Datasets:
Tasks:
Token Classification
Modalities:
Text
Formats:
json
Sub-tasks:
named-entity-recognition
Size:
10K - 100K
License:
File size: 9,276 Bytes
796f4bd f5277f5 796f4bd ec755d7 796f4bd f5277f5 796f4bd ec755d7 796f4bd ec755d7 796f4bd f5277f5 796f4bd ec755d7 796f4bd ec755d7 f5277f5 796f4bd ec755d7 796f4bd ec755d7 796f4bd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 |
import os
from glob import glob
from pathlib import Path
import numpy as np
import pandas as pd
from web_anno_tsv import open_web_anno_tsv
from web_anno_tsv.web_anno_tsv import ReadException, Annotation
pd.set_option('display.max_colwidth', None)
pd.set_option('display.max_columns', None)
annotation_labels = {'ADDRESS': ['building', 'city', 'country', 'place', 'postcode', 'street', 'territory'],
'AMOUNT': ['unit', 'value'],
'DATE': ['year', 'standard abbreviation', 'month', 'day of the week', 'day', 'calender event'],
'PERSON': ['age', 'email', 'ethnic category', 'family name', 'financial', 'given name – female',
'given name – male',
'health insurance number', 'id document number', 'initial name', 'marital status',
'medical record number',
'nationality', 'profession', 'role', 'social security number', 'title', 'url'],
'ORGANISATION': [],
'TIME': [],
'VEHICLE': ['build year', 'colour', 'license plate number', 'model', 'type']}
# make all labels upper case
annotation_labels = {key.upper(): [label.upper() for label in labels] for key, labels in annotation_labels.items()}
print(annotation_labels)
print("coarse_grained:", list(annotation_labels.keys()))
print("fine_grained:",
[finegrained for finegrained in [finegrained_list for finegrained_list in annotation_labels.values()]])
base_path = Path("extracted")
# TODO future work can add these datasets too to make it larger
special_paths = {
"EL": ["EL/ANNOTATED_DATA/LEGAL/AREIOSPAGOS1/annotated/full_dataset"],
"EN": ["EN/ANNOTATED_DATA/ADMINISTRATIVE-LEGAL/annotated/full_dataset"],
"FR": ["FR/ANNOTATED_DATA/LEGAL/COUR_CASSATION1/annotated/full_dataset/Civil",
"FR/ANNOTATED_DATA/LEGAL/COUR_CASSATION1/annotated/full_dataset/Commercial",
"FR/ANNOTATED_DATA/LEGAL/COUR_CASSATION1/annotated/full_dataset/Criminal",
"FR/ANNOTATED_DATA/LEGAL/COUR_CASSATION2/annotated/full_dataset",
"FR/ANNOTATED_DATA/MEDICAL/CAS1/annotated/full_dataset"],
"IT": ["IT/ANNOTATED_DATA/Corte_Suprema_di_Cassazione/annotated"],
"MT": ["MT/ANNOTATED_DATA/ADMINISTRATIVE/annotated/full_dataset",
"MT/ANNOTATED_DATA/GENERAL_NEWS/News_1/annotated/full_dataset",
"MT/ANNOTATED_DATA/LEGAL/Jurisprudence_1/annotated/full_dataset"],
}
def get_path(language):
return base_path / language / "ANNOTATED_DATA/EUR_LEX/annotated/full_dataset"
def get_coarse_grained_for_fine_grained(label):
for coarse_grained, fine_grained_set in annotation_labels.items():
if label in fine_grained_set:
return coarse_grained
return None # raise ValueError(f"Did not find fine_grained label {label}")
def is_fine_grained(label):
for coarse_grained, fine_grained_set in annotation_labels.items():
if label.upper() in fine_grained_set:
return True
return False
def is_coarse_grained(label):
return label.upper() in annotation_labels.keys()
class HashableAnnotation(Annotation):
def __init__(self, annotation):
super()
self.label = annotation.label
self.start = annotation.start
self.stop = annotation.stop
self.text = annotation.text
def __eq__(self, other):
return self.label == other.label and self.start == other.start and self.stop == other.stop and self.text == other.text
def __hash__(self):
return hash(('label', self.label, 'start', self.start, 'stop', self.stop, 'text', self.text))
def get_token_annotations(token, annotations):
annotations = list(dict.fromkeys([HashableAnnotation(ann) for ann in annotations])) # remove duplicate annotations
coarse_grained = "O"
fine_grained = "o"
for annotation in annotations:
label = annotation.label
# if token.start == annotation.start and token.stop == annotation.stop: # fine_grained annotation
if token.start >= annotation.start and token.stop <= annotation.stop: # course_grained annotation
# we don't support multilabel annotations for each token for simplicity.
# So when a token already has an annotation for either coarse or fine grained, we don't assign new ones.
if coarse_grained == "O" and is_coarse_grained(label):
coarse_grained = label
elif fine_grained == "o" and is_fine_grained(label):
# some DATE are mislabeled as day but it is hard to correct this. So we ignore it
fine_grained = label
return coarse_grained.upper(), fine_grained.upper()
def generate_IOB_labelset(series, casing_function):
last_ent = ""
new_series = []
for ent in series:
if ent in ["o", "O"]:
ent_to_add = ent
else:
if ent != last_ent: # we are the first one
ent_to_add = "B-" + ent
else:
ent_to_add = "I-" + ent
new_series.append(casing_function(ent_to_add))
last_ent = ent
return new_series
def get_annotated_sentence(result_sentence, sentence):
result_sentence["tokens"] = []
result_sentence["coarse_grained"] = []
result_sentence["fine_grained"] = []
for k, token in enumerate(sentence.tokens):
coarse_grained, fine_grained = get_token_annotations(token, sentence.annotations)
token = token.text.replace(u'\xa0', u' ').strip() # replace non-breaking spaces
if token: # remove empty tokens (only consisted of whitespace before
result_sentence["tokens"].append(token)
result_sentence["coarse_grained"].append(coarse_grained)
result_sentence["fine_grained"].append(fine_grained)
result_sentence["coarse_grained"] = generate_IOB_labelset(result_sentence["coarse_grained"], str.upper)
result_sentence["fine_grained"] = generate_IOB_labelset(result_sentence["fine_grained"], str.upper)
return result_sentence
languages = sorted([Path(file).stem for file in glob(str(base_path / "*"))])
def parse_files(language):
data_path = get_path(language.upper())
result_sentences = []
not_parsable_files = 0
file_names = sorted(list(glob(str(data_path / "*.tsv"))))
for file in file_names:
try:
with open_web_anno_tsv(file) as f:
for i, sentence in enumerate(f):
result_sentence = {"language": language, "type": "EUR-LEX",
"file_name": Path(file).stem, "sentence_number": i}
result_sentence = get_annotated_sentence(result_sentence, sentence)
result_sentences.append(result_sentence)
print(f"Successfully parsed file {file}")
except ReadException as e:
print(f"Could not parse file {file}")
not_parsable_files += 1
print("Not parsable files: ", not_parsable_files)
return pd.DataFrame(result_sentences), not_parsable_files
stats = []
train_dfs, validation_dfs, test_dfs = [], [], []
for language in languages:
language = language.lower()
print(f"Parsing language {language}")
df, not_parsable_files = parse_files(language)
file_names = df.file_name.unique()
# df.coarse_grained.apply(lambda x: print(set(x)))
# split by file_name
num_fn = len(file_names)
train_fn, validation_fn, test_fn = np.split(np.array(file_names), [int(.8 * num_fn), int(.9 * num_fn)])
lang_train = df[df.file_name.isin(train_fn)]
lang_validation = df[df.file_name.isin(validation_fn)]
lang_test = df[df.file_name.isin(test_fn)]
train_dfs.append(lang_train)
validation_dfs.append(lang_validation)
test_dfs.append(lang_test)
lang_stats = {"language": language}
lang_stats["# train files"] = len(train_fn)
lang_stats["# validation files"] = len(validation_fn)
lang_stats["# test files"] = len(test_fn)
lang_stats["# train sentences"] = len(lang_train.index)
lang_stats["# validation sentences"] = len(lang_validation.index)
lang_stats["# test sentences"] = len(lang_test.index)
stats.append(lang_stats)
stat_df = pd.DataFrame(stats)
print(stat_df.to_markdown(index=False))
train = pd.concat(train_dfs)
validation = pd.concat(validation_dfs)
test = pd.concat(test_dfs)
df = pd.concat([train, validation, test])
print(f"The final coarse grained tagset (in IOB notation) is the following: "
f"`{list(df.coarse_grained.explode().unique())}`")
print(f"The final fine grained tagset (in IOB notation) is the following: "
f"`{list(df.fine_grained.explode().unique())}`")
# save splits
def save_splits_to_jsonl(config_name):
# save to jsonl files for huggingface
if config_name: os.makedirs(config_name, exist_ok=True)
train.to_json(os.path.join(config_name, "train.jsonl"), lines=True, orient="records", force_ascii=False)
validation.to_json(os.path.join(config_name, "validation.jsonl"), lines=True, orient="records", force_ascii=False)
test.to_json(os.path.join(config_name, "test.jsonl"), lines=True, orient="records", force_ascii=False)
save_splits_to_jsonl("")
|