Datasets:
File size: 7,979 Bytes
9b90a85 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
# No chunks, one doc per line
# remove new lines, etc.
# create a corpus of min 200-400 GB ==> ~100B tokens
# max file size: 4GB because of huggingface
# validation set: ~100M tokens ==> 200-400MB
import json
import logging
import multiprocessing
import sys
import tqdm
import os
import re
from multiprocessing import Pool
from datasets import load_dataset
from tokenizers import normalizers
try:
import lzma as xz
except ImportError:
import pylzma as xz
root = logging.getLogger()
root.setLevel(logging.INFO)
handler = logging.StreamHandler(sys.stdout)
handler.setLevel(logging.INFO)
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
handler.setFormatter(formatter)
root.addHandler(handler)
logger = logging.getLogger(__name__)
_LANGUAGES = ['bg', 'cs', 'da', 'de', 'el', 'en', 'es', 'et', 'fi', 'fr', 'ga', 'hr',
'hu', 'it', 'lt', 'lv', 'mt', 'nl', 'pl', 'pt', 'ro', 'sk', 'sl', 'sv']
_DOMAIN_TYPES = ['legislation', 'caselaw', 'contracts', 'other', 'mc4-legal' 'wikipedia']
custom_normalizer = normalizers.NFKD()
VALIDATION_SIZE = 1_000 # ~1MB per configuration ==> some low-resource configs will only have a validation file
MAX_FILE_SIZE = int(5e8) # 500 MB per train file
data_dir = 'data'
os.makedirs(data_dir, exist_ok=True)
def preprocess_dataset(languages=None, domain_types=None):
lang_type_datasets = []
# set defaults if they are not set
if languages is None:
languages = _LANGUAGES
if domain_types is None:
domain_types = _DOMAIN_TYPES
for LANG in languages:
for DOMAIN_TYPE in domain_types:
try:
if DOMAIN_TYPE == 'wikipedia':
# get from EU_Wikipedias
dataset = load_dataset("joelito/EU_Wikipedias", date="20221120", language=LANG,
split='train', streaming=True, use_auth_token=True)
else:
# get from Multi_Legal_Pile
dataset = load_dataset("joelito/Multi_Legal_Pile", f'{LANG}_{DOMAIN_TYPE}',
split='train', streaming=True, use_auth_token=True)
dataset = dataset.shuffle(seed=42, buffer_size=10_000)
logger.info(f'Found data for `{DOMAIN_TYPE}` in language `{LANG}`.')
except:
logger.info(f'There is no data for `{DOMAIN_TYPE}` in language `{LANG}`.')
continue
lang_type_datasets.append(dataset)
return lang_type_datasets
def write_samples(dataset_number):
dataset, dataset_name = dataset_number
if len(dataset_name.split('_')) == 1: # wikipedia
language = dataset_name.split('.')[1]
domain_type = "wikipedia"
dataset_name = f"{language}_{domain_type}" # reformat the config name so that we have wikipedia in the name
else:
language, domain_type = dataset_name.split('_')
total_count, temp_count, all_samples, file_number = 0, 0, 0, 0
filepath = get_filepath(dataset_name, 'validation', file_number) # we save the first examples to the validation set
out_file = open_file(filepath)
logger.info(f'Processing for dataset {dataset_name} started!')
# Read each document
for sample in tqdm.tqdm(dataset):
try:
if "validation" in filepath and temp_count >= VALIDATION_SIZE:
# if we are saving to eval, and we have enough samples in the eval set, switch to train
logger.info(
f'Processing validation split in dataset {dataset_name} finished with {temp_count}/{all_samples}!')
out_file.close()
temp_count = 0
filepath = get_filepath(dataset_name, 'train', file_number)
out_file = open_file(filepath)
if "train" in filepath and os.path.getsize(filepath) > MAX_FILE_SIZE:
# if we are saving to train, and we reached the max size per file, switch to the next file
logger.info(
f'Processing file {file_number} of train split in dataset {dataset_name} finished with {temp_count}/{all_samples}!')
out_file.close()
file_number += 1
temp_count = 0
filepath = get_filepath(dataset_name, 'train', file_number)
out_file = open_file(filepath)
text = normalize_text(sample['text'])
# if the text is usable for pretraining, save it
if is_text_usable(text):
jurisdiction = sample.get('jurisdiction', "N/A") # set defaults for wikipedia
type = sample.get("type", "wikipedia") # set defaults for wikipedia
entry = {"language": sample["language"], "type": type, "jurisdiction": jurisdiction, "text": text}
out_file.write(json.dumps(entry) + '\n')
total_count += 1
temp_count += 1
all_samples += 1
except:
continue
try:
out_file.close()
except:
pass
logger.info(f'Processing for dataset {dataset_name} finished with {total_count}/{all_samples}!')
return
def is_text_usable(text):
# Compute percentage of alphabetical characters in relation to full sequence length
punctuation = '!\"#$%&\'()*+,\-\./:;<=>?@\[\\\]\^_`{\|}~'
alpha_text = re.sub(rf'[{punctuation}\d]', '', text) # remove numbers and punctuation
alpha_percent = len(alpha_text) / len(text)
# Compute total chunk length
text_length = len(text.split())
# Ignore sequences with more than 30% numbers or short sequences (less than 64 tokens)
return alpha_percent > 0.7 and text_length > 64
def normalize_text(text):
# Normalize the document
text = custom_normalizer.normalize_str(text)
# Replace multiple newline and whitespaces
return re.sub(r'(\n )+', r'\n ', re.sub(r'( *[\n\r]+ *)+', r'\n ', re.sub(r'[\t ]+', r' ', text)))
def open_file(filepath):
logger.info(f'Writing to file {filepath}')
return xz.open(filepath, 'wt')
def get_filepath(dataset_name, split, file_number):
return os.path.join(data_dir, f'{dataset_name}_{split}.{file_number}.jsonl.xz')
def clean_and_filter_documents(languages=None, domain_types=None):
# Load all datasets across languages and types
lang_type_datasets = preprocess_dataset(languages=languages, domain_types=domain_types)
# also pass in dataset_name
lang_type_datasets = [(dataset, dataset.config_name) for dataset in lang_type_datasets]
logger.info(lang_type_datasets)
# Launch pool to preprocess datasets in parallel
max_num_processes = min(multiprocessing.cpu_count() - 4, len(lang_type_datasets))
num_processes = max(max_num_processes, 1)
logger.info(f'Launching a Pool with maximum {num_processes} processes...')
with Pool(num_processes) as pool:
pool.map(write_samples, lang_type_datasets)
logger.info(f"Finished preparing legal data")
if __name__ == '__main__':
# CURRENTLY RUNNING ON DGX STATION BFH
"""
Run with
export PYTHONPATH=. && python prepare_legal_data.py | tee prepare_legal_data.log
"""
# clean_and_filter_documents(["mt"], ["caselaw"]) # for testing
domains = ['legislation', 'caselaw', 'contracts', 'other', 'wikipedia'] # 'mc4-legal' is not ready yet
clean_and_filter_documents(languages=None, domain_types=domains)
# Get locally
# def get_file(LANG, DOMAIN_TYPE, split, number):
# base_folder = "data/mlm_dataset/chunks_512"
# return f'{base_folder}/{LANG}_{DOMAIN_TYPE}_{split}_{number}.jsonl.xz'
# files = [get_file(LANG, DOMAIN_TYPE, 'train', i) for i in range(1, 5)]
# files = [f for f in files if os.path.exists(f)] # make sure the file actually exists
# dataset = load_dataset("json", data_files={'train': files}, split='train', streaming=True)
# TODO write dataset cards for chunked, eu wikipedia and filtered dataset
|