/blob/main/examples/pytorch/summarization/run_summarization_no_trainer.py). Like `run_summarization.py`, this script allows you to fine-tune any of the models supported on a summarization task, the main difference is that this script exposes the bare training loop, to allow you to quickly experiment and add any customization you would like. It offers less options than the script with `Trainer` (for instance you can easily change the options for the optimizer or the dataloaders directly in the script) but still run in a distributed setup, on TPU and supports mixed precision by the mean of the [🤗 `Accelerate`](https://github.com/huggingface/accelerate) library. You can use the script normally after installing it: ```bash pip install git+https://github.com/huggingface/accelerate ``` then ```bash python run_summarization_no_trainer.py \ --model_name_or_path t5-small \ --dataset_name cnn_dailymail \ --dataset_config "3.0.0" \ --source_prefix "summarize: " \ --output_dir ~/tmp/tst-summarization ``` You can then use your usual launchers to run in it in a distributed environment, but the easiest way is to run ```bash accelerate config ``` and reply to the questions asked. Then ```bash accelerate test ``` that will check everything is ready for training. Finally, you can launch training with ```bash accelerate launch run_summarization_no_trainer.py \ --model_name_or_path t5-small \ --dataset_name cnn_dailymail \ --dataset_config "3.0.0" \ --source_prefix "summarize: " \ --output_dir ~/tmp/tst-summarization ``` This command is the same and will work for: - a CPU-only setup - a setup with one GPU - a distributed training with several GPUs (single or multi node) - a training on TPUs Note that this library is in alpha release so your feedback is more than welcome if you encounter any problem using it.
huggingface/transformers/blob/main/examples/pytorch/summarization/README.md
!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Informer ## Overview The Informer model was proposed in [Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting ](https://arxiv.org/abs/2012.07436) by Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang. This method introduces a Probabilistic Attention mechanism to select the "active" queries rather than the "lazy" queries and provides a sparse Transformer thus mitigating the quadratic compute and memory requirements of vanilla attention. The abstract from the paper is the following: *Many real-world applications require the prediction of long sequence time-series, such as electricity consumption planning. Long sequence time-series forecasting (LSTF) demands a high prediction capacity of the model, which is the ability to capture precise long-range dependency coupling between output and input efficiently. Recent studies have shown the potential of Transformer to increase the prediction capacity. However, there are several severe issues with Transformer that prevent it from being directly applicable to LSTF, including quadratic time complexity, high memory usage, and inherent limitation of the encoder-decoder architecture. To address these issues, we design an efficient transformer-based model for LSTF, named Informer, with three distinctive characteristics: (i) a ProbSparse self-attention mechanism, which achieves O(L logL) in time complexity and memory usage, and has comparable performance on sequences' dependency alignment. (ii) the self-attention distilling highlights dominating attention by halving cascading layer input, and efficiently handles extreme long input sequences. (iii) the generative style decoder, while conceptually simple, predicts the long time-series sequences at one forward operation rather than a step-by-step way, which drastically improves the inference speed of long-sequence predictions. Extensive experiments on four large-scale datasets demonstrate that Informer significantly outperforms existing methods and provides a new solution to the LSTF problem.* This model was contributed by [elisim](https://huggingface.co/elisim) and [kashif](https://huggingface.co/kashif). The original code can be found [here](https://github.com/zhouhaoyi/Informer2020). ## Resources A list of official Hugging Face and community (indicated by 🌎) resources to help you get started. If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource. - Check out the Informer blog-post in HuggingFace blog: [Multivariate Probabilistic Time Series Forecasting with Informer](https://huggingface.co/blog/informer) ## InformerConfig [[autodoc]] InformerConfig ## InformerModel [[autodoc]] InformerModel - forward ## InformerForPrediction [[autodoc]] InformerForPrediction - forward
huggingface/transformers/blob/main/docs/source/en/model_doc/informer.md
!--- Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> # TFVisionTextDualEncoder and CLIP model training examples The following example showcases how to train a CLIP-like vision-text dual encoder model using a pre-trained vision and text encoder. Such a model can be used for natural language image search and potentially zero-shot image classification. The model is inspired by [CLIP](https://openai.com/blog/clip/), introduced by Alec Radford et al. The idea is to train a vision encoder and a text encoder jointly to project the representation of images and their captions into the same embedding space, such that the caption embeddings are located near the embeddings of the images they describe. ### Download COCO dataset (2017) This example uses COCO dataset (2017) through a custom dataset script, which requires users to manually download the COCO dataset before training. ```bash mkdir data cd data wget http://images.cocodataset.org/zips/train2017.zip wget http://images.cocodataset.org/zips/val2017.zip wget http://images.cocodataset.org/zips/test2017.zip wget http://images.cocodataset.org/annotations/annotations_trainval2017.zip wget http://images.cocodataset.org/annotations/image_info_test2017.zip cd .. ``` Having downloaded COCO dataset manually you should be able to load with the `ydshieh/coc_dataset_script` dataset loading script: ```py import os import datasets COCO_DIR = os.path.join(os.getcwd(), "data") ds = datasets.load_dataset("ydshieh/coco_dataset_script", "2017", data_dir=COCO_DIR) ``` ### Create a model from a vision encoder model and a text encoder model We can either load a CLIP-like vision-text dual encoder model from an existing dual encoder model, or by using a pre-trained vision encoder model and a pre-trained text encoder model. If you wish to load an existing dual encoder model, please use the `--model_name_or_path` argument. If you want to use separate pre-trained vision and text models, please use the `--vision_model_name_or_path` and `--text_model_name_or_path` arguments instead. ### Train the model Finally, we can run the example script to train the model: ```bash python examples/tensorflow/contrastive-image-text/run_clip.py \ --output_dir ./clip-roberta-finetuned \ --vision_model_name_or_path openai/clip-vit-base-patch32 \ --text_model_name_or_path roberta-base \ --data_dir $PWD/data \ --dataset_name ydshieh/coco_dataset_script \ --dataset_config_name=2017 \ --image_column image_path \ --caption_column caption \ --remove_unused_columns=False \ --do_train --do_eval \ --per_device_train_batch_size="64" \ --per_device_eval_batch_size="64" \ --learning_rate="5e-5" --warmup_steps="0" --weight_decay 0.1 \ --overwrite_output_dir \ --push_to_hub ```
huggingface/transformers/blob/main/examples/tensorflow/contrastive-image-text/README.md
!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Methods and tools for efficient training on a single GPU This guide demonstrates practical techniques that you can use to increase the efficiency of your model's training by optimizing memory utilization, speeding up the training, or both. If you'd like to understand how GPU is utilized during training, please refer to the [Model training anatomy](model_memory_anatomy) conceptual guide first. This guide focuses on practical techniques. <Tip> If you have access to a machine with multiple GPUs, these approaches are still valid, plus you can leverage additional methods outlined in the [multi-GPU section](perf_train_gpu_many). </Tip> When training large models, there are two aspects that should be considered at the same time: * Data throughput/training time * Model performance Maximizing the throughput (samples/second) leads to lower training cost. This is generally achieved by utilizing the GPU as much as possible and thus filling GPU memory to its limit. If the desired batch size exceeds the limits of the GPU memory, the memory optimization techniques, such as gradient accumulation, can help. However, if the preferred batch size fits into memory, there's no reason to apply memory-optimizing techniques because they can slow down the training. Just because one can use a large batch size, does not necessarily mean they should. As part of hyperparameter tuning, you should determine which batch size yields the best results and then optimize resources accordingly. The methods and tools covered in this guide can be classified based on the effect they have on the training process: | Method/tool | Improves training speed | Optimizes memory utilization | |:-----------------------------------------------------------|:------------------------|:-----------------------------| | [Batch size choice](#batch-size-choice) | Yes | Yes | | [Gradient accumulation](#gradient-accumulation) | No | Yes | | [Gradient checkpointing](#gradient-checkpointing) | No | Yes | | [Mixed precision training](#mixed-precision-training) | Yes | (No) | | [Optimizer choice](#optimizer-choice) | Yes | Yes | | [Data preloading](#data-preloading) | Yes | No | | [DeepSpeed Zero](#deepspeed-zero) | No | Yes | | [torch.compile](#using-torchcompile) | Yes | No | <Tip> Note: when using mixed precision with a small model and a large batch size, there will be some memory savings but with a large model and a small batch size, the memory use will be larger. </Tip> You can combine the above methods to get a cumulative effect. These techniques are available to you whether you are training your model with [`Trainer`] or writing a pure PyTorch loop, in which case you can [configure these optimizations with 🤗 Accelerate](#using-accelerate). If these methods do not result in sufficient gains, you can explore the following options: * [Look into building your own custom Docker container with efficient softare prebuilds](#efficient-software-prebuilds) * [Consider a model that uses Mixture of Experts (MoE)](#mixture-of-experts) * [Convert your model to BetterTransformer to leverage PyTorch native attention](#using-pytorch-native-attention) Finally, if all of the above is still not enough, even after switching to a server-grade GPU like A100, consider moving to a multi-GPU setup. All these approaches are still valid in a multi-GPU setup, plus you can leverage additional parallelism techniques outlined in the [multi-GPU section](perf_train_gpu_many). ## Batch size choice To achieve optimal performance, start by identifying the appropriate batch size. It is recommended to use batch sizes and input/output neuron counts that are of size 2^N. Often it's a multiple of 8, but it can be higher depending on the hardware being used and the model's dtype. For reference, check out NVIDIA's recommendation for [input/output neuron counts]( https://docs.nvidia.com/deeplearning/performance/dl-performance-fully-connected/index.html#input-features) and [batch size](https://docs.nvidia.com/deeplearning/performance/dl-performance-fully-connected/index.html#batch-size) for fully connected layers (which are involved in GEMMs (General Matrix Multiplications)). [Tensor Core Requirements](https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc) define the multiplier based on the dtype and the hardware. For instance, for fp16 data type a multiple of 8 is recommended, unless it's an A100 GPU, in which case use multiples of 64. For parameters that are small, consider also [Dimension Quantization Effects](https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#dim-quantization). This is where tiling happens and the right multiplier can have a significant speedup. ## Gradient Accumulation The **gradient accumulation** method aims to calculate gradients in smaller increments instead of computing them for the entire batch at once. This approach involves iteratively calculating gradients in smaller batches by performing forward and backward passes through the model and accumulating the gradients during the process. Once a sufficient number of gradients have been accumulated, the model's optimization step is executed. By employing gradient accumulation, it becomes possible to increase the **effective batch size** beyond the limitations imposed by the GPU's memory capacity. However, it is important to note that the additional forward and backward passes introduced by gradient accumulation can slow down the training process. You can enable gradient accumulation by adding the `gradient_accumulation_steps` argument to [`TrainingArguments`]: ```py training_args = TrainingArguments(per_device_train_batch_size=1, gradient_accumulation_steps=4, **default_args) ``` In the above example, your effective batch size becomes 4. Alternatively, use 🤗 Accelerate to gain full control over the training loop. Find the 🤗 Accelerate example [further down in this guide](#using-accelerate). While it is advised to max out GPU usage as much as possible, a high number of gradient accumulation steps can result in a more pronounced training slowdown. Consider the following example. Let's say, the `per_device_train_batch_size=4` without gradient accumulation hits the GPU's limit. If you would like to train with batches of size 64, do not set the `per_device_train_batch_size` to 1 and `gradient_accumulation_steps` to 64. Instead, keep `per_device_train_batch_size=4` and set `gradient_accumulation_steps=16`. This results in the same effective batch size while making better use of the available GPU resources. For additional information, please refer to batch size and gradient accumulation benchmarks for [RTX-3090](https://github.com/huggingface/transformers/issues/14608#issuecomment-1004392537) and [A100](https://github.com/huggingface/transformers/issues/15026#issuecomment-1005033957). ## Gradient Checkpointing Some large models may still face memory issues even when the batch size is set to 1 and gradient accumulation is used. This is because there are other components that also require memory storage. Saving all activations from the forward pass in order to compute the gradients during the backward pass can result in significant memory overhead. The alternative approach of discarding the activations and recalculating them when needed during the backward pass, would introduce a considerable computational overhead and slow down the training process. **Gradient checkpointing** offers a compromise between these two approaches and saves strategically selected activations throughout the computational graph so only a fraction of the activations need to be re-computed for the gradients. For an in-depth explanation of gradient checkpointing, refer to [this great article](https://medium.com/tensorflow/fitting-larger-networks-into-memory-583e3c758ff9). To enable gradient checkpointing in the [`Trainer`], pass the corresponding a flag to [`TrainingArguments`]: ```py training_args = TrainingArguments( per_device_train_batch_size=1, gradient_accumulation_steps=4, gradient_checkpointing=True, **default_args ) ``` Alternatively, use 🤗 Accelerate - find the 🤗 Accelerate example [further in this guide](#using-accelerate). <Tip> While gradient checkpointing may improve memory efficiency, it slows training by approximately 20%. </Tip> ## Mixed precision training **Mixed precision training** is a technique that aims to optimize the computational efficiency of training models by utilizing lower-precision numerical formats for certain variables. Traditionally, most models use 32-bit floating point precision (fp32 or float32) to represent and process variables. However, not all variables require this high precision level to achieve accurate results. By reducing the precision of certain variables to lower numerical formats like 16-bit floating point (fp16 or float16), we can speed up the computations. Because in this approach some computations are performed in half-precision, while some are still in full precision, the approach is called mixed precision training. Most commonly mixed precision training is achieved by using fp16 (float16) data types, however, some GPU architectures (such as the Ampere architecture) offer bf16 and tf32 (CUDA internal data type) data types. Check out the [NVIDIA Blog](https://developer.nvidia.com/blog/accelerating-ai-training-with-tf32-tensor-cores/) to learn more about the differences between these data types. ### fp16 The main advantage of mixed precision training comes from saving the activations in half precision (fp16). Although the gradients are also computed in half precision they are converted back to full precision for the optimization step so no memory is saved here. While mixed precision training results in faster computations, it can also lead to more GPU memory being utilized, especially for small batch sizes. This is because the model is now present on the GPU in both 16-bit and 32-bit precision (1.5x the original model on the GPU). To enable mixed precision training, set the `fp16` flag to `True`: ```py training_args = TrainingArguments(per_device_train_batch_size=4, fp16=True, **default_args) ``` If you prefer to use 🤗 Accelerate, find the 🤗 Accelerate example [further in this guide](#using-accelerate). ### BF16 If you have access to an Ampere or newer hardware you can use bf16 for mixed precision training and evaluation. While bf16 has a worse precision than fp16, it has a much bigger dynamic range. In fp16 the biggest number you can have is `65535` and any number above that will result in an overflow. A bf16 number can be as large as `3.39e+38` (!) which is about the same as fp32 - because both have 8-bits used for the numerical range. You can enable BF16 in the 🤗 Trainer with: ```python training_args = TrainingArguments(bf16=True, **default_args) ``` ### TF32 The Ampere hardware uses a magical data type called tf32. It has the same numerical range as fp32 (8-bits), but instead of 23 bits precision it has only 10 bits (same as fp16) and uses only 19 bits in total. It's "magical" in the sense that you can use the normal fp32 training and/or inference code and by enabling tf32 support you can get up to 3x throughput improvement. All you need to do is to add the following to your code: ``` import torch torch.backends.cuda.matmul.allow_tf32 = True torch.backends.cudnn.allow_tf32 = True ``` CUDA will automatically switch to using tf32 instead of fp32 where possible, assuming that the used GPU is from the Ampere series. According to [NVIDIA research](https://developer.nvidia.com/blog/accelerating-ai-training-with-tf32-tensor-cores/), the majority of machine learning training workloads show the same perplexity and convergence with tf32 training as with fp32. If you're already using fp16 or bf16 mixed precision it may help with the throughput as well. You can enable this mode in the 🤗 Trainer: ```python TrainingArguments(tf32=True, **default_args) ``` <Tip> tf32 can't be accessed directly via `tensor.to(dtype=torch.tf32)` because it is an internal CUDA data type. You need `torch>=1.7` to use tf32 data types. </Tip> For additional information on tf32 vs other precisions, please refer to the following benchmarks: [RTX-3090](https://github.com/huggingface/transformers/issues/14608#issuecomment-1004390803) and [A100](https://github.com/huggingface/transformers/issues/15026#issuecomment-1004543189). ## Flash Attention 2 You can speedup the training throughput by using Flash Attention 2 integration in transformers. Check out the appropriate section in the [single GPU section](./perf_infer_gpu_one#Flash-Attention-2) to learn more about how to load a model with Flash Attention 2 modules. ## Optimizer choice The most common optimizer used to train transformer models is Adam or AdamW (Adam with weight decay). Adam achieves good convergence by storing the rolling average of the previous gradients; however, it adds an additional memory footprint of the order of the number of model parameters. To remedy this, you can use an alternative optimizer. For example if you have [NVIDIA/apex](https://github.com/NVIDIA/apex) installed for NVIDIA GPUs, or [ROCmSoftwarePlatform/apex](https://github.com/ROCmSoftwarePlatform/apex) for AMD GPUs, `adamw_apex_fused` will give you the fastest training experience among all supported AdamW optimizers. [`Trainer`] integrates a variety of optimizers that can be used out of box: `adamw_hf`, `adamw_torch`, `adamw_torch_fused`, `adamw_apex_fused`, `adamw_anyprecision`, `adafactor`, or `adamw_bnb_8bit`. More optimizers can be plugged in via a third-party implementation. Let's take a closer look at two alternatives to AdamW optimizer: 1. `adafactor` which is available in [`Trainer`] 2. `adamw_bnb_8bit` is also available in Trainer, but a third-party integration is provided below for demonstration. For comparison, for a 3B-parameter model, like “t5-3b”: * A standard AdamW optimizer will need 24GB of GPU memory because it uses 8 bytes for each parameter (8*3 => 24GB) * Adafactor optimizer will need more than 12GB. It uses slightly more than 4 bytes for each parameter, so 4*3 and then some extra. * 8bit BNB quantized optimizer will use only (2*3) 6GB if all optimizer states are quantized. ### Adafactor Adafactor doesn't store rolling averages for each element in weight matrices. Instead, it keeps aggregated information (sums of rolling averages row- and column-wise), significantly reducing its footprint. However, compared to Adam, Adafactor may have slower convergence in certain cases. You can switch to Adafactor by setting `optim="adafactor"` in [`TrainingArguments`]: ```py training_args = TrainingArguments(per_device_train_batch_size=4, optim="adafactor", **default_args) ``` Combined with other approaches (gradient accumulation, gradient checkpointing, and mixed precision training) you can notice up to 3x improvement while maintaining the throughput! However, as mentioned before, the convergence of Adafactor can be worse than Adam. ### 8-bit Adam Instead of aggregating optimizer states like Adafactor, 8-bit Adam keeps the full state and quantizes it. Quantization means that it stores the state with lower precision and dequantizes it only for the optimization. This is similar to the idea behind mixed precision training. To use `adamw_bnb_8bit`, you simply need to set `optim="adamw_bnb_8bit"` in [`TrainingArguments`]: ```py training_args = TrainingArguments(per_device_train_batch_size=4, optim="adamw_bnb_8bit", **default_args) ``` However, we can also use a third-party implementation of the 8-bit optimizer for demonstration purposes to see how that can be integrated. First, follow the installation guide in the GitHub [repo](https://github.com/TimDettmers/bitsandbytes) to install the `bitsandbytes` library that implements the 8-bit Adam optimizer. Next you need to initialize the optimizer. This involves two steps: * First, group the model's parameters into two groups - one where weight decay should be applied, and the other one where it should not. Usually, biases and layer norm parameters are not weight decayed. * Then do some argument housekeeping to use the same parameters as the previously used AdamW optimizer. ```py import bitsandbytes as bnb from torch import nn from transformers.trainer_pt_utils import get_parameter_names training_args = TrainingArguments(per_device_train_batch_size=4, **default_args) decay_parameters = get_parameter_names(model, [nn.LayerNorm]) decay_parameters = [name for name in decay_parameters if "bias" not in name] optimizer_grouped_parameters = [ { "params": [p for n, p in model.named_parameters() if n in decay_parameters], "weight_decay": training_args.weight_decay, }, { "params": [p for n, p in model.named_parameters() if n not in decay_parameters], "weight_decay": 0.0, }, ] optimizer_kwargs = { "betas": (training_args.adam_beta1, training_args.adam_beta2), "eps": training_args.adam_epsilon, } optimizer_kwargs["lr"] = training_args.learning_rate adam_bnb_optim = bnb.optim.Adam8bit( optimizer_grouped_parameters, betas=(training_args.adam_beta1, training_args.adam_beta2), eps=training_args.adam_epsilon, lr=training_args.learning_rate, ) ``` Finally, pass the custom optimizer as an argument to the `Trainer`: ```py trainer = Trainer(model=model, args=training_args, train_dataset=ds, optimizers=(adam_bnb_optim, None)) ``` Combined with other approaches (gradient accumulation, gradient checkpointing, and mixed precision training), you can expect to get about a 3x memory improvement and even slightly higher throughput as using Adafactor. ### multi_tensor pytorch-nightly introduced `torch.optim._multi_tensor` which should significantly speed up the optimizers for situations with lots of small feature tensors. It should eventually become the default, but if you want to experiment with it sooner, take a look at this GitHub [issue](https://github.com/huggingface/transformers/issues/9965). ## Data preloading One of the important requirements to reach great training speed is the ability to feed the GPU at the maximum speed it can handle. By default, everything happens in the main process, and it might not be able to read the data from disk fast enough, and thus create a bottleneck, leading to GPU under-utilization. Configure the following arguments to reduce the bottleneck: - `DataLoader(pin_memory=True, ...)` - ensures the data gets preloaded into the pinned memory on CPU and typically leads to much faster transfers from CPU to GPU memory. - `DataLoader(num_workers=4, ...)` - spawn several workers to preload data faster. During training, watch the GPU utilization stats; if it's far from 100%, experiment with increasing the number of workers. Of course, the problem could be elsewhere, so many workers won't necessarily lead to better performance. When using [`Trainer`], the corresponding [`TrainingArguments`] are: `dataloader_pin_memory` (`True` by default), and `dataloader_num_workers` (defaults to `0`). ## DeepSpeed ZeRO DeepSpeed is an open-source deep learning optimization library that is integrated with 🤗 Transformers and 🤗 Accelerate. It provides a wide range of features and optimizations designed to improve the efficiency and scalability of large-scale deep learning training. If your model fits onto a single GPU and you have enough space to fit a small batch size, you don't need to use DeepSpeed as it'll only slow things down. However, if the model doesn't fit onto a single GPU or you can't fit a small batch, you can leverage DeepSpeed ZeRO + CPU Offload, or NVMe Offload for much larger models. In this case, you need to separately [install the library](main_classes/deepspeed#installation), then follow one of the guides to create a configuration file and launch DeepSpeed: * For an in-depth guide on DeepSpeed integration with [`Trainer`], review [the corresponding documentation](main_classes/deepspeed), specifically the [section for a single GPU](main_classes/deepspeed#deployment-with-one-gpu). Some adjustments are required to use DeepSpeed in a notebook; please take a look at the [corresponding guide](main_classes/deepspeed#deployment-in-notebooks). * If you prefer to use 🤗 Accelerate, refer to [🤗 Accelerate DeepSpeed guide](https://huggingface.co/docs/accelerate/en/usage_guides/deepspeed). ## Using torch.compile PyTorch 2.0 introduced a new compile function that doesn't require any modification to existing PyTorch code but can optimize your code by adding a single line of code: `model = torch.compile(model)`. If using [`Trainer`], you only need `to` pass the `torch_compile` option in the [`TrainingArguments`]: ```python training_args = TrainingArguments(torch_compile=True, **default_args) ``` `torch.compile` uses Python's frame evaluation API to automatically create a graph from existing PyTorch programs. After capturing the graph, different backends can be deployed to lower the graph to an optimized engine. You can find more details and benchmarks in [PyTorch documentation](https://pytorch.org/get-started/pytorch-2.0/). `torch.compile` has a growing list of backends, which can be found in by calling `torchdynamo.list_backends()`, each of which with its optional dependencies. Choose which backend to use by specifying it via `torch_compile_backend` in the [`TrainingArguments`]. Some of the most commonly used backends are: **Debugging backends**: * `dynamo.optimize("eager")` - Uses PyTorch to run the extracted GraphModule. This is quite useful in debugging TorchDynamo issues. * `dynamo.optimize("aot_eager")` - Uses AotAutograd with no compiler, i.e, just using PyTorch eager for the AotAutograd's extracted forward and backward graphs. This is useful for debugging, and unlikely to give speedups. **Training & inference backends**: * `dynamo.optimize("inductor")` - Uses TorchInductor backend with AotAutograd and cudagraphs by leveraging codegened Triton kernels [Read more](https://dev-discuss.pytorch.org/t/torchinductor-a-pytorch-native-compiler-with-define-by-run-ir-and-symbolic-shapes/747) * `dynamo.optimize("nvfuser")` - nvFuser with TorchScript. [Read more](https://dev-discuss.pytorch.org/t/tracing-with-primitives-update-1-nvfuser-and-its-primitives/593) * `dynamo.optimize("aot_nvfuser")` - nvFuser with AotAutograd. [Read more](https://dev-discuss.pytorch.org/t/tracing-with-primitives-update-1-nvfuser-and-its-primitives/593) * `dynamo.optimize("aot_cudagraphs")` - cudagraphs with AotAutograd. [Read more](https://github.com/pytorch/torchdynamo/pull/757) **Inference-only backend**s: * `dynamo.optimize("ofi")` - Uses Torchscript optimize_for_inference. [Read more](https://pytorch.org/docs/stable/generated/torch.jit.optimize_for_inference.html) * `dynamo.optimize("fx2trt")` - Uses NVIDIA TensorRT for inference optimizations. [Read more](https://pytorch.org/TensorRT/tutorials/getting_started_with_fx_path.html) * `dynamo.optimize("onnxrt")` - Uses ONNXRT for inference on CPU/GPU. [Read more](https://onnxruntime.ai/) * `dynamo.optimize("ipex")` - Uses IPEX for inference on CPU. [Read more](https://github.com/intel/intel-extension-for-pytorch) For an example of using `torch.compile` with 🤗 Transformers, check out this [blog post on fine-tuning a BERT model for Text Classification using the newest PyTorch 2.0 features](https://www.philschmid.de/getting-started-pytorch-2-0-transformers) ## Using 🤗 Accelerate With [🤗 Accelerate](https://huggingface.co/docs/accelerate/index) you can use the above methods while gaining full control over the training loop and can essentially write the loop in pure PyTorch with some minor modifications. Suppose you have combined the methods in the [`TrainingArguments`] like so: ```py training_args = TrainingArguments( per_device_train_batch_size=1, gradient_accumulation_steps=4, gradient_checkpointing=True, fp16=True, **default_args, ) ``` The full example training loop with 🤗 Accelerate is only a handful of lines of code long: ```py from accelerate import Accelerator from torch.utils.data.dataloader import DataLoader dataloader = DataLoader(ds, batch_size=training_args.per_device_train_batch_size) if training_args.gradient_checkpointing: model.gradient_checkpointing_enable() accelerator = Accelerator(fp16=training_args.fp16) model, optimizer, dataloader = accelerator.prepare(model, adam_bnb_optim, dataloader) model.train() for step, batch in enumerate(dataloader, start=1): loss = model(**batch).loss loss = loss / training_args.gradient_accumulation_steps accelerator.backward(loss) if step % training_args.gradient_accumulation_steps == 0: optimizer.step() optimizer.zero_grad() ``` First we wrap the dataset in a [`DataLoader`](https://pytorch.org/docs/stable/data.html#torch.utils.data.DataLoader). Then we can enable gradient checkpointing by calling the model's [`~PreTrainedModel.gradient_checkpointing_enable`] method. When we initialize the [`Accelerator`](https://huggingface.co/docs/accelerate/package_reference/accelerator#accelerate.Accelerator) we can specify if we want to use mixed precision training and it will take care of it for us in the [`prepare`] call. During the [`prepare`](https://huggingface.co/docs/accelerate/package_reference/accelerator#accelerate.Accelerator.prepare) call the dataloader will also be distributed across workers should we use multiple GPUs. We use the same [8-bit optimizer](#8-bit-adam) from the earlier example. Finally, we can add the main training loop. Note that the `backward` call is handled by 🤗 Accelerate. We can also see how gradient accumulation works: we normalize the loss, so we get the average at the end of accumulation and once we have enough steps we run the optimization. Implementing these optimization techniques with 🤗 Accelerate only takes a handful of lines of code and comes with the benefit of more flexibility in the training loop. For a full documentation of all features have a look at the [Accelerate documentation](https://huggingface.co/docs/accelerate/index). ## Efficient Software Prebuilds PyTorch's [pip and conda builds](https://pytorch.org/get-started/locally/#start-locally) come prebuilt with the cuda toolkit which is enough to run PyTorch, but it is insufficient if you need to build cuda extensions. At times, additional efforts may be required to pre-build some components. For instance, if you're using libraries like `apex` that don't come pre-compiled. In other situations figuring out how to install the right cuda toolkit system-wide can be complicated. To address these scenarios PyTorch and NVIDIA released a new version of NGC docker container which already comes with everything prebuilt. You just need to install your programs on it, and it will run out of the box. This approach is also useful if you want to tweak the pytorch source and/or make a new customized build. To find the docker image version you want start [with PyTorch release notes](https://docs.nvidia.com/deeplearning/frameworks/pytorch-release-notes/), choose one of the latest monthly releases. Go into the release's notes for the desired release, check that the environment's components are matching your needs (including NVIDIA Driver requirements!) and then at the very top of that document go to the corresponding NGC page. If for some reason you get lost, here is [the index of all PyTorch NGC images](https://ngc.nvidia.com/catalog/containers/nvidia:pytorch). Next follow the instructions to download and deploy the docker image. ## Mixture of Experts Some recent papers reported a 4-5x training speedup and a faster inference by integrating Mixture of Experts (MoE) into the Transformer models. Since it has been discovered that more parameters lead to better performance, this technique allows to increase the number of parameters by an order of magnitude without increasing training costs. In this approach every other FFN layer is replaced with a MoE Layer which consists of many experts, with a gated function that trains each expert in a balanced way depending on the input token's position in a sequence. ![MoE Transformer 2x block](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/perf-moe-transformer.png) (source: [GLAM](https://ai.googleblog.com/2021/12/more-efficient-in-context-learning-with.html)) You can find exhaustive details and comparison tables in the papers listed at the end of this section. The main drawback of this approach is that it requires staggering amounts of GPU memory - almost an order of magnitude larger than its dense equivalent. Various distillation and approaches are proposed to how to overcome the much higher memory requirements. There is direct trade-off though, you can use just a few experts with a 2-3x smaller base model instead of dozens or hundreds experts leading to a 5x smaller model and thus increase the training speed moderately while increasing the memory requirements moderately as well. Most related papers and implementations are built around Tensorflow/TPUs: - [GShard: Scaling Giant Models with Conditional Computation and Automatic Sharding](https://arxiv.org/abs/2006.16668) - [Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity](https://arxiv.org/abs/2101.03961) - [GLaM: Generalist Language Model (GLaM)](https://ai.googleblog.com/2021/12/more-efficient-in-context-learning-with.html) And for Pytorch DeepSpeed has built one as well: [DeepSpeed-MoE: Advancing Mixture-of-Experts Inference and Training to Power Next-Generation AI Scale](https://arxiv.org/abs/2201.05596), [Mixture of Experts](https://www.deepspeed.ai/tutorials/mixture-of-experts/) - blog posts: [1](https://www.microsoft.com/en-us/research/blog/deepspeed-powers-8x-larger-moe-model-training-with-high-performance/), [2](https://www.microsoft.com/en-us/research/publication/scalable-and-efficient-moe-training-for-multitask-multilingual-models/) and specific deployment with large transformer-based natural language generation models: [blog post](https://www.deepspeed.ai/2021/12/09/deepspeed-moe-nlg.html), [Megatron-Deepspeed branch](https://github.com/microsoft/Megatron-DeepSpeed/tree/moe-training). ## Using PyTorch native attention and Flash Attention PyTorch 2.0 released a native [`torch.nn.functional.scaled_dot_product_attention`](https://pytorch.org/docs/master/generated/torch.nn.functional.scaled_dot_product_attention.html) (SDPA), that allows using fused GPU kernels such as [memory-efficient attention](https://arxiv.org/abs/2112.05682) and [flash attention](https://arxiv.org/abs/2205.14135). After installing the [`optimum`](https://github.com/huggingface/optimum) package, the relevant internal modules can be replaced to use PyTorch's native attention with: ```python model = model.to_bettertransformer() ``` Once converted, train the model as usual. <Tip warning={true}> The PyTorch-native `scaled_dot_product_attention` operator can only dispatch to Flash Attention if no `attention_mask` is provided. By default, in training mode, the BetterTransformer integration **drops the mask support and can only be used for training that does not require a padding mask for batched training**. This is the case, for example, during masked language modeling or causal language modeling. BetterTransformer is not suited for fine-tuning models on tasks that require a padding mask. </Tip> Check out this [blogpost](https://pytorch.org/blog/out-of-the-box-acceleration/) to learn more about acceleration and memory-savings with SDPA.
huggingface/transformers/blob/main/docs/source/en/perf_train_gpu_one.md
!--- Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> # Research projects This folder contains various research projects using 🤗 Transformers. They are not maintained and require a specific version of 🤗 Transformers that is indicated in the requirements file of each folder. Updating them to the most recent version of the library will require some work. To use any of them, just run the command ``` pip install -r requirements.txt ``` inside the folder of your choice. If you need help with any of those, contact the author(s), indicated at the top of the `README` of each folder.
huggingface/transformers/blob/main/examples/research_projects/README.md
## Motivation Without processing, english-> romanian mbart-large-en-ro gets BLEU score 26.8 on the WMT data. With post processing, it can score 37.. Here is the postprocessing code, stolen from @mjpost in this [issue](https://github.com/pytorch/fairseq/issues/1758) ### Instructions Note: You need to have your test_generations.txt before you start this process. (1) Setup `mosesdecoder` and `wmt16-scripts` ```bash cd $HOME git clone [email protected]:moses-smt/mosesdecoder.git cd mosesdecoder git clone [email protected]:rsennrich/wmt16-scripts.git ``` (2) define a function for post processing. It removes diacritics and does other things I don't understand ```bash ro_post_process () { sys=$1 ref=$2 export MOSES_PATH=$HOME/mosesdecoder REPLACE_UNICODE_PUNCT=$MOSES_PATH/scripts/tokenizer/replace-unicode-punctuation.perl NORM_PUNC=$MOSES_PATH/scripts/tokenizer/normalize-punctuation.perl REM_NON_PRINT_CHAR=$MOSES_PATH/scripts/tokenizer/remove-non-printing-char.perl REMOVE_DIACRITICS=$MOSES_PATH/wmt16-scripts/preprocess/remove-diacritics.py NORMALIZE_ROMANIAN=$MOSES_PATH/wmt16-scripts/preprocess/normalise-romanian.py TOKENIZER=$MOSES_PATH/scripts/tokenizer/tokenizer.perl lang=ro for file in $sys $ref; do cat $file \ | $REPLACE_UNICODE_PUNCT \ | $NORM_PUNC -l $lang \ | $REM_NON_PRINT_CHAR \ | $NORMALIZE_ROMANIAN \ | $REMOVE_DIACRITICS \ | $TOKENIZER -no-escape -l $lang \ > $(basename $file).tok done # compute BLEU cat $(basename $sys).tok | sacrebleu -tok none -s none -b $(basename $ref).tok } ``` (3) Call the function on test_generations.txt and test.target For example, ```bash ro_post_process enro_finetune/test_generations.txt wmt_en_ro/test.target ``` This will split out a new blue score and write a new fine called `test_generations.tok` with post-processed outputs. ```
huggingface/transformers/blob/main/examples/legacy/seq2seq/romanian_postprocessing.md
!--- Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> # How To Request Support This is an Open Source Project so please be mindful that like in any other project of this kind there is no obligation to answer all requests for help. However, we want to encourage you to ask for help whenever you think it's needed! We are happy about every question we get because it allows us to better understand your needs, possible misunderstandings, and most importantly a way for you to help us make this library better. That being said, this document's main purpose is to provide guidelines at how you can formulate your requests to increase your chances to be understood and to get support. There are two main venues to receive support: [the forums](https://discuss.huggingface.co/) and [the GitHub issues](https://github.com/huggingface/transformers/issues). ## The Forums [The user forums](https://discuss.huggingface.co/) are supported by the wide community of the library users and backed up by developers when needed. If you have a difficulty with deploying this library or some questions, or you'd like to discuss a new feature, please first consider discussing those things at the forums. Only when you feel your subject matter has been crystalized and you still need support from the library developers do proceed to file an [issue](https://github.com/huggingface/transformers/issues). In particular all "Please explain" questions or objectively very user-specific feature requests belong to the forums. Here are some example of such questions: * "I would like to use a BertModel within a RL-Agent for a customer support service. How can I use a BertForMaskedLM in my ChatBotModel?" * "Could you please explain why T5 has no positional embedding matrix under T5Model?" * "How should I set my generation parameters for translation?" * "How to train T5 on De->En translation?" ## The GitHub Issues Everything which hints at a bug should be opened as an [issue](https://github.com/huggingface/transformers/issues). You are not required to read the following guidelines before opening an issue. However, if you notice that your issue doesn't get any replies, chances are that the developers have one or several difficulties with its quality. In this case, reading the following points and adjusting your issue accordingly could help. 1. Before posting an issue, first search for already posted issues, since chances are someone has already asked a similar question before you. If you use Google your search query should be: ``` "huggingface" "transformers" your query ``` The first two quoted words tell Google to limit the search to the context of the Huggingface Transformers. The remainder is your query - most commonly this would be the error message the software fails with. We will go deeper into details shortly. The results of such a query will typically match GitHub issues, Hugging Face forums, StackExchange, and blogs. If you find relevant hints, you may choose to continue the discussion there if you have follow up questions. If what you found is similar but doesn't quite answer your problem, please, post a new issue and do include links to similar issues or forum discussions you may have found. Let's look at some examples: The error message, often referred to as an assertion, tells us what went wrong. Here is an example of an assertion: ```python Traceback (most recent call last): File "<string>", line 1, in <module> File "/transformers/src/transformers/__init__.py", line 34, in <module> from . import dependency_versions_check File "/transformers/src/transformers/dependency_versions_check.py", line 34, in <module> from .utils import is_tokenizers_available File "/transformers/src/transformers/utils/import_utils.py", line 40, in <module> from tqdm.auto import tqdm ModuleNotFoundError: No module named 'tqdm.auto' ``` and it typically includes a traceback, so that we can see the full stack of calls the program made before it fails. This gives us the context to know why the program failed. Going back to the above example. If you received this error search, look at the very last line of the error which is: ```python ModuleNotFoundError: No module named 'tqdm.auto' ``` And now we can use it to do the searching on your favorite search engine: 1. first for `"huggingface" "transformers" "ModuleNotFoundError: No module named 'tqdm.auto'"` 2. if you don't find relevant results, then search for just `"ModuleNotFoundError: No module named 'tqdm.auto'"` 3. and finally if nothing still comes up, then remove the outside quotes: `ModuleNotFoundError: No module named 'tqdm.auto'` If the error includes any messages that include bits unique to your filesystem, always remove those in the search query since other users will not have the same filesystem as yours. For example: ```bash python -c 'open("/tmp/wrong_path.txt", "r")' Traceback (most recent call last): File "<string>", line 1, in <module> FileNotFoundError: [Errno 2] No such file or directory: '/tmp/wrong_path.txt' ``` Here you'd search for just: `"FileNotFoundError: [Errno 2] No such file or directory"` If the local information that you removed were inside the error message and you removed them you may need to remove double quotes since your query is no longer exact. So if the error message was something like: ```bash ValueError: '/tmp/wrong_path.txt' cannot be found ``` then you'd search for `"ValueError" "cannot be found"` As you search you will notice that when you don't use quotes often the search engines will return a variety of unrelated hits, which may or may not be what you want. Experiment with different ways and find which approach gives the most satisfactory results. 2. Keep the issue short, providing the information that you think will aid the developers to understand your situation. Put yourself in the shoes of the person who has never seen your code or knows anything about your custom setup. This mental exercise will help to develop an intuition to what/what not to share" 3. If there is a software failure, always provide the full traceback, for example: ```python $ python -c 'import transformers' Traceback (most recent call last): File "<string>", line 1, in <module> File "/transformers/src/transformers/__init__.py", line 34, in <module> from . import dependency_versions_check File "/transformers/src/transformers/dependency_versions_check.py", line 34, in <module> from .utils import is_tokenizers_available File "/transformers/src/transformers/utils/import_utils.py", line 40, in <module> from tqdm.auto import tqdm ModuleNotFoundError: No module named 'tqdm.auto' ``` As compared to providing just the last line of the error message, e.g.: ```python ModuleNotFoundError: No module named 'tqdm.auto' ``` which is not sufficient. If your application is running on more than one GPU (e.g. under `DistributedDataParallel`) and typically getting every log and traceback printed multiple times, please make sure that you paste only one copy of it. At times the traceback from parallel processes may get interleaved - so either disentangle these or change the loggers to log only for `local_rank==0` so that only one process logs things. 4. When quoting a traceback, command line instructions and any type of code always enclose it in triple backticks inside the editor window, that is: ```` ``` git clone https://github.com/huggingface/transformers cd transformers pip install . ``` ```` If it's a command line with a long argument list, please consider breaking it down using backslashes and new lines. Here is an example of a good command line quote: ```bash cd examples/seq2seq torchrun --nproc_per_node=2 ./finetune_trainer.py \ --model_name_or_path sshleifer/distill-mbart-en-ro-12-4 --data_dir wmt_en_ro \ --output_dir output_dir --overwrite_output_dir \ --do_train --n_train 500 --num_train_epochs 1 \ --per_device_train_batch_size 1 --freeze_embeds \ --src_lang en_XX --tgt_lang ro_RO --task translation \ --fp16 ``` If you don't break it up, one has to scroll horizontally which often makes it quite difficult to quickly see what's happening. The backslashes allow us to copy the command directly into the console to run it, without needing to edit it. 5. Include only the important information that you think will help the developer to quickly identify the problem. For example applications often create huge amounts of logs. Ask yourself whether providing all or parts of the log is useful. Pasting a 100-1000 lines of log into the issue is an immediate turn off, since it will take a lot of time to figure out where the pertinent parts of the log are. Attaching a full log can be helpful if it's done as an attachment, if it's enclosed in the following html code in the comment editor window: ``` <details> <summary>Full log</summary> <pre> many lines go here </pre> </details> ``` which would result in the following entry, which can be opened if desired, but otherwise takes little space. <details> <summary>Full log</summary> <pre> many lines go here </pre> </details> You could also provide a link to a pastebin service, but this is less beneficial since those links tend to expire quickly and future readers of your issue might not be able to access that log file anymore and may lack some context. 6. If this is an issue in your code, do try to reduce that code to a minimal example that still demonstrates the problem. Please ask at the forums if you have a hard time figuring how to do that. Please realize that we don't have the luxury of having time to try and understand all of your custom code. If you really tried to make a short reproducible code but couldn't figure it out, it might be that having a traceback will give the developer enough information to know what's going on. But if it is not enough and we can't reproduce the problem, we can't really solve it. Do not despair if you can't figure it out from the beginning, just share what you can and perhaps someone else will be able to help you at the forums. If your setup involves any custom datasets, the best way to help us reproduce the problem is to create a [Google Colab notebook](https://colab.research.google.com/) that demonstrates the issue and once you verify that the issue still exists, include a link to that notebook in the Issue. Just make sure that you don't copy and paste the location bar url of the open notebook - as this is private and we won't be able to open it. Instead, you need to click on `Share` in the right upper corner of the notebook, select `Get Link` and then copy and paste the public link it will give to you. 7. If you forked off some of this project's code or example applications, please, do not ask us to go into your code repository and figure out what you may have done. The code is already very complex and unless there is an easy way to do a diff and it's a small diff, it won't be possible to find someone with time on their hands to make a lengthy investigation. Albeit, you might find someone at the forums who will be generous to do this for you. 8. Before reporting an issue, first, always try to update your environment to the latest official version of this library. We have no resources to go and debug older revisions, which could easily have bugs that have been fixed in the latest released version. We understand that this is not always possible, especially when APIs change, in which case file an issue against the highest library version your environment can support. Of course, if you upgrade the library, always retest that the problem is still there. 9. Please do not ask us to reproduce an issue with your custom data, since we don't have it. So, either you should use some existing dataset supported by HF datasets or you need to supply a code that generates a small sample on the fly, or some another quick and simple way to get it. Please do not send us any non-public domain data that may require a license or a permission to be used. 10. Do not tag multiple developers on the issue unless you know this is expected, either because you asked them and they gave you an explicit permission to tag them or the issue template instructs you to do so. The "who to tag for what domain" part of the issue template is there to help users direct their questions to the right developers who are designated maintainers of project's specific domains. They can then decide at their own discretion to tag other developers if they feel it'd help move the issue forward. We currently don't have a triage service and we trust your capacity to identify the right domain and thus the persons to tag in your issue. If you are not sure, please use the forums to ask for guidance. When in doubt, err on the side of not tagging a given person. If you tag multiple people out of context or permission don't be surprised if you get no response at all. Please remember that every time you tag someone, they get a notification and you're taking their time without their permission. Please be sensitive to that. If you got helped by one of the developers in the past please don't tag them in future issues, unless they are listed in the issue template for the domain you are asking about or that developer gave you an explicit permission to tag them in future issues. If you see a certain developer doing multiple and/or recent commits into a specific area of the project that you feel is relevant to your issue, it is not a good reason to tag them. Various developers may be fixing things that prevent them from moving forward, but often their work is focused on a totally different domain. And while they may or may not know how to help you with the problem at hand, it would benefit the whole community much more if they focus on the domain of their unique expertise. 11. Use the Edit button. Take your time, and re-read and improve the wording and formatting to make your posts and comments as easy to understand as possible. Avoid posting multiple comments in a row, as each comment generates a notification for the developers tagged in that issue. If you happened to post multiple comments in a row, and nobody followed up yet - consider merging those into one or a few comments while editing the combined content to be coherent. If you choose to edit your older comments after others posted follow up comments you need to be aware that your modifications might not be noticed, so if it's not a typo fixing, try to write a new comment flagging that something has been changed in the previous comments. For example, the very first comment is the most important one. If while the thread unfolds you realize that things aren't as they seemed to you originally you may want to edit the first post to reflect the up-to-date understanding of the issue at hand so that it helps those who read your issue in the future quickly understand what's going on and not need to sift through dozens of comments. It also helps to indicate that the post was edited. So, those reading the thread later can understand why there might be certain discontinuity in the information flow. Use bullets and items if you have lists of items and the outcome improves overall readability. Use backticks to refer to class and function names, e.g. `BartModel` and `generate` as these stand out and improve the speed of a reader's comprehension. Try not use italics and bold text too much as these often make the text more difficult to read. 12. If you are cross-referencing a specific comment in a given thread or another issue, always link to that specific comment, rather than using the issue link. If you do the latter it could be quite impossible to find which specific comment you're referring to. To get the link to the specific comment do not copy the url from the location bar of your browser, but instead, click the `...` icon in the upper right corner of the comment and then select "Copy Link". For example the first link is a link to an issue, and the second to a specific comment in the same issue: 1. https://github.com/huggingface/transformers/issues/9257 2. https://github.com/huggingface/transformers/issues/9257#issuecomment-749945162 13. If you are replying to a last comment, it's totally fine to make your reply with just your comment in it. The readers can follow the information flow here. But if you're replying to a comment that happened some comments back it's always a good practice to quote just the relevant lines you're replying it. The `>` is used for quoting, or you can always use the menu to do so. For example your editor box will look like: ``` > How big is your gpu cluster? Our cluster is made of 256 gpus. ``` If you are addressing multiple comments, quote the relevant parts of each before your answer. Some people use the same comment to do multiple replies, others separate them into separate comments. Either way works. The latter approach helps for linking to a specific comment. In general the best way to figure out what works the best is learn from issues posted by other people - see which issues get great responses and which get little to no response - observe what the posters who received great responses did differently from those who did not. Thank you for reading this somewhat lengthy document. We would like to conclude that these are not absolute rules, but a friendly advice that will help maximize the chances for us to understand what you are trying to communicate, reproduce the problem then resolve it to your satisfaction and the benefit of the whole community. If after reading this document there are remaining questions on how and why or there is a need for further elucidation, please, don't hesitate to ask your question in [this thread](https://discuss.huggingface.co/t/how-to-request-support/3128).
huggingface/transformers/blob/main/ISSUES.md
!--Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Funnel Transformer <div class="flex flex-wrap space-x-1"> <a href="https://huggingface.co/models?filter=funnel"> <img alt="Models" src="https://img.shields.io/badge/All_model_pages-funnel-blueviolet"> </a> <a href="https://huggingface.co/spaces/docs-demos/funnel-transformer-small"> <img alt="Spaces" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue"> </a> </div> ## Overview The Funnel Transformer model was proposed in the paper [Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing](https://arxiv.org/abs/2006.03236). It is a bidirectional transformer model, like BERT, but with a pooling operation after each block of layers, a bit like in traditional convolutional neural networks (CNN) in computer vision. The abstract from the paper is the following: *With the success of language pretraining, it is highly desirable to develop more efficient architectures of good scalability that can exploit the abundant unlabeled data at a lower cost. To improve the efficiency, we examine the much-overlooked redundancy in maintaining a full-length token-level presentation, especially for tasks that only require a single-vector presentation of the sequence. With this intuition, we propose Funnel-Transformer which gradually compresses the sequence of hidden states to a shorter one and hence reduces the computation cost. More importantly, by re-investing the saved FLOPs from length reduction in constructing a deeper or wider model, we further improve the model capacity. In addition, to perform token-level predictions as required by common pretraining objectives, Funnel-Transformer is able to recover a deep representation for each token from the reduced hidden sequence via a decoder. Empirically, with comparable or fewer FLOPs, Funnel-Transformer outperforms the standard Transformer on a wide variety of sequence-level prediction tasks, including text classification, language understanding, and reading comprehension.* This model was contributed by [sgugger](https://huggingface.co/sgugger). The original code can be found [here](https://github.com/laiguokun/Funnel-Transformer). ## Usage tips - Since Funnel Transformer uses pooling, the sequence length of the hidden states changes after each block of layers. This way, their length is divided by 2, which speeds up the computation of the next hidden states. The base model therefore has a final sequence length that is a quarter of the original one. This model can be used directly for tasks that just require a sentence summary (like sequence classification or multiple choice). For other tasks, the full model is used; this full model has a decoder that upsamples the final hidden states to the same sequence length as the input. - For tasks such as classification, this is not a problem, but for tasks like masked language modeling or token classification, we need a hidden state with the same sequence length as the original input. In those cases, the final hidden states are upsampled to the input sequence length and go through two additional layers. That's why there are two versions of each checkpoint. The version suffixed with “-base” contains only the three blocks, while the version without that suffix contains the three blocks and the upsampling head with its additional layers. - The Funnel Transformer checkpoints are all available with a full version and a base version. The first ones should be used for [`FunnelModel`], [`FunnelForPreTraining`], [`FunnelForMaskedLM`], [`FunnelForTokenClassification`] and [`FunnelForQuestionAnswering`]. The second ones should be used for [`FunnelBaseModel`], [`FunnelForSequenceClassification`] and [`FunnelForMultipleChoice`]. ## Resources - [Text classification task guide](../tasks/sequence_classification) - [Token classification task guide](../tasks/token_classification) - [Question answering task guide](../tasks/question_answering) - [Masked language modeling task guide](../tasks/masked_language_modeling) - [Multiple choice task guide](../tasks/multiple_choice) ## FunnelConfig [[autodoc]] FunnelConfig ## FunnelTokenizer [[autodoc]] FunnelTokenizer - build_inputs_with_special_tokens - get_special_tokens_mask - create_token_type_ids_from_sequences - save_vocabulary ## FunnelTokenizerFast [[autodoc]] FunnelTokenizerFast ## Funnel specific outputs [[autodoc]] models.funnel.modeling_funnel.FunnelForPreTrainingOutput [[autodoc]] models.funnel.modeling_tf_funnel.TFFunnelForPreTrainingOutput <frameworkcontent> <pt> ## FunnelBaseModel [[autodoc]] FunnelBaseModel - forward ## FunnelModel [[autodoc]] FunnelModel - forward ## FunnelModelForPreTraining [[autodoc]] FunnelForPreTraining - forward ## FunnelForMaskedLM [[autodoc]] FunnelForMaskedLM - forward ## FunnelForSequenceClassification [[autodoc]] FunnelForSequenceClassification - forward ## FunnelForMultipleChoice [[autodoc]] FunnelForMultipleChoice - forward ## FunnelForTokenClassification [[autodoc]] FunnelForTokenClassification - forward ## FunnelForQuestionAnswering [[autodoc]] FunnelForQuestionAnswering - forward </pt> <tf> ## TFFunnelBaseModel [[autodoc]] TFFunnelBaseModel - call ## TFFunnelModel [[autodoc]] TFFunnelModel - call ## TFFunnelModelForPreTraining [[autodoc]] TFFunnelForPreTraining - call ## TFFunnelForMaskedLM [[autodoc]] TFFunnelForMaskedLM - call ## TFFunnelForSequenceClassification [[autodoc]] TFFunnelForSequenceClassification - call ## TFFunnelForMultipleChoice [[autodoc]] TFFunnelForMultipleChoice - call ## TFFunnelForTokenClassification [[autodoc]] TFFunnelForTokenClassification - call ## TFFunnelForQuestionAnswering [[autodoc]] TFFunnelForQuestionAnswering - call </tf> </frameworkcontent>
huggingface/transformers/blob/main/docs/source/en/model_doc/funnel.md
!--- Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Checks on a Pull Request When you open a pull request on 🤗 Transformers, a fair number of checks will be run to make sure the patch you are adding is not breaking anything existing. Those checks are of four types: - regular tests - documentation build - code and documentation style - general repository consistency In this document, we will take a stab at explaining what those various checks are and the reason behind them, as well as how to debug them locally if one of them fails on your PR. Note that, ideally, they require you to have a dev install: ```bash pip install transformers[dev] ``` or for an editable install: ```bash pip install -e .[dev] ``` inside the Transformers repo. Since the number of optional dependencies of Transformers has grown a lot, it's possible you don't manage to get all of them. If the dev install fails, make sure to install the Deep Learning framework you are working with (PyTorch, TensorFlow and/or Flax) then do ```bash pip install transformers[quality] ``` or for an editable install: ```bash pip install -e .[quality] ``` ## Tests All the jobs that begin with `ci/circleci: run_tests_` run parts of the Transformers testing suite. Each of those jobs focuses on a part of the library in a certain environment: for instance `ci/circleci: run_tests_pipelines_tf` runs the pipelines test in an environment where TensorFlow only is installed. Note that to avoid running tests when there is no real change in the modules they are testing, only part of the test suite is run each time: a utility is run to determine the differences in the library between before and after the PR (what GitHub shows you in the "Files changes" tab) and picks the tests impacted by that diff. That utility can be run locally with: ```bash python utils/tests_fetcher.py ``` from the root of the Transformers repo. It will: 1. Check for each file in the diff if the changes are in the code or only in comments or docstrings. Only the files with real code changes are kept. 2. Build an internal map that gives for each file of the source code of the library all the files it recursively impacts. Module A is said to impact module B if module B imports module A. For the recursive impact, we need a chain of modules going from module A to module B in which each module imports the previous one. 3. Apply this map on the files gathered in step 1, which gives us the list of model files impacted by the PR. 4. Map each of those files to their corresponding test file(s) and get the list of tests to run. When executing the script locally, you should get the results of step 1, 3 and 4 printed and thus know which tests are run. The script will also create a file named `test_list.txt` which contains the list of tests to run, and you can run them locally with the following command: ```bash python -m pytest -n 8 --dist=loadfile -rA -s $(cat test_list.txt) ``` Just in case anything slipped through the cracks, the full test suite is also run daily. ## Documentation build The `build_pr_documentation` job builds and generates a preview of the documentation to make sure everything looks okay once your PR is merged. A bot will add a link to preview the documentation in your PR. Any changes you make to the PR are automatically updated in the preview. If the documentation fails to build, click on **Details** next to the failed job to see where things went wrong. Often, the error is as simple as a missing file in the `toctree`. If you're interested in building or previewing the documentation locally, take a look at the [`README.md`](https://github.com/huggingface/transformers/tree/main/docs) in the docs folder. ## Code and documentation style Code formatting is applied to all the source files, the examples and the tests using `black` and `ruff`. We also have a custom tool taking care of the formatting of docstrings and `rst` files (`utils/style_doc.py`), as well as the order of the lazy imports performed in the Transformers `__init__.py` files (`utils/custom_init_isort.py`). All of this can be launched by executing ```bash make style ``` The CI checks those have been applied inside the `ci/circleci: check_code_quality` check. It also runs `ruff`, that will have a basic look at your code and will complain if it finds an undefined variable, or one that is not used. To run that check locally, use ```bash make quality ``` This can take a lot of time, so to run the same thing on only the files you modified in the current branch, run ```bash make fixup ``` This last command will also run all the additional checks for the repository consistency. Let's have a look at them. ## Repository consistency This regroups all the tests to make sure your PR leaves the repository in a good state, and is performed by the `ci/circleci: check_repository_consistency` check. You can locally run that check by executing the following: ```bash make repo-consistency ``` This checks that: - All objects added to the init are documented (performed by `utils/check_repo.py`) - All `__init__.py` files have the same content in their two sections (performed by `utils/check_inits.py`) - All code identified as a copy from another module is consistent with the original (performed by `utils/check_copies.py`) - All configuration classes have at least one valid checkpoint mentioned in their docstrings (performed by `utils/check_config_docstrings.py`) - All configuration classes only contain attributes that are used in corresponding modeling files (performed by `utils/check_config_attributes.py`) - The translations of the READMEs and the index of the doc have the same model list as the main README (performed by `utils/check_copies.py`) - The auto-generated tables in the documentation are up to date (performed by `utils/check_table.py`) - The library has all objects available even if not all optional dependencies are installed (performed by `utils/check_dummies.py`) - All docstrings properly document the arguments in the signature of the object (performed by `utils/check_docstrings.py`) Should this check fail, the first two items require manual fixing, the last four can be fixed automatically for you by running the command ```bash make fix-copies ``` Additional checks concern PRs that add new models, mainly that: - All models added are in an Auto-mapping (performed by `utils/check_repo.py`) <!-- TODO Sylvain, add a check that makes sure the common tests are implemented.--> - All models are properly tested (performed by `utils/check_repo.py`) <!-- TODO Sylvain, add the following - All models are added to the main README, inside the main doc - All checkpoints used actually exist on the Hub --> ### Check copies Since the Transformers library is very opinionated with respect to model code, and each model should fully be implemented in a single file without relying on other models, we have added a mechanism that checks whether a copy of the code of a layer of a given model stays consistent with the original. This way, when there is a bug fix, we can see all other impacted models and choose to trickle down the modification or break the copy. <Tip> If a file is a full copy of another file, you should register it in the constant `FULL_COPIES` of `utils/check_copies.py`. </Tip> This mechanism relies on comments of the form `# Copied from xxx`. The `xxx` should contain the whole path to the class of function which is being copied below. For instance, `RobertaSelfOutput` is a direct copy of the `BertSelfOutput` class, so you can see [here](https://github.com/huggingface/transformers/blob/2bd7a27a671fd1d98059124024f580f8f5c0f3b5/src/transformers/models/roberta/modeling_roberta.py#L289) it has a comment: ```py # Copied from transformers.models.bert.modeling_bert.BertSelfOutput ``` Note that instead of applying this to a whole class, you can apply it to the relevant methods that are copied from. For instance [here](https://github.com/huggingface/transformers/blob/2bd7a27a671fd1d98059124024f580f8f5c0f3b5/src/transformers/models/roberta/modeling_roberta.py#L598) you can see how `RobertaPreTrainedModel._init_weights` is copied from the same method in `BertPreTrainedModel` with the comment: ```py # Copied from transformers.models.bert.modeling_bert.BertPreTrainedModel._init_weights ``` Sometimes the copy is exactly the same except for names: for instance in `RobertaAttention`, we use `RobertaSelfAttention` insted of `BertSelfAttention` but other than that, the code is exactly the same. This is why `# Copied from` supports simple string replacements with the follwoing syntax: `Copied from xxx with foo->bar`. This means the code is copied with all instances of `foo` being replaced by `bar`. You can see how it used [here](https://github.com/huggingface/transformers/blob/2bd7a27a671fd1d98059124024f580f8f5c0f3b5/src/transformers/models/roberta/modeling_roberta.py#L304C1-L304C86) in `RobertaAttention` with the comment: ```py # Copied from transformers.models.bert.modeling_bert.BertAttention with Bert->Roberta ``` Note that there shouldn't be any spaces around the arrow (unless that space is part of the pattern to replace of course). You can add several patterns separated by a comma. For instance here `CamemberForMaskedLM` is a direct copy of `RobertaForMaskedLM` with two replacements: `Roberta` to `Camembert` and `ROBERTA` to `CAMEMBERT`. You can see [here](https://github.com/huggingface/transformers/blob/15082a9dc6950ecae63a0d3e5060b2fc7f15050a/src/transformers/models/camembert/modeling_camembert.py#L929) this is done with the comment: ```py # Copied from transformers.models.roberta.modeling_roberta.RobertaForMaskedLM with Roberta->Camembert, ROBERTA->CAMEMBERT ``` If the order matters (because one of the replacements might conflict with a previous one), the replacements are executed from left to right. <Tip> If the replacements change the formatting (if you replace a short name by a very long name for instance), the copy is checked after applying the auto-formatter. </Tip> Another way when the patterns are just different casings of the same replacement (with an uppercased and a lowercased variants) is just to add the option `all-casing`. [Here](https://github.com/huggingface/transformers/blob/15082a9dc6950ecae63a0d3e5060b2fc7f15050a/src/transformers/models/mobilebert/modeling_mobilebert.py#L1237) is an example in `MobileBertForSequenceClassification` with the comment: ```py # Copied from transformers.models.bert.modeling_bert.BertForSequenceClassification with Bert->MobileBert all-casing ``` In this case, the code is copied from `BertForSequenceClassification` by replacing: - `Bert` by `MobileBert` (for instance when using `MobileBertModel` in the init) - `bert` by `mobilebert` (for instance when defining `self.mobilebert`) - `BERT` by `MOBILEBERT` (in the constant `MOBILEBERT_INPUTS_DOCSTRING`)
huggingface/transformers/blob/main/docs/source/en/pr_checks.md
Movement Pruning: Adaptive Sparsity by Fine-Tuning Author: @VictorSanh *Magnitude pruning is a widely used strategy for reducing model size in pure supervised learning; however, it is less effective in the transfer learning regime that has become standard for state-of-the-art natural language processing applications. We propose the use of *movement pruning*, a simple, deterministic first-order weight pruning method that is more adaptive to pretrained model fine-tuning. Experiments show that when pruning large pretrained language models, movement pruning shows significant improvements in high-sparsity regimes. When combined with distillation, the approach achieves minimal accuracy loss with down to only 3% of the model parameters:* | Fine-pruning+Distillation<br>(Teacher=BERT-base fine-tuned) | BERT base<br>fine-tuned | Remaining<br>Weights (%) | Magnitude Pruning | L0 Regularization | Movement Pruning | Soft Movement Pruning | | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | SQuAD - Dev<br>EM/F1 | 80.4/88.1 | 10%<br>3% | 70.2/80.1<br>45.5/59.6 | 72.4/81.9<br>64.3/75.8 | 75.6/84.3<br>67.5/78.0 | **76.6/84.9**<br>**72.7/82.3** | | MNLI - Dev<br>acc/MM acc | 84.5/84.9 | 10%<br>3% | 78.3/79.3<br>69.4/70.6 | 78.7/79.7<br>76.0/76.2 | 80.1/80.4<br>76.5/77.4 | **81.2/81.8**<br>**79.5/80.1** | | QQP - Dev<br>acc/F1 | 91.4/88.4 | 10%<br>3% | 79.8/65.0<br>72.4/57.8 | 88.1/82.8<br>87.0/81.9 | 89.7/86.2<br>86.1/81.5 | **90.2/86.8**<br>**89.1/85.5** | This page contains information on how to fine-prune pre-trained models such as `BERT` to obtain extremely sparse models with movement pruning. In contrast to magnitude pruning which selects weights that are far from 0, movement pruning retains weights that are moving away from 0. For more information, we invite you to check out [our paper](https://arxiv.org/abs/2005.07683). You can also have a look at this fun *Explain Like I'm Five* introductory [slide deck](https://www.slideshare.net/VictorSanh/movement-pruning-explain-like-im-five-234205241). <div align="center"> <img src="https://www.seekpng.com/png/detail/166-1669328_how-to-make-emmental-cheese-at-home-icooker.png" width="400"> </div> ## Extreme sparsity and efficient storage One promise of extreme pruning is to obtain extremely small models that can be easily sent (and stored) on edge devices. By setting weights to 0., we reduce the amount of information we need to store, and thus decreasing the memory size. We are able to obtain extremely sparse fine-pruned models with movement pruning: ~95% of the dense performance with ~5% of total remaining weights in the BERT encoder. In [this notebook](https://github.com/huggingface/transformers/blob/main/examples/research_projects/movement-pruning/Saving_PruneBERT.ipynb), we showcase how we can leverage standard tools that exist out-of-the-box to efficiently store an extremely sparse question answering model (only 6% of total remaining weights in the encoder). We are able to reduce the memory size of the encoder **from the 340MB (the original dense BERT) to 11MB**, without any additional training of the model (every operation is performed *post fine-pruning*). It is sufficiently small to store it on a [91' floppy disk](https://en.wikipedia.org/wiki/Floptical) 📎! While movement pruning does not directly optimize for memory footprint (but rather the number of non-null weights), we hypothetize that further memory compression ratios can be achieved with specific quantization aware trainings (see for instance [Q8BERT](https://arxiv.org/abs/1910.06188), [And the Bit Goes Down](https://arxiv.org/abs/1907.05686) or [Quant-Noise](https://arxiv.org/abs/2004.07320)). ## Fine-pruned models As examples, we release two English PruneBERT checkpoints (models fine-pruned from a pre-trained `BERT` checkpoint), one on SQuAD and the other on MNLI. - **`prunebert-base-uncased-6-finepruned-w-distil-squad`**<br/> Pre-trained `BERT-base-uncased` fine-pruned with soft movement pruning on SQuAD v1.1. We use an additional distillation signal from `BERT-base-uncased` finetuned on SQuAD. The encoder counts 6% of total non-null weights and reaches 83.8 F1 score. The model can be accessed with: `pruned_bert = BertForQuestionAnswering.from_pretrained("huggingface/prunebert-base-uncased-6-finepruned-w-distil-squad")` - **`prunebert-base-uncased-6-finepruned-w-distil-mnli`**<br/> Pre-trained `BERT-base-uncased` fine-pruned with soft movement pruning on MNLI. We use an additional distillation signal from `BERT-base-uncased` finetuned on MNLI. The encoder counts 6% of total non-null weights and reaches 80.7 (matched) accuracy. The model can be accessed with: `pruned_bert = BertForSequenceClassification.from_pretrained("huggingface/prunebert-base-uncased-6-finepruned-w-distil-mnli")` ## How to fine-prune? ### Setup The code relies on the 🤗 Transformers library. In addition to the dependencies listed in the [`examples`](https://github.com/huggingface/transformers/tree/main/examples) folder, you should install a few additional dependencies listed in the `requirements.txt` file: `pip install -r requirements.txt`. Note that we built our experiments on top of a stabilized version of the library (commit https://github.com/huggingface/transformers/commit/352d5472b0c1dec0f420d606d16747d851b4bda8): we do not guarantee that everything is still compatible with the latest version of the main branch. ### Fine-pruning with movement pruning Below, we detail how to reproduce the results reported in the paper. We use SQuAD as a running example. Commands (and scripts) can be easily adapted for other tasks. The following command fine-prunes a pre-trained `BERT-base` on SQuAD using movement pruning towards 15% of remaining weights (85% sparsity). Note that we freeze all the embeddings modules (from their pre-trained value) and only prune the Fully Connected layers in the encoder (12 layers of Transformer Block). ```bash SERIALIZATION_DIR=<OUTPUT_DIR> SQUAD_DATA=<SQUAD_DATA> python examples/movement-pruning/masked_run_squad.py \ --output_dir $SERIALIZATION_DIR \ --data_dir $SQUAD_DATA \ --train_file train-v1.1.json \ --predict_file dev-v1.1.json \ --do_train --do_eval --do_lower_case \ --model_type masked_bert \ --model_name_or_path bert-base-uncased \ --per_gpu_train_batch_size 16 \ --warmup_steps 5400 \ --num_train_epochs 10 \ --learning_rate 3e-5 --mask_scores_learning_rate 1e-2 \ --initial_threshold 1 --final_threshold 0.15 \ --initial_warmup 1 --final_warmup 2 \ --pruning_method topK --mask_init constant --mask_scale 0. ``` ### Fine-pruning with other methods We can also explore other fine-pruning methods by changing the `pruning_method` parameter: Soft movement pruning ```bash python examples/movement-pruning/masked_run_squad.py \ --output_dir $SERIALIZATION_DIR \ --data_dir $SQUAD_DATA \ --train_file train-v1.1.json \ --predict_file dev-v1.1.json \ --do_train --do_eval --do_lower_case \ --model_type masked_bert \ --model_name_or_path bert-base-uncased \ --per_gpu_train_batch_size 16 \ --warmup_steps 5400 \ --num_train_epochs 10 \ --learning_rate 3e-5 --mask_scores_learning_rate 1e-2 \ --initial_threshold 0 --final_threshold 0.1 \ --initial_warmup 1 --final_warmup 2 \ --pruning_method sigmoied_threshold --mask_init constant --mask_scale 0. \ --regularization l1 --final_lambda 400. ``` L0 regularization ```bash python examples/movement-pruning/masked_run_squad.py \ --output_dir $SERIALIZATION_DIR \ --data_dir $SQUAD_DATA \ --train_file train-v1.1.json \ --predict_file dev-v1.1.json \ --do_train --do_eval --do_lower_case \ --model_type masked_bert \ --model_name_or_path bert-base-uncased \ --per_gpu_train_batch_size 16 \ --warmup_steps 5400 \ --num_train_epochs 10 \ --learning_rate 3e-5 --mask_scores_learning_rate 1e-1 \ --initial_threshold 1. --final_threshold 1. \ --initial_warmup 1 --final_warmup 1 \ --pruning_method l0 --mask_init constant --mask_scale 2.197 \ --regularization l0 --final_lambda 125. ``` Iterative Magnitude Pruning ```bash python examples/movement-pruning/masked_run_squad.py \ --output_dir ./dbg \ --data_dir examples/distillation/data/squad_data \ --train_file train-v1.1.json \ --predict_file dev-v1.1.json \ --do_train --do_eval --do_lower_case \ --model_type masked_bert \ --model_name_or_path bert-base-uncased \ --per_gpu_train_batch_size 16 \ --warmup_steps 5400 \ --num_train_epochs 10 \ --learning_rate 3e-5 \ --initial_threshold 1 --final_threshold 0.15 \ --initial_warmup 1 --final_warmup 2 \ --pruning_method magnitude ``` ### After fine-pruning **Counting parameters** Regularization based pruning methods (soft movement pruning and L0 regularization) rely on the penalty to induce sparsity. The multiplicative coefficient controls the sparsity level. To obtain the effective sparsity level in the encoder, we simply count the number of activated (non-null) weights: ```bash python examples/movement-pruning/counts_parameters.py \ --pruning_method sigmoied_threshold \ --threshold 0.1 \ --serialization_dir $SERIALIZATION_DIR ``` **Pruning once for all** Once the model has been fine-pruned, the pruned weights can be set to 0. once for all (reducing the amount of information to store). In our running experiments, we can convert a `MaskedBertForQuestionAnswering` (a BERT model augmented to enable on-the-fly pruning capabilities) to a standard `BertForQuestionAnswering`: ```bash python examples/movement-pruning/bertarize.py \ --pruning_method sigmoied_threshold \ --threshold 0.1 \ --model_name_or_path $SERIALIZATION_DIR ``` ## Hyper-parameters For reproducibility purposes, we share the detailed results presented in the paper. These [tables](https://docs.google.com/spreadsheets/d/17JgRq_OFFTniUrz6BZWW_87DjFkKXpI1kYDSsseT_7g/edit?usp=sharing) exhaustively describe the individual hyper-parameters used for each data point. ## Inference speed Early experiments show that even though models fine-pruned with (soft) movement pruning are extremely sparse, they do not benefit from significant improvement in terms of inference speed when using the standard PyTorch inference. We are currently benchmarking and exploring inference setups specifically for sparse architectures. In particular, hardware manufacturers are announcing devices that will speedup inference for sparse networks considerably. ## Citation If you find this resource useful, please consider citing the following paper: ``` @article{sanh2020movement, title={Movement Pruning: Adaptive Sparsity by Fine-Tuning}, author={Victor Sanh and Thomas Wolf and Alexander M. Rush}, year={2020}, eprint={2005.07683}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
huggingface/transformers/blob/main/examples/research_projects/movement-pruning/README.md
!--Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # The Transformer model family Since its introduction in 2017, the [original Transformer](https://arxiv.org/abs/1706.03762) model has inspired many new and exciting models that extend beyond natural language processing (NLP) tasks. There are models for [predicting the folded structure of proteins](https://huggingface.co/blog/deep-learning-with-proteins), [training a cheetah to run](https://huggingface.co/blog/train-decision-transformers), and [time series forecasting](https://huggingface.co/blog/time-series-transformers). With so many Transformer variants available, it can be easy to miss the bigger picture. What all these models have in common is they're based on the original Transformer architecture. Some models only use the encoder or decoder, while others use both. This provides a useful taxonomy to categorize and examine the high-level differences within models in the Transformer family, and it'll help you understand Transformers you haven't encountered before. If you aren't familiar with the original Transformer model or need a refresher, check out the [How do Transformers work](https://huggingface.co/course/chapter1/4?fw=pt) chapter from the Hugging Face course. <div align="center"> <iframe width="560" height="315" src="https://www.youtube.com/embed/H39Z_720T5s" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe> </div> ## Computer vision <iframe style="border: 1px solid rgba(0, 0, 0, 0.1);" width="1000" height="450" src="https://www.figma.com/embed?embed_host=share&url=https%3A%2F%2Fwww.figma.com%2Ffile%2FacQBpeFBVvrDUlzFlkejoz%2FModelscape-timeline%3Fnode-id%3D0%253A1%26t%3Dm0zJ7m2BQ9oe0WtO-1" allowfullscreen></iframe> ### Convolutional network For a long time, convolutional networks (CNNs) were the dominant paradigm for computer vision tasks until the [Vision Transformer](https://arxiv.org/abs/2010.11929) demonstrated its scalability and efficiency. Even then, some of a CNN's best qualities, like translation invariance, are so powerful (especially for certain tasks) that some Transformers incorporate convolutions in their architecture. [ConvNeXt](model_doc/convnext) flipped this exchange around and incorporated design choices from Transformers to modernize a CNN. For example, ConvNeXt uses non-overlapping sliding windows to patchify an image and a larger kernel to increase its global receptive field. ConvNeXt also makes several layer design choices to be more memory-efficient and improve performance, so it competes favorably with Transformers! ### Encoder[[cv-encoder]] The [Vision Transformer (ViT)](model_doc/vit) opened the door to computer vision tasks without convolutions. ViT uses a standard Transformer encoder, but its main breakthrough was how it treated an image. It splits an image into fixed-size patches and uses them to create an embedding, just like how a sentence is split into tokens. ViT capitalized on the Transformers' efficient architecture to demonstrate competitive results with the CNNs at the time while requiring fewer resources to train. ViT was soon followed by other vision models that could also handle dense vision tasks like segmentation as well as detection. One of these models is the [Swin](model_doc/swin) Transformer. It builds hierarchical feature maps (like a CNN 👀 and unlike ViT) from smaller-sized patches and merges them with neighboring patches in deeper layers. Attention is only computed within a local window, and the window is shifted between attention layers to create connections to help the model learn better. Since the Swin Transformer can produce hierarchical feature maps, it is a good candidate for dense prediction tasks like segmentation and detection. The [SegFormer](model_doc/segformer) also uses a Transformer encoder to build hierarchical feature maps, but it adds a simple multilayer perceptron (MLP) decoder on top to combine all the feature maps and make a prediction. Other vision models, like BeIT and ViTMAE, drew inspiration from BERT's pretraining objective. [BeIT](model_doc/beit) is pretrained by *masked image modeling (MIM)*; the image patches are randomly masked, and the image is also tokenized into visual tokens. BeIT is trained to predict the visual tokens corresponding to the masked patches. [ViTMAE](model_doc/vitmae) has a similar pretraining objective, except it must predict the pixels instead of visual tokens. What's unusual is 75% of the image patches are masked! The decoder reconstructs the pixels from the masked tokens and encoded patches. After pretraining, the decoder is thrown away, and the encoder is ready to be used in downstream tasks. ### Decoder[[cv-decoder]] Decoder-only vision models are rare because most vision models rely on an encoder to learn an image representation. But for use cases like image generation, the decoder is a natural fit, as we've seen from text generation models like GPT-2. [ImageGPT](model_doc/imagegpt) uses the same architecture as GPT-2, but instead of predicting the next token in a sequence, it predicts the next pixel in an image. In addition to image generation, ImageGPT could also be finetuned for image classification. ### Encoder-decoder[[cv-encoder-decoder]] Vision models commonly use an encoder (also known as a backbone) to extract important image features before passing them to a Transformer decoder. [DETR](model_doc/detr) has a pretrained backbone, but it also uses the complete Transformer encoder-decoder architecture for object detection. The encoder learns image representations and combines them with object queries (each object query is a learned embedding that focuses on a region or object in an image) in the decoder. DETR predicts the bounding box coordinates and class label for each object query. ## Natural language processing <iframe style="border: 1px solid rgba(0, 0, 0, 0.1);" width="1000" height="450" src="https://www.figma.com/embed?embed_host=share&url=https%3A%2F%2Fwww.figma.com%2Ffile%2FUhbQAZDlpYW5XEpdFy6GoG%2Fnlp-model-timeline%3Fnode-id%3D0%253A1%26t%3D4mZMr4r1vDEYGJ50-1" allowfullscreen></iframe> ### Encoder[[nlp-encoder]] [BERT](model_doc/bert) is an encoder-only Transformer that randomly masks certain tokens in the input to avoid seeing other tokens, which would allow it to "cheat". The pretraining objective is to predict the masked token based on the context. This allows BERT to fully use the left and right contexts to help it learn a deeper and richer representation of the inputs. However, there was still room for improvement in BERT's pretraining strategy. [RoBERTa](model_doc/roberta) improved upon this by introducing a new pretraining recipe that includes training for longer and on larger batches, randomly masking tokens at each epoch instead of just once during preprocessing, and removing the next-sentence prediction objective. The dominant strategy to improve performance is to increase the model size. But training large models is computationally expensive. One way to reduce computational costs is using a smaller model like [DistilBERT](model_doc/distilbert). DistilBERT uses [knowledge distillation](https://arxiv.org/abs/1503.02531) - a compression technique - to create a smaller version of BERT while keeping nearly all of its language understanding capabilities. However, most Transformer models continued to trend towards more parameters, leading to new models focused on improving training efficiency. [ALBERT](model_doc/albert) reduces memory consumption by lowering the number of parameters in two ways: separating the larger vocabulary embedding into two smaller matrices and allowing layers to share parameters. [DeBERTa](model_doc/deberta) added a disentangled attention mechanism where the word and its position are separately encoded in two vectors. The attention is computed from these separate vectors instead of a single vector containing the word and position embeddings. [Longformer](model_doc/longformer) also focused on making attention more efficient, especially for processing documents with longer sequence lengths. It uses a combination of local windowed attention (attention only calculated from fixed window size around each token) and global attention (only for specific task tokens like `[CLS]` for classification) to create a sparse attention matrix instead of a full attention matrix. ### Decoder[[nlp-decoder]] [GPT-2](model_doc/gpt2) is a decoder-only Transformer that predicts the next word in the sequence. It masks tokens to the right so the model can't "cheat" by looking ahead. By pretraining on a massive body of text, GPT-2 became really good at generating text, even if the text is only sometimes accurate or true. But GPT-2 lacked the bidirectional context from BERT's pretraining, which made it unsuitable for certain tasks. [XLNET](model_doc/xlnet) combines the best of both BERT and GPT-2's pretraining objectives by using a permutation language modeling objective (PLM) that allows it to learn bidirectionally. After GPT-2, language models grew even bigger and are now known as *large language models (LLMs)*. LLMs demonstrate few- or even zero-shot learning if pretrained on a large enough dataset. [GPT-J](model_doc/gptj) is an LLM with 6B parameters and trained on 400B tokens. GPT-J was followed by [OPT](model_doc/opt), a family of decoder-only models, the largest of which is 175B and trained on 180B tokens. [BLOOM](model_doc/bloom) was released around the same time, and the largest model in the family has 176B parameters and is trained on 366B tokens in 46 languages and 13 programming languages. ### Encoder-decoder[[nlp-encoder-decoder]] [BART](model_doc/bart) keeps the original Transformer architecture, but it modifies the pretraining objective with *text infilling* corruption, where some text spans are replaced with a single `mask` token. The decoder predicts the uncorrupted tokens (future tokens are masked) and uses the encoder's hidden states to help it. [Pegasus](model_doc/pegasus) is similar to BART, but Pegasus masks entire sentences instead of text spans. In addition to masked language modeling, Pegasus is pretrained by gap sentence generation (GSG). The GSG objective masks whole sentences important to a document, replacing them with a `mask` token. The decoder must generate the output from the remaining sentences. [T5](model_doc/t5) is a more unique model that casts all NLP tasks into a text-to-text problem using specific prefixes. For example, the prefix `Summarize:` indicates a summarization task. T5 is pretrained by supervised (GLUE and SuperGLUE) training and self-supervised training (randomly sample and drop out 15% of tokens). ## Audio <iframe style="border: 1px solid rgba(0, 0, 0, 0.1);" width="1000" height="450" src="https://www.figma.com/embed?embed_host=share&url=https%3A%2F%2Fwww.figma.com%2Ffile%2Fvrchl8jDV9YwNVPWu2W0kK%2Fspeech-and-audio-model-timeline%3Fnode-id%3D0%253A1%26t%3DmM4H8pPMuK23rClL-1" allowfullscreen></iframe> ### Encoder[[audio-encoder]] [Wav2Vec2](model_doc/wav2vec2) uses a Transformer encoder to learn speech representations directly from raw audio waveforms. It is pretrained with a contrastive task to determine the true speech representation from a set of false ones. [HuBERT](model_doc/hubert) is similar to Wav2Vec2 but has a different training process. Target labels are created by a clustering step in which segments of similar audio are assigned to a cluster which becomes a hidden unit. The hidden unit is mapped to an embedding to make a prediction. ### Encoder-decoder[[audio-encoder-decoder]] [Speech2Text](model_doc/speech_to_text) is a speech model designed for automatic speech recognition (ASR) and speech translation. The model accepts log mel-filter bank features extracted from the audio waveform and pretrained autoregressively to generate a transcript or translation. [Whisper](model_doc/whisper) is also an ASR model, but unlike many other speech models, it is pretrained on a massive amount of ✨ labeled ✨ audio transcription data for zero-shot performance. A large chunk of the dataset also contains non-English languages, meaning Whisper can also be used for low-resource languages. Structurally, Whisper is similar to Speech2Text. The audio signal is converted to a log-mel spectrogram encoded by the encoder. The decoder generates the transcript autoregressively from the encoder's hidden states and the previous tokens. ## Multimodal <iframe style="border: 1px solid rgba(0, 0, 0, 0.1);" width="1000" height="450" src="https://www.figma.com/embed?embed_host=share&url=https%3A%2F%2Fwww.figma.com%2Ffile%2FcX125FQHXJS2gxeICiY93p%2Fmultimodal%3Fnode-id%3D0%253A1%26t%3DhPQwdx3HFPWJWnVf-1" allowfullscreen></iframe> ### Encoder[[mm-encoder]] [VisualBERT](model_doc/visual_bert) is a multimodal model for vision-language tasks released shortly after BERT. It combines BERT and a pretrained object detection system to extract image features into visual embeddings, passed alongside text embeddings to BERT. VisualBERT predicts the masked text based on the unmasked text and the visual embeddings, and it also has to predict whether the text is aligned with the image. When ViT was released, [ViLT](model_doc/vilt) adopted ViT in its architecture because it was easier to get the image embeddings this way. The image embeddings are jointly processed with the text embeddings. From there, ViLT is pretrained by image text matching, masked language modeling, and whole word masking. [CLIP](model_doc/clip) takes a different approach and makes a pair prediction of (`image`, `text`) . An image encoder (ViT) and a text encoder (Transformer) are jointly trained on a 400 million (`image`, `text`) pair dataset to maximize the similarity between the image and text embeddings of the (`image`, `text`) pairs. After pretraining, you can use natural language to instruct CLIP to predict the text given an image or vice versa. [OWL-ViT](model_doc/owlvit) builds on top of CLIP by using it as its backbone for zero-shot object detection. After pretraining, an object detection head is added to make a set prediction over the (`class`, `bounding box`) pairs. ### Encoder-decoder[[mm-encoder-decoder]] Optical character recognition (OCR) is a long-standing text recognition task that typically involves several components to understand the image and generate the text. [TrOCR](model_doc/trocr) simplifies the process using an end-to-end Transformer. The encoder is a ViT-style model for image understanding and processes the image as fixed-size patches. The decoder accepts the encoder's hidden states and autoregressively generates text. [Donut](model_doc/donut) is a more general visual document understanding model that doesn't rely on OCR-based approaches. It uses a Swin Transformer as the encoder and multilingual BART as the decoder. Donut is pretrained to read text by predicting the next word based on the image and text annotations. The decoder generates a token sequence given a prompt. The prompt is represented by a special token for each downstream task. For example, document parsing has a special `parsing` token that is combined with the encoder hidden states to parse the document into a structured output format (JSON). ## Reinforcement learning <iframe style="border: 1px solid rgba(0, 0, 0, 0.1);" width="1000" height="450" src="https://www.figma.com/embed?embed_host=share&url=https%3A%2F%2Fwww.figma.com%2Ffile%2FiB3Y6RvWYki7ZuKO6tNgZq%2Freinforcement-learning%3Fnode-id%3D0%253A1%26t%3DhPQwdx3HFPWJWnVf-1" allowfullscreen></iframe> ### Decoder[[rl-decoder]] The Decision and Trajectory Transformer casts the state, action, and reward as a sequence modeling problem. The [Decision Transformer](model_doc/decision_transformer) generates a series of actions that lead to a future desired return based on returns-to-go, past states, and actions. For the last *K* timesteps, each of the three modalities are converted into token embeddings and processed by a GPT-like model to predict a future action token. [Trajectory Transformer](model_doc/trajectory_transformer) also tokenizes the states, actions, and rewards and processes them with a GPT architecture. Unlike the Decision Transformer, which is focused on reward conditioning, the Trajectory Transformer generates future actions with beam search.
huggingface/transformers/blob/main/docs/source/en/model_summary.md
!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Load adapters with 🤗 PEFT [[open-in-colab]] [Parameter-Efficient Fine Tuning (PEFT)](https://huggingface.co/blog/peft) methods freeze the pretrained model parameters during fine-tuning and add a small number of trainable parameters (the adapters) on top of it. The adapters are trained to learn task-specific information. This approach has been shown to be very memory-efficient with lower compute usage while producing results comparable to a fully fine-tuned model. Adapters trained with PEFT are also usually an order of magnitude smaller than the full model, making it convenient to share, store, and load them. <div class="flex flex-col justify-center"> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/peft/PEFT-hub-screenshot.png"/> <figcaption class="text-center">The adapter weights for a OPTForCausalLM model stored on the Hub are only ~6MB compared to the full size of the model weights, which can be ~700MB.</figcaption> </div> If you're interested in learning more about the 🤗 PEFT library, check out the [documentation](https://huggingface.co/docs/peft/index). ## Setup Get started by installing 🤗 PEFT: ```bash pip install peft ``` If you want to try out the brand new features, you might be interested in installing the library from source: ```bash pip install git+https://github.com/huggingface/peft.git ``` ## Supported PEFT models 🤗 Transformers natively supports some PEFT methods, meaning you can load adapter weights stored locally or on the Hub and easily run or train them with a few lines of code. The following methods are supported: - [Low Rank Adapters](https://huggingface.co/docs/peft/conceptual_guides/lora) - [IA3](https://huggingface.co/docs/peft/conceptual_guides/ia3) - [AdaLoRA](https://arxiv.org/abs/2303.10512) If you want to use other PEFT methods, such as prompt learning or prompt tuning, or about the 🤗 PEFT library in general, please refer to the [documentation](https://huggingface.co/docs/peft/index). ## Load a PEFT adapter To load and use a PEFT adapter model from 🤗 Transformers, make sure the Hub repository or local directory contains an `adapter_config.json` file and the adapter weights, as shown in the example image above. Then you can load the PEFT adapter model using the `AutoModelFor` class. For example, to load a PEFT adapter model for causal language modeling: 1. specify the PEFT model id 2. pass it to the [`AutoModelForCausalLM`] class ```py from transformers import AutoModelForCausalLM, AutoTokenizer peft_model_id = "ybelkada/opt-350m-lora" model = AutoModelForCausalLM.from_pretrained(peft_model_id) ``` <Tip> You can load a PEFT adapter with either an `AutoModelFor` class or the base model class like `OPTForCausalLM` or `LlamaForCausalLM`. </Tip> You can also load a PEFT adapter by calling the `load_adapter` method: ```py from transformers import AutoModelForCausalLM, AutoTokenizer model_id = "facebook/opt-350m" peft_model_id = "ybelkada/opt-350m-lora" model = AutoModelForCausalLM.from_pretrained(model_id) model.load_adapter(peft_model_id) ``` ## Load in 8bit or 4bit The `bitsandbytes` integration supports 8bit and 4bit precision data types, which are useful for loading large models because it saves memory (see the `bitsandbytes` integration [guide](./quantization#bitsandbytes-integration) to learn more). Add the `load_in_8bit` or `load_in_4bit` parameters to [`~PreTrainedModel.from_pretrained`] and set `device_map="auto"` to effectively distribute the model to your hardware: ```py from transformers import AutoModelForCausalLM, AutoTokenizer peft_model_id = "ybelkada/opt-350m-lora" model = AutoModelForCausalLM.from_pretrained(peft_model_id, device_map="auto", load_in_8bit=True) ``` ## Add a new adapter You can use [`~peft.PeftModel.add_adapter`] to add a new adapter to a model with an existing adapter as long as the new adapter is the same type as the current one. For example, if you have an existing LoRA adapter attached to a model: ```py from transformers import AutoModelForCausalLM, OPTForCausalLM, AutoTokenizer from peft import LoraConfig model_id = "facebook/opt-350m" model = AutoModelForCausalLM.from_pretrained(model_id) lora_config = LoraConfig( target_modules=["q_proj", "k_proj"], init_lora_weights=False ) model.add_adapter(lora_config, adapter_name="adapter_1") ``` To add a new adapter: ```py # attach new adapter with same config model.add_adapter(lora_config, adapter_name="adapter_2") ``` Now you can use [`~peft.PeftModel.set_adapter`] to set which adapter to use: ```py # use adapter_1 model.set_adapter("adapter_1") output = model.generate(**inputs) print(tokenizer.decode(output_disabled[0], skip_special_tokens=True)) # use adapter_2 model.set_adapter("adapter_2") output_enabled = model.generate(**inputs) print(tokenizer.decode(output_enabled[0], skip_special_tokens=True)) ``` ## Enable and disable adapters Once you've added an adapter to a model, you can enable or disable the adapter module. To enable the adapter module: ```py from transformers import AutoModelForCausalLM, OPTForCausalLM, AutoTokenizer from peft import PeftConfig model_id = "facebook/opt-350m" adapter_model_id = "ybelkada/opt-350m-lora" tokenizer = AutoTokenizer.from_pretrained(model_id) text = "Hello" inputs = tokenizer(text, return_tensors="pt") model = AutoModelForCausalLM.from_pretrained(model_id) peft_config = PeftConfig.from_pretrained(adapter_model_id) # to initiate with random weights peft_config.init_lora_weights = False model.add_adapter(peft_config) model.enable_adapters() output = model.generate(**inputs) ``` To disable the adapter module: ```py model.disable_adapters() output = model.generate(**inputs) ``` ## Train a PEFT adapter PEFT adapters are supported by the [`Trainer`] class so that you can train an adapter for your specific use case. It only requires adding a few more lines of code. For example, to train a LoRA adapter: <Tip> If you aren't familiar with fine-tuning a model with [`Trainer`], take a look at the [Fine-tune a pretrained model](training) tutorial. </Tip> 1. Define your adapter configuration with the task type and hyperparameters (see [`~peft.LoraConfig`] for more details about what the hyperparameters do). ```py from peft import LoraConfig peft_config = LoraConfig( lora_alpha=16, lora_dropout=0.1, r=64, bias="none", task_type="CAUSAL_LM", ) ``` 2. Add adapter to the model. ```py model.add_adapter(peft_config) ``` 3. Now you can pass the model to [`Trainer`]! ```py trainer = Trainer(model=model, ...) trainer.train() ``` To save your trained adapter and load it back: ```py model.save_pretrained(save_dir) model = AutoModelForCausalLM.from_pretrained(save_dir) ``` ## Add additional trainable layers to a PEFT adapter You can also fine-tune additional trainable adapters on top of a model that has adapters attached by passing `modules_to_save` in your PEFT config. For example, if you want to also fine-tune the lm_head on top of a model with a LoRA adapter: ```py from transformers import AutoModelForCausalLM, OPTForCausalLM, AutoTokenizer from peft import LoraConfig model_id = "facebook/opt-350m" model = AutoModelForCausalLM.from_pretrained(model_id) lora_config = LoraConfig( target_modules=["q_proj", "k_proj"], modules_to_save=["lm_head"], ) model.add_adapter(lora_config) ``` <!-- TODO: (@younesbelkada @stevhliu) - Link to PEFT docs for further details - Trainer - 8-bit / 4-bit examples ? -->
huggingface/transformers/blob/main/docs/source/en/peft.md
!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> # Video Vision Transformer (ViViT) ## Overview The Vivit model was proposed in [ViViT: A Video Vision Transformer](https://arxiv.org/abs/2103.15691) by Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lučić, Cordelia Schmid. The paper proposes one of the first successful pure-transformer based set of models for video understanding. The abstract from the paper is the following: *We present pure-transformer based models for video classification, drawing upon the recent success of such models in image classification. Our model extracts spatio-temporal tokens from the input video, which are then encoded by a series of transformer layers. In order to handle the long sequences of tokens encountered in video, we propose several, efficient variants of our model which factorise the spatial- and temporal-dimensions of the input. Although transformer-based models are known to only be effective when large training datasets are available, we show how we can effectively regularise the model during training and leverage pretrained image models to be able to train on comparatively small datasets. We conduct thorough ablation studies, and achieve state-of-the-art results on multiple video classification benchmarks including Kinetics 400 and 600, Epic Kitchens, Something-Something v2 and Moments in Time, outperforming prior methods based on deep 3D convolutional networks.* This model was contributed by [jegormeister](https://huggingface.co/jegormeister). The original code (written in JAX) can be found [here](https://github.com/google-research/scenic/tree/main/scenic/projects/vivit). ## VivitConfig [[autodoc]] VivitConfig ## VivitImageProcessor [[autodoc]] VivitImageProcessor - preprocess ## VivitModel [[autodoc]] VivitModel - forward ## VivitForVideoClassification [[autodoc]] transformers.VivitForVideoClassification - forward
huggingface/transformers/blob/main/docs/source/en/model_doc/vivit.md
!--Copyright 2023 Mistral AI and The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Mistral ## Overview Mistral-7B-v0.1 is Mistral AI's first Large Language Model (LLM). ### Model Details Mistral-7B-v0.1 is a decoder-based LM with the following architectural choices: * Sliding Window Attention - Trained with 8k context length and fixed cache size, with a theoretical attention span of 128K tokens * GQA (Grouped Query Attention) - allowing faster inference and lower cache size. * Byte-fallback BPE tokenizer - ensures that characters are never mapped to out of vocabulary tokens. We also provide an instruction fine-tuned model: `Mistral-7B-Instruct-v0.1` which can be used for chat-based inference. For more details please read our [release blog post](https://mistral.ai/news/announcing-mistral-7b/) ### License Both `Mistral-7B-v0.1` and `Mistral-7B-Instruct-v0.1` are released under the Apache 2.0 license. ## Usage tips `Mistral-7B-v0.1` and `Mistral-7B-Instruct-v0.1` can be found on the [Huggingface Hub](https://huggingface.co/mistralai) These ready-to-use checkpoints can be downloaded and used via the HuggingFace Hub: ```python >>> from transformers import AutoModelForCausalLM, AutoTokenizer >>> device = "cuda" # the device to load the model onto >>> model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-v0.1") >>> tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1") >>> prompt = "My favourite condiment is" >>> model_inputs = tokenizer([prompt], return_tensors="pt").to(device) >>> model.to(device) >>> generated_ids = model.generate(**model_inputs, max_new_tokens=100, do_sample=True) >>> tokenizer.batch_decode(generated_ids)[0] "The expected output" ``` Raw weights for `Mistral-7B-v0.1` and `Mistral-7B-Instruct-v0.1` can be downloaded from: | Model Name | Checkpoint | |----------------------------|-----------------------------------------------------------------------------------------| | `Mistral-7B-v0.1` | [Raw Checkpoint](https://files.mistral-7b-v0-1.mistral.ai/mistral-7B-v0.1.tar) | | `Mistral-7B-Instruct-v0.1` | [Raw Checkpoint](https://files.mistral-7b-v0-1.mistral.ai/mistral-7B-instruct-v0.1.tar) | To use these raw checkpoints with HuggingFace you can use the `convert_mistral_weights_to_hf.py` script to convert them to the HuggingFace format: ```bash python src/transformers/models/mistral/convert_mistral_weights_to_hf.py \ --input_dir /path/to/downloaded/mistral/weights --model_size 7B --output_dir /output/path ``` You can then load the converted model from the `output/path`: ```python from transformers import MistralForCausalLM, LlamaTokenizer tokenizer = LlamaTokenizer.from_pretrained("/output/path") model = MistralForCausalLM.from_pretrained("/output/path") ``` ## Combining Mistral and Flash Attention 2 First, make sure to install the latest version of Flash Attention 2 to include the sliding window attention feature. ```bash pip install -U flash-attn --no-build-isolation ``` Make also sure that you have a hardware that is compatible with Flash-Attention 2. Read more about it in the official documentation of [`flash-attn`](https://github.com/Dao-AILab/flash-attention) repository. Make also sure to load your model in half-precision (e.g. `torch.float16`) To load and run a model using Flash Attention 2, refer to the snippet below: ```python >>> import torch >>> from transformers import AutoModelForCausalLM, AutoTokenizer >>> device = "cuda" # the device to load the model onto >>> model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-v0.1", torch_dtype=torch.float16, attn_implementation="flash_attention_2") >>> tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1") >>> prompt = "My favourite condiment is" >>> model_inputs = tokenizer([prompt], return_tensors="pt").to(device) >>> model.to(device) >>> generated_ids = model.generate(**model_inputs, max_new_tokens=100, do_sample=True) >>> tokenizer.batch_decode(generated_ids)[0] "The expected output" ``` ### Expected speedups Below is a expected speedup diagram that compares pure inference time between the native implementation in transformers using `mistralai/Mistral-7B-v0.1` checkpoint and the Flash Attention 2 version of the model. <div style="text-align: center"> <img src="https://huggingface.co/datasets/ybelkada/documentation-images/resolve/main/mistral-7b-inference-large-seqlen.png"> </div> ### Sliding window Attention The current implementation supports the sliding window attention mechanism and memory efficient cache management. To enable sliding window attention, just make sure to have a `flash-attn` version that is compatible with sliding window attention (`>=2.3.0`). The Flash Attention-2 model uses also a more memory efficient cache slicing mechanism - as recommended per the official implementation of Mistral model that use rolling cache mechanism we keep the cache size fixed (`self.config.sliding_window`), support batched generation only for `padding_side="left"` and use the absolute position of the current token to compute the positional embedding. ## The Mistral Team Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed. ## MistralConfig [[autodoc]] MistralConfig ## MistralModel [[autodoc]] MistralModel - forward ## MistralForCausalLM [[autodoc]] MistralForCausalLM - forward ## MistralForSequenceClassification [[autodoc]] MistralForSequenceClassification - forward
huggingface/transformers/blob/main/docs/source/en/model_doc/mistral.md
!--Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # What 🤗 Transformers can do 🤗 Transformers is a library of pretrained state-of-the-art models for natural language processing (NLP), computer vision, and audio and speech processing tasks. Not only does the library contain Transformer models, but it also has non-Transformer models like modern convolutional networks for computer vision tasks. If you look at some of the most popular consumer products today, like smartphones, apps, and televisions, odds are that some kind of deep learning technology is behind it. Want to remove a background object from a picture taken by your smartphone? This is an example of a panoptic segmentation task (don't worry if you don't know what this means yet, we'll describe it in the following sections!). This page provides an overview of the different speech and audio, computer vision, and NLP tasks that can be solved with the 🤗 Transformers library in just three lines of code! ## Audio Audio and speech processing tasks are a little different from the other modalities mainly because audio as an input is a continuous signal. Unlike text, a raw audio waveform can't be neatly split into discrete chunks the way a sentence can be divided into words. To get around this, the raw audio signal is typically sampled at regular intervals. If you take more samples within an interval, the sampling rate is higher, and the audio more closely resembles the original audio source. Previous approaches preprocessed the audio to extract useful features from it. It is now more common to start audio and speech processing tasks by directly feeding the raw audio waveform to a feature encoder to extract an audio representation. This simplifies the preprocessing step and allows the model to learn the most essential features. ### Audio classification Audio classification is a task that labels audio data from a predefined set of classes. It is a broad category with many specific applications, some of which include: * acoustic scene classification: label audio with a scene label ("office", "beach", "stadium") * acoustic event detection: label audio with a sound event label ("car horn", "whale calling", "glass breaking") * tagging: label audio containing multiple sounds (birdsongs, speaker identification in a meeting) * music classification: label music with a genre label ("metal", "hip-hop", "country") ```py >>> from transformers import pipeline >>> classifier = pipeline(task="audio-classification", model="superb/hubert-base-superb-er") >>> preds = classifier("https://huggingface.co/datasets/Narsil/asr_dummy/resolve/main/mlk.flac") >>> preds = [{"score": round(pred["score"], 4), "label": pred["label"]} for pred in preds] >>> preds [{'score': 0.4532, 'label': 'hap'}, {'score': 0.3622, 'label': 'sad'}, {'score': 0.0943, 'label': 'neu'}, {'score': 0.0903, 'label': 'ang'}] ``` ### Automatic speech recognition Automatic speech recognition (ASR) transcribes speech into text. It is one of the most common audio tasks due partly to speech being such a natural form of human communication. Today, ASR systems are embedded in "smart" technology products like speakers, phones, and cars. We can ask our virtual assistants to play music, set reminders, and tell us the weather. But one of the key challenges Transformer architectures have helped with is in low-resource languages. By pretraining on large amounts of speech data, finetuning the model on only one hour of labeled speech data in a low-resource language can still produce high-quality results compared to previous ASR systems trained on 100x more labeled data. ```py >>> from transformers import pipeline >>> transcriber = pipeline(task="automatic-speech-recognition", model="openai/whisper-small") >>> transcriber("https://huggingface.co/datasets/Narsil/asr_dummy/resolve/main/mlk.flac") {'text': ' I have a dream that one day this nation will rise up and live out the true meaning of its creed.'} ``` ## Computer vision One of the first and earliest successful computer vision tasks was recognizing images of zip code numbers using a [convolutional neural network (CNN)](glossary#convolution). An image is composed of pixels, and each pixel has a numerical value. This makes it easy to represent an image as a matrix of pixel values. Each particular combination of pixel values describes the colors of an image. Two general ways computer vision tasks can be solved are: 1. Use convolutions to learn the hierarchical features of an image from low-level features to high-level abstract things. 2. Split an image into patches and use a Transformer to gradually learn how each image patch is related to each other to form an image. Unlike the bottom-up approach favored by a CNN, this is kind of like starting out with a blurry image and then gradually bringing it into focus. ### Image classification Image classification labels an entire image from a predefined set of classes. Like most classification tasks, there are many practical use cases for image classification, some of which include: * healthcare: label medical images to detect disease or monitor patient health * environment: label satellite images to monitor deforestation, inform wildland management or detect wildfires * agriculture: label images of crops to monitor plant health or satellite images for land use monitoring * ecology: label images of animal or plant species to monitor wildlife populations or track endangered species ```py >>> from transformers import pipeline >>> classifier = pipeline(task="image-classification") >>> preds = classifier( ... "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg" ... ) >>> preds = [{"score": round(pred["score"], 4), "label": pred["label"]} for pred in preds] >>> print(*preds, sep="\n") {'score': 0.4335, 'label': 'lynx, catamount'} {'score': 0.0348, 'label': 'cougar, puma, catamount, mountain lion, painter, panther, Felis concolor'} {'score': 0.0324, 'label': 'snow leopard, ounce, Panthera uncia'} {'score': 0.0239, 'label': 'Egyptian cat'} {'score': 0.0229, 'label': 'tiger cat'} ``` ### Object detection Unlike image classification, object detection identifies multiple objects within an image and the objects' positions in an image (defined by the bounding box). Some example applications of object detection include: * self-driving vehicles: detect everyday traffic objects such as other vehicles, pedestrians, and traffic lights * remote sensing: disaster monitoring, urban planning, and weather forecasting * defect detection: detect cracks or structural damage in buildings, and manufacturing defects ```py >>> from transformers import pipeline >>> detector = pipeline(task="object-detection") >>> preds = detector( ... "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg" ... ) >>> preds = [{"score": round(pred["score"], 4), "label": pred["label"], "box": pred["box"]} for pred in preds] >>> preds [{'score': 0.9865, 'label': 'cat', 'box': {'xmin': 178, 'ymin': 154, 'xmax': 882, 'ymax': 598}}] ``` ### Image segmentation Image segmentation is a pixel-level task that assigns every pixel in an image to a class. It differs from object detection, which uses bounding boxes to label and predict objects in an image because segmentation is more granular. Segmentation can detect objects at a pixel-level. There are several types of image segmentation: * instance segmentation: in addition to labeling the class of an object, it also labels each distinct instance of an object ("dog-1", "dog-2") * panoptic segmentation: a combination of semantic and instance segmentation; it labels each pixel with a semantic class **and** each distinct instance of an object Segmentation tasks are helpful in self-driving vehicles to create a pixel-level map of the world around them so they can navigate safely around pedestrians and other vehicles. It is also useful for medical imaging, where the task's finer granularity can help identify abnormal cells or organ features. Image segmentation can also be used in ecommerce to virtually try on clothes or create augmented reality experiences by overlaying objects in the real world through your camera. ```py >>> from transformers import pipeline >>> segmenter = pipeline(task="image-segmentation") >>> preds = segmenter( ... "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg" ... ) >>> preds = [{"score": round(pred["score"], 4), "label": pred["label"]} for pred in preds] >>> print(*preds, sep="\n") {'score': 0.9879, 'label': 'LABEL_184'} {'score': 0.9973, 'label': 'snow'} {'score': 0.9972, 'label': 'cat'} ``` ### Depth estimation Depth estimation predicts the distance of each pixel in an image from the camera. This computer vision task is especially important for scene understanding and reconstruction. For example, in self-driving cars, vehicles need to understand how far objects like pedestrians, traffic signs, and other vehicles are to avoid obstacles and collisions. Depth information is also helpful for constructing 3D representations from 2D images and can be used to create high-quality 3D representations of biological structures or buildings. There are two approaches to depth estimation: * stereo: depths are estimated by comparing two images of the same image from slightly different angles * monocular: depths are estimated from a single image ```py >>> from transformers import pipeline >>> depth_estimator = pipeline(task="depth-estimation") >>> preds = depth_estimator( ... "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg" ... ) ``` ## Natural language processing NLP tasks are among the most common types of tasks because text is such a natural way for us to communicate. To get text into a format recognized by a model, it needs to be tokenized. This means dividing a sequence of text into separate words or subwords (tokens) and then converting these tokens into numbers. As a result, you can represent a sequence of text as a sequence of numbers, and once you have a sequence of numbers, it can be input into a model to solve all sorts of NLP tasks! ### Text classification Like classification tasks in any modality, text classification labels a sequence of text (it can be sentence-level, a paragraph, or a document) from a predefined set of classes. There are many practical applications for text classification, some of which include: * sentiment analysis: label text according to some polarity like `positive` or `negative` which can inform and support decision-making in fields like politics, finance, and marketing * content classification: label text according to some topic to help organize and filter information in news and social media feeds (`weather`, `sports`, `finance`, etc.) ```py >>> from transformers import pipeline >>> classifier = pipeline(task="sentiment-analysis") >>> preds = classifier("Hugging Face is the best thing since sliced bread!") >>> preds = [{"score": round(pred["score"], 4), "label": pred["label"]} for pred in preds] >>> preds [{'score': 0.9991, 'label': 'POSITIVE'}] ``` ### Token classification In any NLP task, text is preprocessed by separating the sequence of text into individual words or subwords. These are known as [tokens](glossary#token). Token classification assigns each token a label from a predefined set of classes. Two common types of token classification are: * named entity recognition (NER): label a token according to an entity category like organization, person, location or date. NER is especially popular in biomedical settings, where it can label genes, proteins, and drug names. * part-of-speech tagging (POS): label a token according to its part-of-speech like noun, verb, or adjective. POS is useful for helping translation systems understand how two identical words are grammatically different (bank as a noun versus bank as a verb). ```py >>> from transformers import pipeline >>> classifier = pipeline(task="ner") >>> preds = classifier("Hugging Face is a French company based in New York City.") >>> preds = [ ... { ... "entity": pred["entity"], ... "score": round(pred["score"], 4), ... "index": pred["index"], ... "word": pred["word"], ... "start": pred["start"], ... "end": pred["end"], ... } ... for pred in preds ... ] >>> print(*preds, sep="\n") {'entity': 'I-ORG', 'score': 0.9968, 'index': 1, 'word': 'Hu', 'start': 0, 'end': 2} {'entity': 'I-ORG', 'score': 0.9293, 'index': 2, 'word': '##gging', 'start': 2, 'end': 7} {'entity': 'I-ORG', 'score': 0.9763, 'index': 3, 'word': 'Face', 'start': 8, 'end': 12} {'entity': 'I-MISC', 'score': 0.9983, 'index': 6, 'word': 'French', 'start': 18, 'end': 24} {'entity': 'I-LOC', 'score': 0.999, 'index': 10, 'word': 'New', 'start': 42, 'end': 45} {'entity': 'I-LOC', 'score': 0.9987, 'index': 11, 'word': 'York', 'start': 46, 'end': 50} {'entity': 'I-LOC', 'score': 0.9992, 'index': 12, 'word': 'City', 'start': 51, 'end': 55} ``` ### Question answering Question answering is another token-level task that returns an answer to a question, sometimes with context (open-domain) and other times without context (closed-domain). This task happens whenever we ask a virtual assistant something like whether a restaurant is open. It can also provide customer or technical support and help search engines retrieve the relevant information you're asking for. There are two common types of question answering: * extractive: given a question and some context, the answer is a span of text from the context the model must extract * abstractive: given a question and some context, the answer is generated from the context; this approach is handled by the [`Text2TextGenerationPipeline`] instead of the [`QuestionAnsweringPipeline`] shown below ```py >>> from transformers import pipeline >>> question_answerer = pipeline(task="question-answering") >>> preds = question_answerer( ... question="What is the name of the repository?", ... context="The name of the repository is huggingface/transformers", ... ) >>> print( ... f"score: {round(preds['score'], 4)}, start: {preds['start']}, end: {preds['end']}, answer: {preds['answer']}" ... ) score: 0.9327, start: 30, end: 54, answer: huggingface/transformers ``` ### Summarization Summarization creates a shorter version of a text from a longer one while trying to preserve most of the meaning of the original document. Summarization is a sequence-to-sequence task; it outputs a shorter text sequence than the input. There are a lot of long-form documents that can be summarized to help readers quickly understand the main points. Legislative bills, legal and financial documents, patents, and scientific papers are a few examples of documents that could be summarized to save readers time and serve as a reading aid. Like question answering, there are two types of summarization: * extractive: identify and extract the most important sentences from the original text * abstractive: generate the target summary (which may include new words not in the input document) from the original text; the [`SummarizationPipeline`] uses the abstractive approach ```py >>> from transformers import pipeline >>> summarizer = pipeline(task="summarization") >>> summarizer( ... "In this work, we presented the Transformer, the first sequence transduction model based entirely on attention, replacing the recurrent layers most commonly used in encoder-decoder architectures with multi-headed self-attention. For translation tasks, the Transformer can be trained significantly faster than architectures based on recurrent or convolutional layers. On both WMT 2014 English-to-German and WMT 2014 English-to-French translation tasks, we achieve a new state of the art. In the former task our best model outperforms even all previously reported ensembles." ... ) [{'summary_text': ' The Transformer is the first sequence transduction model based entirely on attention . It replaces the recurrent layers most commonly used in encoder-decoder architectures with multi-headed self-attention . For translation tasks, the Transformer can be trained significantly faster than architectures based on recurrent or convolutional layers .'}] ``` ### Translation Translation converts a sequence of text in one language to another. It is important in helping people from different backgrounds communicate with each other, help translate content to reach wider audiences, and even be a learning tool to help people learn a new language. Along with summarization, translation is a sequence-to-sequence task, meaning the model receives an input sequence and returns a target output sequence. In the early days, translation models were mostly monolingual, but recently, there has been increasing interest in multilingual models that can translate between many pairs of languages. ```py >>> from transformers import pipeline >>> text = "translate English to French: Hugging Face is a community-based open-source platform for machine learning." >>> translator = pipeline(task="translation", model="t5-small") >>> translator(text) [{'translation_text': "Hugging Face est une tribune communautaire de l'apprentissage des machines."}] ``` ### Language modeling Language modeling is a task that predicts a word in a sequence of text. It has become a very popular NLP task because a pretrained language model can be finetuned for many other downstream tasks. Lately, there has been a lot of interest in large language models (LLMs) which demonstrate zero- or few-shot learning. This means the model can solve tasks it wasn't explicitly trained to do! Language models can be used to generate fluent and convincing text, though you need to be careful since the text may not always be accurate. There are two types of language modeling: * causal: the model's objective is to predict the next token in a sequence, and future tokens are masked ```py >>> from transformers import pipeline >>> prompt = "Hugging Face is a community-based open-source platform for machine learning." >>> generator = pipeline(task="text-generation") >>> generator(prompt) # doctest: +SKIP ``` * masked: the model's objective is to predict a masked token in a sequence with full access to the tokens in the sequence ```py >>> text = "Hugging Face is a community-based open-source <mask> for machine learning." >>> fill_mask = pipeline(task="fill-mask") >>> preds = fill_mask(text, top_k=1) >>> preds = [ ... { ... "score": round(pred["score"], 4), ... "token": pred["token"], ... "token_str": pred["token_str"], ... "sequence": pred["sequence"], ... } ... for pred in preds ... ] >>> preds [{'score': 0.2236, 'token': 1761, 'token_str': ' platform', 'sequence': 'Hugging Face is a community-based open-source platform for machine learning.'}] ``` ## Multimodal Multimodal tasks require a model to process multiple data modalities (text, image, audio, video) to solve a particular problem. Image captioning is an example of a multimodal task where the model takes an image as input and outputs a sequence of text describing the image or some properties of the image. Although multimodal models work with different data types or modalities, internally, the preprocessing steps help the model convert all the data types into embeddings (vectors or list of numbers that holds meaningful information about the data). For a task like image captioning, the model learns relationships between image embeddings and text embeddings. ### Document question answering Document question answering is a task that answers natural language questions from a document. Unlike a token-level question answering task which takes text as input, document question answering takes an image of a document as input along with a question about the document and returns an answer. Document question answering can be used to parse structured documents and extract key information from it. In the example below, the total amount and change due can be extracted from a receipt. ```py >>> from transformers import pipeline >>> from PIL import Image >>> import requests >>> url = "https://datasets-server.huggingface.co/assets/hf-internal-testing/example-documents/--/hf-internal-testing--example-documents/test/2/image/image.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> doc_question_answerer = pipeline("document-question-answering", model="magorshunov/layoutlm-invoices") >>> preds = doc_question_answerer( ... question="What is the total amount?", ... image=image, ... ) >>> preds [{'score': 0.8531, 'answer': '17,000', 'start': 4, 'end': 4}] ``` Hopefully, this page has given you some more background information about all the types of tasks in each modality and the practical importance of each one. In the next [section](tasks_explained), you'll learn **how** 🤗 Transformers work to solve these tasks.
huggingface/transformers/blob/main/docs/source/en/task_summary.md