Datasets:
Tasks:
Text Classification
Sub-tasks:
multi-class-classification
Languages:
English
Size:
10K<n<100K
Tags:
emotion-classification
License:
Initial project setup.
Browse files- .gitattributes +1 -0
- data/data.jsonl.gz +3 -0
- data/test.jsonl.gz +3 -0
- data/train.jsonl.gz +3 -0
- data/validation.jsonl.gz +3 -0
- dataset_infos.json +1 -0
- emotions.py +111 -0
.gitattributes
CHANGED
@@ -53,3 +53,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
53 |
*.jpg filter=lfs diff=lfs merge=lfs -text
|
54 |
*.jpeg filter=lfs diff=lfs merge=lfs -text
|
55 |
*.webp filter=lfs diff=lfs merge=lfs -text
|
|
|
|
53 |
*.jpg filter=lfs diff=lfs merge=lfs -text
|
54 |
*.jpeg filter=lfs diff=lfs merge=lfs -text
|
55 |
*.webp filter=lfs diff=lfs merge=lfs -text
|
56 |
+
data/data.jsonl.gz filter=lfs diff=lfs merge=lfs -text
|
data/data.jsonl.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8944e6b35cb42294769ac30cf17bd006231545b2eeecfa59324246e192564d1f
|
3 |
+
size 15388281
|
data/test.jsonl.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4524468d0b7ee8eab07a088216cde7f9278f1c574669504a805ed172df6dad75
|
3 |
+
size 74935
|
data/train.jsonl.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:757a0a73f1483f4b3f94783b774cdbf0831722a2b2c9abb5b820b4614ff6882a
|
3 |
+
size 591930
|
data/validation.jsonl.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:50783464882f450f88e61ece964a200e492495eed1472ed520d013bbcd3049be
|
3 |
+
size 74018
|
dataset_infos.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"description": "\nEmotions is a dataset of English Twitter messages with six basic emotions:\nanger, fear, joy, love, sadness, and surprise. For more detailed information\nplease refer to the paper.\n", "citation": "@inproceedings{saravia-etal-2018-carer,\n title = \"{CARER}: Contextualized Affect Representations for Emotion Recognition\",\n author = \"Saravia, Elvis and\n Liu, Hsien-Chi Toby and\n Huang, Yen-Hao and\n Wu, Junlin and\n Chen, Yi-Shin\",\n booktitle = \"Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing\",\n month = oct # \"-\" # nov,\n year = \"2018\",\n address = \"Brussels, Belgium\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/D18-1404\",\n doi = \"10.18653/v1/D18-1404\",\n pages = \"3687--3697\",\n abstract = \"Emotions are expressed in nuanced ways, which varies by collective or individual experiences, knowledge, and beliefs. Therefore, to understand emotion, as conveyed through text, a robust mechanism capable of capturing and modeling different linguistic nuances and phenomena is needed. We propose a semi-supervised, graph-based algorithm to produce rich structural descriptors which serve as the building blocks for constructing contextualized affect representations from text. The pattern-based representations are further enriched with word embeddings and evaluated through several emotion recognition tasks. Our experimental results demonstrate that the proposed method outperforms state-of-the-art techniques on emotion recognition tasks.\",\n}\n", "homepage": "https://huggingface.co/datasets/jeffnyman/emotions", "license": "cc-by-sa-4.0", "features": {"text": {"dtype": "string", "_type": "Value"}, "label": {"names": ["sadness", "joy", "love", "anger", "fear", "surprise"], "_type": "ClassLabel"}}, "supervised_keys": {"input": "text", "output": "label"}, "task_templates": [{"task": "text-classification", "label_column": "label"}], "builder_name": "emotions", "dataset_name": "emotions", "config_name": "split", "version": {"version_str": "1.0.0", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 1741533, "num_examples": 16000, "dataset_name": "emotions"}, "validation": {"name": "validation", "num_bytes": 214695, "num_examples": 2000, "dataset_name": "emotions"}, "test": {"name": "test", "num_bytes": 217173, "num_examples": 2000, "dataset_name": "emotions"}}, "download_checksums": {"data/train.jsonl.gz": {"num_bytes": 591930, "checksum": null}, "data/validation.jsonl.gz": {"num_bytes": 74018, "checksum": null}, "data/test.jsonl.gz": {"num_bytes": 74935, "checksum": null}}, "download_size": 740883, "dataset_size": 2173401, "size_in_bytes": 2914284}
|
emotions.py
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
|
3 |
+
import datasets
|
4 |
+
from datasets.tasks import TextClassification
|
5 |
+
|
6 |
+
|
7 |
+
_CITATION = """\
|
8 |
+
@inproceedings{saravia-etal-2018-carer,
|
9 |
+
title = "{CARER}: Contextualized Affect Representations for Emotion Recognition",
|
10 |
+
author = "Saravia, Elvis and
|
11 |
+
Liu, Hsien-Chi Toby and
|
12 |
+
Huang, Yen-Hao and
|
13 |
+
Wu, Junlin and
|
14 |
+
Chen, Yi-Shin",
|
15 |
+
booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
|
16 |
+
month = oct # "-" # nov,
|
17 |
+
year = "2018",
|
18 |
+
address = "Brussels, Belgium",
|
19 |
+
publisher = "Association for Computational Linguistics",
|
20 |
+
url = "https://www.aclweb.org/anthology/D18-1404",
|
21 |
+
doi = "10.18653/v1/D18-1404",
|
22 |
+
pages = "3687--3697",
|
23 |
+
abstract = "Emotions are expressed in nuanced ways, which varies by collective or individual experiences, knowledge, and beliefs. Therefore, to understand emotion, as conveyed through text, a robust mechanism capable of capturing and modeling different linguistic nuances and phenomena is needed. We propose a semi-supervised, graph-based algorithm to produce rich structural descriptors which serve as the building blocks for constructing contextualized affect representations from text. The pattern-based representations are further enriched with word embeddings and evaluated through several emotion recognition tasks. Our experimental results demonstrate that the proposed method outperforms state-of-the-art techniques on emotion recognition tasks.",
|
24 |
+
}
|
25 |
+
"""
|
26 |
+
|
27 |
+
_DESCRIPTION = """
|
28 |
+
Emotion is a dataset of English Twitter messages with six basic emotions:
|
29 |
+
anger, fear, joy, love, sadness, and surprise. For more detailed information
|
30 |
+
please refer to the paper.
|
31 |
+
"""
|
32 |
+
|
33 |
+
_HOMEPAGE = "https://huggingface.co/datasets/jeffnyman/emotions"
|
34 |
+
|
35 |
+
_LICENSE = "cc-by-sa-4.0"
|
36 |
+
|
37 |
+
_URLS = {
|
38 |
+
"split": {
|
39 |
+
"train": "data/train.jsonl.gz",
|
40 |
+
"validation": "data/validation.jsonl.gz",
|
41 |
+
"test": "data/test.jsonl.gz",
|
42 |
+
},
|
43 |
+
"unsplit": {
|
44 |
+
"train": "data/data.jsonl.gz",
|
45 |
+
},
|
46 |
+
}
|
47 |
+
|
48 |
+
|
49 |
+
class Emotions(datasets.GeneratorBasedBuilder):
|
50 |
+
VERSION = datasets.Version("1.0.0")
|
51 |
+
BUILDER_CONFIGS = [
|
52 |
+
datasets.BuilderConfig(
|
53 |
+
name="split",
|
54 |
+
version=VERSION,
|
55 |
+
description="Dataset split in train, validation and test",
|
56 |
+
),
|
57 |
+
datasets.BuilderConfig(
|
58 |
+
name="unsplit", version=VERSION, description="Unsplit dataset"
|
59 |
+
),
|
60 |
+
]
|
61 |
+
DEFAULT_CONFIG_NAME = "split"
|
62 |
+
|
63 |
+
def _info(self):
|
64 |
+
class_names = ["sadness", "joy", "love", "anger", "fear", "surprise"]
|
65 |
+
|
66 |
+
return datasets.DatasetInfo(
|
67 |
+
description=_DESCRIPTION,
|
68 |
+
features=datasets.Features(
|
69 |
+
{
|
70 |
+
"text": datasets.Value("string"),
|
71 |
+
"label": datasets.ClassLabel(names=class_names),
|
72 |
+
}
|
73 |
+
),
|
74 |
+
supervised_keys=("text", "label"),
|
75 |
+
homepage=_HOMEPAGE,
|
76 |
+
citation=_CITATION,
|
77 |
+
license=_LICENSE,
|
78 |
+
task_templates=[
|
79 |
+
TextClassification(text_column="text", label_column="label")
|
80 |
+
],
|
81 |
+
)
|
82 |
+
|
83 |
+
def _split_generators(self, dl_manager):
|
84 |
+
paths = dl_manager.download_and_extract(_URLS[self.config.name])
|
85 |
+
|
86 |
+
if self.config.name == "split":
|
87 |
+
return [
|
88 |
+
datasets.SplitGenerator(
|
89 |
+
name=datasets.Split.TRAIN, gen_kwargs={"filepath": paths["train"]}
|
90 |
+
),
|
91 |
+
datasets.SplitGenerator(
|
92 |
+
name=datasets.Split.VALIDATION,
|
93 |
+
gen_kwargs={"filepath": paths["validation"]},
|
94 |
+
),
|
95 |
+
datasets.SplitGenerator(
|
96 |
+
name=datasets.Split.TEST, gen_kwargs={"filepath": paths["test"]}
|
97 |
+
),
|
98 |
+
]
|
99 |
+
else:
|
100 |
+
return [
|
101 |
+
datasets.SplitGenerator(
|
102 |
+
name=datasets.Split.TRAIN, gen_kwargs={"filepath": paths["train"]}
|
103 |
+
)
|
104 |
+
]
|
105 |
+
|
106 |
+
def _generate_examples(self, filepath):
|
107 |
+
with open(filepath, encoding="utf-8") as f:
|
108 |
+
for idx, line in enumerate(f):
|
109 |
+
example = json.loads(line)
|
110 |
+
|
111 |
+
yield idx, example
|