jglaser commited on
Commit
44b1a31
1 Parent(s): 9ec86e1

fix two indexing bugs

Browse files
Files changed (4) hide show
  1. README.md +1 -1
  2. data/pdbbind_with_contacts.parquet +2 -2
  3. pdbbind.ipynb +86 -170
  4. pdbbind.py +2 -1
README.md CHANGED
@@ -17,7 +17,7 @@ It can be used for fine-tuning a language model.
17
 
18
  The data solely uses data from PDBind-cn.
19
 
20
- Contacts are calculated at three cut-off distances: 5, 8 and 11A.
21
 
22
  ### Use the already preprocessed data
23
 
 
17
 
18
  The data solely uses data from PDBind-cn.
19
 
20
+ Contacts are calculated at four cut-off distances: 5, 8, 11A and 15A.
21
 
22
  ### Use the already preprocessed data
23
 
data/pdbbind_with_contacts.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:3d715ac89988ff2b436c53390e408145d3e6d2a9dd6771d29b52d5a48f0cb29d
3
- size 157147287
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:904aa3f182745b92c36d97fdc8a4b14a7a19bfe2f88cf05be38ea35f2287d6c3
3
+ size 366634766
pdbbind.ipynb CHANGED
@@ -111,7 +111,7 @@
111
  },
112
  {
113
  "cell_type": "code",
114
- "execution_count": 7,
115
  "id": "aa358835-55f3-4551-9217-e76a15de4fe8",
116
  "metadata": {},
117
  "outputs": [],
@@ -122,18 +122,18 @@
122
  },
123
  {
124
  "cell_type": "code",
125
- "execution_count": 8,
126
  "id": "802cb9bc-2563-4d7f-9a76-3be2d9263a36",
127
  "metadata": {},
128
  "outputs": [],
129
  "source": [
130
- "cutoffs = [5,8,11]"
131
  ]
132
  },
133
  {
134
  "cell_type": "code",
135
- "execution_count": 9,
136
- "id": "d6dda488-f709-4fe7-b372-080042cf7c66",
137
  "metadata": {},
138
  "outputs": [],
139
  "source": [
@@ -142,99 +142,7 @@
142
  },
143
  {
144
  "cell_type": "code",
145
- "execution_count": 10,
146
- "id": "aebc6791-5bb0-4828-9697-79bc243f8992",
147
- "metadata": {},
148
- "outputs": [
149
- {
150
- "data": {
151
- "text/html": [
152
- "<div>\n",
153
- "<style scoped>\n",
154
- " .dataframe tbody tr th:only-of-type {\n",
155
- " vertical-align: middle;\n",
156
- " }\n",
157
- "\n",
158
- " .dataframe tbody tr th {\n",
159
- " vertical-align: top;\n",
160
- " }\n",
161
- "\n",
162
- " .dataframe thead th {\n",
163
- " text-align: right;\n",
164
- " }\n",
165
- "</style>\n",
166
- "<table border=\"1\" class=\"dataframe\">\n",
167
- " <thead>\n",
168
- " <tr style=\"text-align: right;\">\n",
169
- " <th></th>\n",
170
- " <th>name</th>\n",
171
- " <th>seq</th>\n",
172
- " <th>smiles</th>\n",
173
- " </tr>\n",
174
- " </thead>\n",
175
- " <tbody>\n",
176
- " <tr>\n",
177
- " <th>0</th>\n",
178
- " <td>10gs</td>\n",
179
- " <td>PYTVVYFPVRGRCAALRMLLADQGQSWKEEVVTVETWQEGSLKASC...</td>\n",
180
- " <td>[NH3+]C(CCC(=O)NC(CSCc1ccccc1)C(=O)NC(C(=O)O)c...</td>\n",
181
- " </tr>\n",
182
- " <tr>\n",
183
- " <th>1</th>\n",
184
- " <td>184l</td>\n",
185
- " <td>MNIFEMLRIDEGLRLKIYKDTEGYYTIGIGHLLTKSPSLNAAKSEL...</td>\n",
186
- " <td>CC(C)Cc1ccccc1</td>\n",
187
- " </tr>\n",
188
- " <tr>\n",
189
- " <th>2</th>\n",
190
- " <td>186l</td>\n",
191
- " <td>MNIFEMLRIDEGLRLKIYKDTEGYYTIGIGHLLTKSPSLNAAKSEL...</td>\n",
192
- " <td>CCCCc1ccccc1</td>\n",
193
- " </tr>\n",
194
- " <tr>\n",
195
- " <th>3</th>\n",
196
- " <td>187l</td>\n",
197
- " <td>MNIFEMLRIDEGLRLKIYKDTEGYYTIGIGHLLTKSPSLNAAKSEL...</td>\n",
198
- " <td>Cc1ccc(C)cc1</td>\n",
199
- " </tr>\n",
200
- " <tr>\n",
201
- " <th>4</th>\n",
202
- " <td>188l</td>\n",
203
- " <td>MNIFEMLRIDEGLRLKIYKDTEGYYTIGIGHLLTKSPSLNAAKSEL...</td>\n",
204
- " <td>Cc1ccccc1C</td>\n",
205
- " </tr>\n",
206
- " </tbody>\n",
207
- "</table>\n",
208
- "</div>"
209
- ],
210
- "text/plain": [
211
- " name seq \\\n",
212
- "0 10gs PYTVVYFPVRGRCAALRMLLADQGQSWKEEVVTVETWQEGSLKASC... \n",
213
- "1 184l MNIFEMLRIDEGLRLKIYKDTEGYYTIGIGHLLTKSPSLNAAKSEL... \n",
214
- "2 186l MNIFEMLRIDEGLRLKIYKDTEGYYTIGIGHLLTKSPSLNAAKSEL... \n",
215
- "3 187l MNIFEMLRIDEGLRLKIYKDTEGYYTIGIGHLLTKSPSLNAAKSEL... \n",
216
- "4 188l MNIFEMLRIDEGLRLKIYKDTEGYYTIGIGHLLTKSPSLNAAKSEL... \n",
217
- "\n",
218
- " smiles \n",
219
- "0 [NH3+]C(CCC(=O)NC(CSCc1ccccc1)C(=O)NC(C(=O)O)c... \n",
220
- "1 CC(C)Cc1ccccc1 \n",
221
- "2 CCCCc1ccccc1 \n",
222
- "3 Cc1ccc(C)cc1 \n",
223
- "4 Cc1ccccc1C "
224
- ]
225
- },
226
- "execution_count": 10,
227
- "metadata": {},
228
- "output_type": "execute_result"
229
- }
230
- ],
231
- "source": [
232
- "list(dfs_complex.values())[0].head()"
233
- ]
234
- },
235
- {
236
- "cell_type": "code",
237
- "execution_count": 11,
238
  "id": "ed3fe035-6035-4d39-b072-d12dc0a95857",
239
  "metadata": {},
240
  "outputs": [],
@@ -249,18 +157,27 @@
249
  },
250
  {
251
  "cell_type": "code",
252
- "execution_count": 12,
253
  "id": "cd26125b-e68b-4fa3-846e-2b6e7f635fe0",
254
  "metadata": {},
255
- "outputs": [],
 
 
 
 
 
 
 
 
256
  "source": [
257
  "contacts_dask = [da.from_npy_stack('data/pdbbind_contacts_{}'.format(c)) for c in cutoffs]\n",
258
- "contacts_dask = [c.reshape(-1,c.shape[-2]*c.shape[-1]) for c in contacts_dask]"
 
259
  ]
260
  },
261
  {
262
  "cell_type": "code",
263
- "execution_count": 13,
264
  "id": "9c7c9849-2345-4baf-89e7-d412f52353b6",
265
  "metadata": {},
266
  "outputs": [
@@ -275,40 +192,63 @@
275
  " <tr><td> </td><th> Array </th><th> Chunk </th></tr>\n",
276
  " </thead>\n",
277
  " <tbody>\n",
278
- " <tr><th> Bytes </th><td> 1.70 GiB </td> <td> 1.70 GiB </td></tr>\n",
279
- " <tr><th> Shape </th><td> (438, 1043460) </td> <td> (438, 1043460) </td></tr>\n",
280
- " <tr><th> Count </th><td> 75 Tasks </td><td> 1 Chunks </td></tr>\n",
281
  " <tr><th> Type </th><td> float32 </td><td> numpy.ndarray </td></tr>\n",
282
  " </tbody>\n",
283
  "</table>\n",
284
  "</td>\n",
285
  "<td>\n",
286
- "<svg width=\"170\" height=\"75\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
287
  "\n",
288
  " <!-- Horizontal lines -->\n",
289
- " <line x1=\"0\" y1=\"0\" x2=\"120\" y2=\"0\" style=\"stroke-width:2\" />\n",
290
- " <line x1=\"0\" y1=\"25\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n",
291
  "\n",
292
  " <!-- Vertical lines -->\n",
293
- " <line x1=\"0\" y1=\"0\" x2=\"0\" y2=\"25\" style=\"stroke-width:2\" />\n",
294
- " <line x1=\"120\" y1=\"0\" x2=\"120\" y2=\"25\" style=\"stroke-width:2\" />\n",
295
  "\n",
296
  " <!-- Colored Rectangle -->\n",
297
- " <polygon points=\"0.0,0.0 120.0,0.0 120.0,25.412616514582485 0.0,25.412616514582485\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
298
  "\n",
299
  " <!-- Text -->\n",
300
- " <text x=\"60.000000\" y=\"45.412617\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >1043460</text>\n",
301
- " <text x=\"140.000000\" y=\"12.706308\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,140.000000,12.706308)\">438</text>\n",
 
302
  "</svg>\n",
303
  "</td>\n",
304
  "</tr>\n",
305
  "</table>"
306
  ],
307
  "text/plain": [
308
- "dask.array<blocks, shape=(438, 1043460), dtype=float32, chunksize=(438, 1043460), chunktype=numpy.ndarray>"
309
  ]
310
  },
311
- "execution_count": 13,
312
  "metadata": {},
313
  "output_type": "execute_result"
314
  }
@@ -319,17 +259,17 @@
319
  },
320
  {
321
  "cell_type": "code",
322
- "execution_count": 14,
323
  "id": "0bd8e9b9-9713-4572-bd7f-dc47da9fce91",
324
  "metadata": {},
325
  "outputs": [
326
  {
327
  "data": {
328
  "text/plain": [
329
- "[16206, 16181, 16172]"
330
  ]
331
  },
332
- "execution_count": 14,
333
  "metadata": {},
334
  "output_type": "execute_result"
335
  }
@@ -340,17 +280,17 @@
340
  },
341
  {
342
  "cell_type": "code",
343
- "execution_count": 15,
344
  "id": "87493934-3839-476a-a975-7da057c320da",
345
  "metadata": {},
346
  "outputs": [
347
  {
348
  "data": {
349
  "text/plain": [
350
- "16206"
351
  ]
352
  },
353
- "execution_count": 15,
354
  "metadata": {},
355
  "output_type": "execute_result"
356
  }
@@ -361,31 +301,7 @@
361
  },
362
  {
363
  "cell_type": "code",
364
- "execution_count": 16,
365
- "id": "1f7815ec-cddf-4bae-b72c-89cdf56cc1f9",
366
- "metadata": {},
367
- "outputs": [
368
- {
369
- "data": {
370
- "text/plain": [
371
- "name 9lpr\n",
372
- "seq ANIVGGIEYSINNASLCSVGFSVTRGATKGFVTAGHCGTVNATARI...\n",
373
- "smiles CC(C)CC(NC(=O)C1CCCN1C(=O)C(C)NC(=O)C(C)[NH3+]...\n",
374
- "Name: 16205, dtype: object"
375
- ]
376
- },
377
- "execution_count": 16,
378
- "metadata": {},
379
- "output_type": "execute_result"
380
- }
381
- ],
382
- "source": [
383
- "dfs_complex[5].iloc[16205]"
384
- ]
385
- },
386
- {
387
- "cell_type": "code",
388
- "execution_count": 17,
389
  "id": "42e95d84-ef27-4417-9479-8b356462b8c3",
390
  "metadata": {},
391
  "outputs": [],
@@ -396,7 +312,7 @@
396
  " def chunk_to_sparse(rcut, chunk, idx_chunk):\n",
397
  " res = dfs_complex[rcut].iloc[idx_chunk][['name']].copy()\n",
398
  " # pad to account for [CLS] and [SEP]\n",
399
- " res['contacts_{}A'.format(rcut)] = [np.where(np.pad(a,pad_width=(1,1)))[0] for a in chunk]\n",
400
  " return res\n",
401
  "\n",
402
  " partitions = [delayed(chunk_to_sparse)(cutoff,b,k)\n",
@@ -407,7 +323,7 @@
407
  },
408
  {
409
  "cell_type": "code",
410
- "execution_count": 18,
411
  "id": "5520a925-693f-43f0-9e76-df2e128f272e",
412
  "metadata": {},
413
  "outputs": [
@@ -440,27 +356,27 @@
440
  " <tr>\n",
441
  " <th>0</th>\n",
442
  " <td>10gs</td>\n",
443
- " <td>[1021, 1022, 1070, 1073, 1075, 3071, 3072, 307...</td>\n",
444
  " </tr>\n",
445
  " <tr>\n",
446
  " <th>1</th>\n",
447
  " <td>184l</td>\n",
448
- " <td>[39279, 39280, 39281, 39282, 42332, 42334, 423...</td>\n",
449
  " </tr>\n",
450
  " <tr>\n",
451
  " <th>2</th>\n",
452
  " <td>186l</td>\n",
453
- " <td>[39277, 39278, 39279, 42332, 42333, 42334, 423...</td>\n",
454
  " </tr>\n",
455
  " <tr>\n",
456
  " <th>3</th>\n",
457
  " <td>187l</td>\n",
458
- " <td>[39271, 39272, 39281, 42331, 42332, 42334, 423...</td>\n",
459
  " </tr>\n",
460
  " <tr>\n",
461
  " <th>4</th>\n",
462
  " <td>188l</td>\n",
463
- " <td>[39271, 39272, 39274, 39275, 42331, 42332, 423...</td>\n",
464
  " </tr>\n",
465
  " </tbody>\n",
466
  "</table>\n",
@@ -468,14 +384,14 @@
468
  ],
469
  "text/plain": [
470
  " name contacts_5A\n",
471
- "0 10gs [1021, 1022, 1070, 1073, 1075, 3071, 3072, 307...\n",
472
- "1 184l [39279, 39280, 39281, 39282, 42332, 42334, 423...\n",
473
- "2 186l [39277, 39278, 39279, 42332, 42333, 42334, 423...\n",
474
- "3 187l [39271, 39272, 39281, 42331, 42332, 42334, 423...\n",
475
- "4 188l [39271, 39272, 39274, 39275, 42331, 42332, 423..."
476
  ]
477
  },
478
- "execution_count": 18,
479
  "metadata": {},
480
  "output_type": "execute_result"
481
  }
@@ -486,7 +402,7 @@
486
  },
487
  {
488
  "cell_type": "code",
489
- "execution_count": 19,
490
  "id": "4982c3b1-5ce9-4f17-9834-a02c4e136bc2",
491
  "metadata": {},
492
  "outputs": [],
@@ -496,7 +412,7 @@
496
  },
497
  {
498
  "cell_type": "code",
499
- "execution_count": 20,
500
  "id": "f6cdee43-33c6-445c-8619-ace20f90638c",
501
  "metadata": {},
502
  "outputs": [],
@@ -513,7 +429,7 @@
513
  },
514
  {
515
  "cell_type": "code",
516
- "execution_count": 21,
517
  "id": "8f49f871-76f6-4fb2-b2db-c0794d4c07bf",
518
  "metadata": {},
519
  "outputs": [
@@ -521,8 +437,8 @@
521
  "name": "stdout",
522
  "output_type": "stream",
523
  "text": [
524
- "CPU times: user 6min 9s, sys: 12min 7s, total: 18min 17s\n",
525
- "Wall time: 7min 36s\n"
526
  ]
527
  }
528
  ],
@@ -533,7 +449,7 @@
533
  },
534
  {
535
  "cell_type": "code",
536
- "execution_count": 22,
537
  "id": "45e4b4fa-6338-4abe-bd6e-8aea46e2a09c",
538
  "metadata": {},
539
  "outputs": [],
@@ -543,17 +459,17 @@
543
  },
544
  {
545
  "cell_type": "code",
546
- "execution_count": 23,
547
  "id": "7c3db301-6565-4053-bbd4-139bb41dd1c4",
548
  "metadata": {},
549
  "outputs": [
550
  {
551
  "data": {
552
  "text/plain": [
553
- "(array([6.35008182]), array([3.56554195]))"
554
  ]
555
  },
556
- "execution_count": 23,
557
  "metadata": {},
558
  "output_type": "execute_result"
559
  }
@@ -567,7 +483,7 @@
567
  },
568
  {
569
  "cell_type": "code",
570
- "execution_count": 24,
571
  "id": "c9d674bb-d6a2-4810-aa2b-e3bc3b4bbc98",
572
  "metadata": {},
573
  "outputs": [],
@@ -579,7 +495,7 @@
579
  {
580
  "cell_type": "code",
581
  "execution_count": null,
582
- "id": "02addbaf-094d-4e40-8904-4fe306647298",
583
  "metadata": {},
584
  "outputs": [],
585
  "source": []
 
111
  },
112
  {
113
  "cell_type": "code",
114
+ "execution_count": 22,
115
  "id": "aa358835-55f3-4551-9217-e76a15de4fe8",
116
  "metadata": {},
117
  "outputs": [],
 
122
  },
123
  {
124
  "cell_type": "code",
125
+ "execution_count": 23,
126
  "id": "802cb9bc-2563-4d7f-9a76-3be2d9263a36",
127
  "metadata": {},
128
  "outputs": [],
129
  "source": [
130
+ "cutoffs = [5,8,11,15]"
131
  ]
132
  },
133
  {
134
  "cell_type": "code",
135
+ "execution_count": 24,
136
+ "id": "d8e71a8c-11a3-41f0-ab61-3ddc57e10961",
137
  "metadata": {},
138
  "outputs": [],
139
  "source": [
 
142
  },
143
  {
144
  "cell_type": "code",
145
+ "execution_count": 25,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
146
  "id": "ed3fe035-6035-4d39-b072-d12dc0a95857",
147
  "metadata": {},
148
  "outputs": [],
 
157
  },
158
  {
159
  "cell_type": "code",
160
+ "execution_count": 26,
161
  "id": "cd26125b-e68b-4fa3-846e-2b6e7f635fe0",
162
  "metadata": {},
163
+ "outputs": [
164
+ {
165
+ "name": "stdout",
166
+ "output_type": "stream",
167
+ "text": [
168
+ "(2046, 510)\n"
169
+ ]
170
+ }
171
+ ],
172
  "source": [
173
  "contacts_dask = [da.from_npy_stack('data/pdbbind_contacts_{}'.format(c)) for c in cutoffs]\n",
174
+ "shape = contacts_dask[0][0].shape\n",
175
+ "print(shape)"
176
  ]
177
  },
178
  {
179
  "cell_type": "code",
180
+ "execution_count": 27,
181
  "id": "9c7c9849-2345-4baf-89e7-d412f52353b6",
182
  "metadata": {},
183
  "outputs": [
 
192
  " <tr><td> </td><th> Array </th><th> Chunk </th></tr>\n",
193
  " </thead>\n",
194
  " <tbody>\n",
195
+ " <tr><th> Bytes </th><td> 2.72 GiB </td> <td> 2.72 GiB </td></tr>\n",
196
+ " <tr><th> Shape </th><td> (700, 2046, 510) </td> <td> (700, 2046, 510) </td></tr>\n",
197
+ " <tr><th> Count </th><td> 25 Tasks </td><td> 1 Chunks </td></tr>\n",
198
  " <tr><th> Type </th><td> float32 </td><td> numpy.ndarray </td></tr>\n",
199
  " </tbody>\n",
200
  "</table>\n",
201
  "</td>\n",
202
  "<td>\n",
203
+ "<svg width=\"128\" height=\"195\" style=\"stroke:rgb(0,0,0);stroke-width:1\" >\n",
204
  "\n",
205
  " <!-- Horizontal lines -->\n",
206
+ " <line x1=\"10\" y1=\"0\" x2=\"35\" y2=\"25\" style=\"stroke-width:2\" />\n",
207
+ " <line x1=\"10\" y1=\"120\" x2=\"35\" y2=\"145\" style=\"stroke-width:2\" />\n",
208
  "\n",
209
  " <!-- Vertical lines -->\n",
210
+ " <line x1=\"10\" y1=\"0\" x2=\"10\" y2=\"120\" style=\"stroke-width:2\" />\n",
211
+ " <line x1=\"35\" y1=\"25\" x2=\"35\" y2=\"145\" style=\"stroke-width:2\" />\n",
212
  "\n",
213
  " <!-- Colored Rectangle -->\n",
214
+ " <polygon points=\"10.0,0.0 35.86269549127143,25.86269549127143 35.86269549127143,145.86269549127144 10.0,120.0\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
215
+ "\n",
216
+ " <!-- Horizontal lines -->\n",
217
+ " <line x1=\"10\" y1=\"0\" x2=\"52\" y2=\"0\" style=\"stroke-width:2\" />\n",
218
+ " <line x1=\"35\" y1=\"25\" x2=\"78\" y2=\"25\" style=\"stroke-width:2\" />\n",
219
+ "\n",
220
+ " <!-- Vertical lines -->\n",
221
+ " <line x1=\"10\" y1=\"0\" x2=\"35\" y2=\"25\" style=\"stroke-width:2\" />\n",
222
+ " <line x1=\"52\" y1=\"0\" x2=\"78\" y2=\"25\" style=\"stroke-width:2\" />\n",
223
+ "\n",
224
+ " <!-- Colored Rectangle -->\n",
225
+ " <polygon points=\"10.0,0.0 52.88780092952726,0.0 78.7504964207987,25.86269549127143 35.86269549127143,25.86269549127143\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
226
+ "\n",
227
+ " <!-- Horizontal lines -->\n",
228
+ " <line x1=\"35\" y1=\"25\" x2=\"78\" y2=\"25\" style=\"stroke-width:2\" />\n",
229
+ " <line x1=\"35\" y1=\"145\" x2=\"78\" y2=\"145\" style=\"stroke-width:2\" />\n",
230
+ "\n",
231
+ " <!-- Vertical lines -->\n",
232
+ " <line x1=\"35\" y1=\"25\" x2=\"35\" y2=\"145\" style=\"stroke-width:2\" />\n",
233
+ " <line x1=\"78\" y1=\"25\" x2=\"78\" y2=\"145\" style=\"stroke-width:2\" />\n",
234
+ "\n",
235
+ " <!-- Colored Rectangle -->\n",
236
+ " <polygon points=\"35.86269549127143,25.86269549127143 78.7504964207987,25.86269549127143 78.7504964207987,145.86269549127144 35.86269549127143,145.86269549127144\" style=\"fill:#ECB172A0;stroke-width:0\"/>\n",
237
  "\n",
238
  " <!-- Text -->\n",
239
+ " <text x=\"57.306596\" y=\"165.862695\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" >510</text>\n",
240
+ " <text x=\"98.750496\" y=\"85.862695\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(-90,98.750496,85.862695)\">2046</text>\n",
241
+ " <text x=\"12.931348\" y=\"152.931348\" font-size=\"1.0rem\" font-weight=\"100\" text-anchor=\"middle\" transform=\"rotate(45,12.931348,152.931348)\">700</text>\n",
242
  "</svg>\n",
243
  "</td>\n",
244
  "</tr>\n",
245
  "</table>"
246
  ],
247
  "text/plain": [
248
+ "dask.array<blocks, shape=(700, 2046, 510), dtype=float32, chunksize=(700, 2046, 510), chunktype=numpy.ndarray>"
249
  ]
250
  },
251
+ "execution_count": 27,
252
  "metadata": {},
253
  "output_type": "execute_result"
254
  }
 
259
  },
260
  {
261
  "cell_type": "code",
262
+ "execution_count": 28,
263
  "id": "0bd8e9b9-9713-4572-bd7f-dc47da9fce91",
264
  "metadata": {},
265
  "outputs": [
266
  {
267
  "data": {
268
  "text/plain": [
269
+ "[16221, 16201, 16193, 16189]"
270
  ]
271
  },
272
+ "execution_count": 28,
273
  "metadata": {},
274
  "output_type": "execute_result"
275
  }
 
280
  },
281
  {
282
  "cell_type": "code",
283
+ "execution_count": 29,
284
  "id": "87493934-3839-476a-a975-7da057c320da",
285
  "metadata": {},
286
  "outputs": [
287
  {
288
  "data": {
289
  "text/plain": [
290
+ "16221"
291
  ]
292
  },
293
+ "execution_count": 29,
294
  "metadata": {},
295
  "output_type": "execute_result"
296
  }
 
301
  },
302
  {
303
  "cell_type": "code",
304
+ "execution_count": 30,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
305
  "id": "42e95d84-ef27-4417-9479-8b356462b8c3",
306
  "metadata": {},
307
  "outputs": [],
 
312
  " def chunk_to_sparse(rcut, chunk, idx_chunk):\n",
313
  " res = dfs_complex[rcut].iloc[idx_chunk][['name']].copy()\n",
314
  " # pad to account for [CLS] and [SEP]\n",
315
+ " res['contacts_{}A'.format(rcut)] = [np.where(np.pad(a,pad_width=(1,1)).flatten())[0] for a in chunk]\n",
316
  " return res\n",
317
  "\n",
318
  " partitions = [delayed(chunk_to_sparse)(cutoff,b,k)\n",
 
323
  },
324
  {
325
  "cell_type": "code",
326
+ "execution_count": 31,
327
  "id": "5520a925-693f-43f0-9e76-df2e128f272e",
328
  "metadata": {},
329
  "outputs": [
 
356
  " <tr>\n",
357
  " <th>0</th>\n",
358
  " <td>10gs</td>\n",
359
+ " <td>[1025, 1026, 1074, 1077, 1079, 3083, 3084, 308...</td>\n",
360
  " </tr>\n",
361
  " <tr>\n",
362
  " <th>1</th>\n",
363
  " <td>184l</td>\n",
364
+ " <td>[39945, 39946, 39947, 39948, 43010, 43012, 430...</td>\n",
365
  " </tr>\n",
366
  " <tr>\n",
367
  " <th>2</th>\n",
368
  " <td>186l</td>\n",
369
+ " <td>[39943, 39944, 39945, 43010, 43011, 43012, 430...</td>\n",
370
  " </tr>\n",
371
  " <tr>\n",
372
  " <th>3</th>\n",
373
  " <td>187l</td>\n",
374
+ " <td>[39937, 39938, 39947, 43009, 43010, 43012, 430...</td>\n",
375
  " </tr>\n",
376
  " <tr>\n",
377
  " <th>4</th>\n",
378
  " <td>188l</td>\n",
379
+ " <td>[39937, 39938, 39940, 39941, 43009, 43010, 430...</td>\n",
380
  " </tr>\n",
381
  " </tbody>\n",
382
  "</table>\n",
 
384
  ],
385
  "text/plain": [
386
  " name contacts_5A\n",
387
+ "0 10gs [1025, 1026, 1074, 1077, 1079, 3083, 3084, 308...\n",
388
+ "1 184l [39945, 39946, 39947, 39948, 43010, 43012, 430...\n",
389
+ "2 186l [39943, 39944, 39945, 43010, 43011, 43012, 430...\n",
390
+ "3 187l [39937, 39938, 39947, 43009, 43010, 43012, 430...\n",
391
+ "4 188l [39937, 39938, 39940, 39941, 43009, 43010, 430..."
392
  ]
393
  },
394
+ "execution_count": 31,
395
  "metadata": {},
396
  "output_type": "execute_result"
397
  }
 
402
  },
403
  {
404
  "cell_type": "code",
405
+ "execution_count": 32,
406
  "id": "4982c3b1-5ce9-4f17-9834-a02c4e136bc2",
407
  "metadata": {},
408
  "outputs": [],
 
412
  },
413
  {
414
  "cell_type": "code",
415
+ "execution_count": 33,
416
  "id": "f6cdee43-33c6-445c-8619-ace20f90638c",
417
  "metadata": {},
418
  "outputs": [],
 
429
  },
430
  {
431
  "cell_type": "code",
432
+ "execution_count": 34,
433
  "id": "8f49f871-76f6-4fb2-b2db-c0794d4c07bf",
434
  "metadata": {},
435
  "outputs": [
 
437
  "name": "stdout",
438
  "output_type": "stream",
439
  "text": [
440
+ "CPU times: user 8min 48s, sys: 12min 3s, total: 20min 52s\n",
441
+ "Wall time: 3min 20s\n"
442
  ]
443
  }
444
  ],
 
449
  },
450
  {
451
  "cell_type": "code",
452
+ "execution_count": 35,
453
  "id": "45e4b4fa-6338-4abe-bd6e-8aea46e2a09c",
454
  "metadata": {},
455
  "outputs": [],
 
459
  },
460
  {
461
  "cell_type": "code",
462
+ "execution_count": 36,
463
  "id": "7c3db301-6565-4053-bbd4-139bb41dd1c4",
464
  "metadata": {},
465
  "outputs": [
466
  {
467
  "data": {
468
  "text/plain": [
469
+ "(array([6.34974652]), array([3.56691843]))"
470
  ]
471
  },
472
+ "execution_count": 36,
473
  "metadata": {},
474
  "output_type": "execute_result"
475
  }
 
483
  },
484
  {
485
  "cell_type": "code",
486
+ "execution_count": 37,
487
  "id": "c9d674bb-d6a2-4810-aa2b-e3bc3b4bbc98",
488
  "metadata": {},
489
  "outputs": [],
 
495
  {
496
  "cell_type": "code",
497
  "execution_count": null,
498
+ "id": "8e5f99f3-4aa6-44c9-afd8-9c62bdef9d5f",
499
  "metadata": {},
500
  "outputs": [],
501
  "source": []
pdbbind.py CHANGED
@@ -71,7 +71,8 @@ def parse_complex(fn):
71
  neighbor_search = NeighborSearch(atoms)
72
 
73
  close_residues = [neighbor_search.search(center=t, level='R', radius=cutoff) for t in token_pos]
74
- residue_id = [[c.get_id()[1]-1 for c in query] for query in close_residues] # zero-based
 
75
 
76
  # contact map
77
  contact_map = np.zeros((max_seq, max_smiles),dtype=np.float32)
 
71
  neighbor_search = NeighborSearch(atoms)
72
 
73
  close_residues = [neighbor_search.search(center=t, level='R', radius=cutoff) for t in token_pos]
74
+ first_residue = next(structure.get_residues()).get_id()[1]
75
+ residue_id = [[c.get_id()[1]-first_residue for c in query] for query in close_residues] # zero-based
76
 
77
  # contact map
78
  contact_map = np.zeros((max_seq, max_smiles),dtype=np.float32)