Datasets:
File size: 9,637 Bytes
c655a83 af7ac9c 122f718 448bacf 00d271b 448bacf 9d9e1b3 448bacf 9d9e1b3 448bacf 9d9e1b3 448bacf 0512896 5281092 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 |
# Preview
[简体中文](https://huggingface.co/datasets/jiaheillu/sovits_audio_preview)|
**English**|
[日本語](https://huggingface.co/datasets/jiaheillu/sovits_audio_preview/blob/main/README_JP.md)
This repository is used to preview the effects of various speech models trained by so-vits-svc-4.0.
**Click on the character name** to automatically jump to the corresponding training parameters.</br>
I recommend using **Google Chrome** as other browsers may not load the previewed audio correctly.</br>
The conversion of normal speaking voices is relatively accurate, but songs with a wide range of sounds
and background music and other noises that are difficult to remove may result in a unstable effect.</br>
If you have recommended songs that you would like to try converting and listening to or any other suggestions,
[**click here**](https://huggingface.co/datasets/jiaheillu/audio_preview/discussions/new) to give me advice.</br>
Below are preview audios. **Scroll up, down, left, and right** to see them all.
<style>
.scrolling-container {
width: 100%;
max-width: 1600px;
height: 300px;
overflow: auto;
margin: 0;
}
@media screen and (max-width: 768px) {
.scrolling-container {
width: 100%;
height: auto;
overflow: auto;
}
}
</style>
<div class="scrolling-container">
<table border="1" style="white-space: nowrap; text-align: center;">
<thead>
<tr>
<th>Character Name</th>
<th>Original Voice A</th>
<th>Converted Voice B</th>
<th>A Voice Replaced by B</th>
<th>Song Cover (Click to Download)</th>
</tr>
</thead>
<tbody>
<tr>
<td><a href="https://huggingface.co/datasets/jiaheillu/audio_preview/blob/main/散兵效果预览/训练参数速览.md">Wanderer</a></td>
<td><audio src="https://huggingface.co/datasets/jiaheillu/audio_preview/resolve/main/散兵效果预览/部分训练集/真遗憾,小吉祥草王让他消除了那么多的切片,剥夺了我将他一片一片千刀万剐的快乐%E3%80%82.mp3" controls="controls"></audio></td>
<td><audio src="https://huggingface.co/datasets/jiaheillu/audio_preview/resolve/main/散兵效果预览/原声/shenli3.wav" controls="controls"></audio></td>
<td><audio src="https://huggingface.co/datasets/jiaheillu/audio_preview/resolve/main/散兵效果预览/转换结果/shenli3mp3_auto_liulangzhe.wav" controls="controls"></audio></td>
<td><a href="https://huggingface.co/datasets/jiaheillu/audio_preview/resolve/main/散兵效果预览/转换结果/夢で逢えたら2liulangzhe_f.wav">夢で会えたら</a></td>
</tr>
<tr>
<td><a href="https://huggingface.co/datasets/jiaheillu/audio_preview/blob/main/胡桃_preview/README.md">HuTao</a></td>
<td><audio src="https://huggingface.co/datasets/jiaheillu/audio_preview/resolve/main/%E8%83%A1%E6%A1%83_preview/hutao.wav" controls="controls"></audio></td>
<td>.........</td>
<td>.........</td>
<td>
<a href="https://huggingface.co/datasets/jiaheillu/audio_preview/resolve/main/胡桃_preview/moonlight_shadow2胡桃.WAV">moonlight shadow</a>,
<a href="https://huggingface.co/datasets/jiaheillu/audio_preview/resolve/main/胡桃_preview/云烟成雨2胡桃.WAV">云烟成雨</a>,
<a href="https://huggingface.co/datasets/jiaheillu/audio_preview/resolve/main/胡桃_preview/原点2胡桃.WAV">原点</a>,
<a href="https://huggingface.co/datasets/jiaheillu/audio_preview/resolve/main/胡桃_preview/夢だ会えたら2胡桃.WAV">夢で逢えたら</a>,
<a href="https://huggingface.co/datasets/jiaheillu/audio_preview/resolve/main/胡桃_preview/贝加尔湖畔2胡桃.WAV">贝加尔湖畔</a>
</td>
</tr>
<tr>
<td><a href="https://huggingface.co/datasets/jiaheillu/audio_preview/blob/main/绫华_preview/README.md">Kamisato Ayaka</a></td>
<td><audio src="https://huggingface.co/datasets/jiaheillu/audio_preview/resolve/main/绫华_preview/linghua428.wav" controls="controls"></audio></td>
<td><audio src="https://huggingface.co/datasets/jiaheillu/audio_preview/resolve/main/绫华_preview/yelan.wav" controls="controls"></audio></td>
<td><audio src="https://huggingface.co/datasets/jiaheillu/sovits_audio_preview/resolve/main/绫华_preview/yelan.wav_auto_linghua_0.5.wav" controls="controls"></audio></td>
<td>
<a href="https://huggingface.co/datasets/jiaheillu/audio_preview/resolve/main/绫华_preview/アムリタ2绫华.WAV">アムリタ</a>,
<a href="https://huggingface.co/datasets/jiaheillu/audio_preview/resolve/main/绫华_preview/大鱼2绫华.WAV">大鱼</a>,
<a href="https://huggingface.co/datasets/jiaheillu/audio_preview/resolve/main/绫华_preview/遊園施設2绫华.WAV">遊園施設</a>,
<a href="https://huggingface.co/datasets/jiaheillu/audio_preview/resolve/main/绫华_preview/the_day_you_want_away2绫华.WAV">the day you want away</a>
</td>
</tr>
<tr>
<td><a href="https://huggingface.co/datasets/jiaheillu/sovits_audio_preview/blob/main/宵宫_preview/README.md">yoimiya</a></td>
<td><audio src="https://huggingface.co/datasets/jiaheillu/sovits_audio_preview/resolve/main/宵宫_preview/xiaogong.wav" controls="controls"></audio></td>
<td><audio src="https://huggingface.co/datasets/jiaheillu/sovits_audio_preview/resolve/main/宵宫_preview/hutao2.wav" controls="controls"></audio></td>
<td><audio src="https://huggingface.co/datasets/jiaheillu/sovits_audio_preview/resolve/main/宵宫_preview/hutao2wav_0key_xiaogong_0.5-2.wav" controls="controls"></audio></td>
<td>
<a href="https://huggingface.co/datasets/jiaheillu/sovits_audio_preview/resolve/main/宵宫_preview/昨夜书2宵宫.WAV">昨夜书</a>,
<a href="https://huggingface.co/datasets/jiaheillu/sovits_audio_preview/resolve/main/宵宫_preview/lemon2宵宫.WAV">lemon</a>,
<a href="https://huggingface.co/datasets/jiaheillu/sovits_audio_preview/resolve/main/宵宫_preview/my_heart_will_go_no2宵宫.WAV">my heart will go on</a>,
</td>
</tr>
<tr>
<td><a href="https://huggingface.co/datasets/jiaheillu/sovits_audio_preview/blob/main/刻晴_preview/README.md">Keqing</a></td>
<td><audio src="https://huggingface.co/datasets/jiaheillu/sovits_audio_preview/resolve/main/刻晴_preview/原_keqing2.wav" controls="controls"></audio></td>
<td><audio src="https://huggingface.co/datasets/jiaheillu/sovits_audio_preview/resolve/main/刻晴_preview/待_xiaogong3.wav" controls="controls"></audio></td>
<td><audio src="https://huggingface.co/datasets/jiaheillu/sovits_audio_preview/resolve/main/刻晴_preview/已_xiaogong2keqing.wav" controls="controls"></audio></td>
<td>
<a href="https://huggingface.co/datasets/jiaheillu/sovits_audio_preview/resolve/main/刻晴_preview/嚣张2刻晴.WAV">嚣张</a>,
<a href="https://huggingface.co/datasets/jiaheillu/sovits_audio_preview/resolve/main/刻晴_preview/ファティマ2刻晴.WAV">ファティマ</a>,
<a href="https://huggingface.co/datasets/jiaheillu/sovits_audio_preview/resolve/main/刻晴_preview/hero2刻晴.WAV">hero</a>,
</td>
</tr>
<tr>
<td><a href="https://huggingface.co/datasets/jiaheillu/sovits_audio_preview/blob/main/imallryt_preview/README.md">imallryt</a></td>
<td><audio src="https://huggingface.co/datasets/jiaheillu/sovits_audio_preview/resolve/main/imallryt_preview/%E5%8E%9F_IVOL_1%20Care_DRY_120_Am_Main_Vocal.wav" controls="controls"></audio></td>
<td><audio src="https://huggingface.co/datasets/jiaheillu/sovits_audio_preview/resolve/main/imallryt_preview/%E5%BE%85_Lead_A%20minor_DRY.wav" controls="controls"></audio></td>
<td><audio src="https://huggingface.co/datasets/jiaheillu/sovits_audio_preview/resolve/main/imallryt_preview/%E5%B7%B2_Lead_A%20minor_DRYwav_0key_imallryt_0.5.wav" controls="controls"></audio></td>
<td>
<a href="https://huggingface.co/datasets/jiaheillu/sovits_audio_preview/resolve/main/imallryt_preview/海阔天空2imallryt.WAV">海阔天空</a>,
</td>
</tr>
</tbody>
</table>
</div>
Key Parameters:</br>
audio duration: total duration of the training dataset </br>
epoch: number of rounds of training</br>
Others: </br>
batch_size = number of audio segments trained in one step </br>
segments = the number of segments that the audio is split into ,step = segments * epoch / batch_size, which is where the numbers in the model file name come from</br>
Using the example of "Wanderer" (a character name):</br>
Loss Function Graph: pay attention to step and loss5, for example:<br>
As a difficult test, all the original audios are high-pitched female voices, and this graph
shows the result of training on a 10-minute pure voice audio. The model achieved good performance at around
2800 epochs (10,000 steps), and the actual model used was trained for 5571 epochs (19,500 steps), with
slight differences between the trained voice and the original voice. Please refer to the preview audio above.
In general, 10 minutes is not enough for a sufficient training dataset.</br>
[Click here to view related files](https://huggingface.co/datasets/jiaheillu/audio_preview/tree/main)<br>
![sanbing_loss](https://huggingface.co/datasets/jiaheillu/audio_preview/resolve/main/%E6%95%A3%E5%85%B5%E6%95%88%E6%9E%9C%E9%A2%84%E8%A7%88/%E8%AE%AD%E7%BB%83%E5%8F%82%E6%95%B0%E9%80%9F%E8%A7%88.assets/sanbing_loss.png) |