Datasets:
File size: 3,949 Bytes
0992654 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"from pprint import pprint\n",
"from tqdm import tqdm\n",
"import json"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"with open('data/askd_pt.json') as f:\n",
" pt = json.load(f)\n",
"\n",
"dataset = dict()\n",
"dataset['train_pt'] = pt['train_askd']\n",
"dataset['validation_pt'] = pt['validation_askd']\n",
"dataset['test_pt'] = pt['test_askd']\n",
"\n",
"with open('data/askd_en_augmented.json') as f:\n",
" en = json.load(f)\n",
"\n",
"dataset['train_en'] = en['train_askd']\n",
"dataset['validation_en'] = en['validation_askd']\n",
"dataset['test_en'] = en['test_askd']"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
"for split in dataset:\n",
" for item in dataset[split]:\n",
" for key in [\"selftext_urls\", \"title_urls\", \"answers_urls\"]:\n",
" if not isinstance(item[key], list):\n",
" item[key] = [item[key]]\n",
" \n",
" for key in [\"a_id\", \"score\", \"text\"]:\n",
" if not isinstance(item['answers'][key], list):\n",
" item['answers'][key] = [item['answers'][key]]"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"100%|ββββββββββ| 24256/24256 [00:00<00:00, 1048176.28it/s]\n",
"100%|ββββββββββ| 5198/5198 [00:00<00:00, 1092120.03it/s]\n",
"100%|ββββββββββ| 5198/5198 [00:00<00:00, 1032878.16it/s]\n",
"100%|ββββββββββ| 141019/141019 [13:54<00:00, 169.05it/s] \n",
"100%|ββββββββββ| 30219/30219 [00:19<00:00, 1549.74it/s]\n",
"100%|ββββββββββ| 30218/30218 [00:17<00:00, 1734.32it/s]\n"
]
}
],
"source": [
"external_pt = list()\n",
"external_en = list()\n",
"\n",
"for split in dataset:\n",
" for item in tqdm(dataset[split].copy()):\n",
" if item['answers']['a_id'] == ['0']:\n",
" dataset[split].remove(item)\n",
"\n",
" if split.endswith('pt'):\n",
" external_pt.append(item)\n",
" else:\n",
" external_en.append(item)\n",
"\n",
"dataset['external_en'] = external_en\n",
"dataset['external_pt'] = external_pt"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [],
"source": [
"for split in dataset:\n",
" with open(f'data/{split}.json', 'w') as f:\n",
" json.dump(dataset[split], f)"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"dict_keys(['train_pt', 'validation_pt', 'test_pt', 'train_en', 'validation_en', 'test_en', 'external_en', 'external_pt'])"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"dataset.keys()"
]
}
],
"metadata": {
"interpreter": {
"hash": "5550a332701dfaf727177dbb42680f614fbec3c4b4c54b659bea7821910aed98"
},
"kernelspec": {
"display_name": "Python 3.9.7 ('base')",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.7"
},
"orig_nbformat": 4
},
"nbformat": 4,
"nbformat_minor": 2
}
|