Upload dataset_infos.json with huggingface_hub
Browse files- dataset_infos.json +91 -1
dataset_infos.json
CHANGED
@@ -1 +1,91 @@
|
|
1 |
-
{"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{"default": {
|
2 |
+
"description": "HiTab is a dataset for question answering and data-to-text over hierarchical tables. It contains 10,672 samples and 3,597 tables from statistical reports (StatCan, NSF) and Wikipedia (ToTTo). 98.1% of the tables in HiTab are with hierarchies.\n",
|
3 |
+
"citation": "@article{cheng2021hitab,\n title={HiTab: A Hierarchical Table Dataset for Question Answering and Natural Language Generation},\n author={Cheng, Zhoujun and Dong, Haoyu and Wang, Zhiruo and Jia, Ran and Guo, Jiaqi and Gao, Yan and Han, Shi and Lou, Jian-Guang and Zhang, Dongmei},\n journal={arXiv preprint arXiv:2108.06712},\n year={2021}\n}\n",
|
4 |
+
"homepage": "https://www.microsoft.com/en-us/research/publication/hitab-a-hierarchical-table-dataset-for-question-answering-and-natural-language-generation/",
|
5 |
+
"license": "",
|
6 |
+
"features": {
|
7 |
+
"id": {
|
8 |
+
"dtype": "string",
|
9 |
+
"_type": "Value"
|
10 |
+
},
|
11 |
+
"table_id": {
|
12 |
+
"dtype": "string",
|
13 |
+
"_type": "Value"
|
14 |
+
},
|
15 |
+
"table_source": {
|
16 |
+
"dtype": "string",
|
17 |
+
"_type": "Value"
|
18 |
+
},
|
19 |
+
"sentence_id": {
|
20 |
+
"dtype": "string",
|
21 |
+
"_type": "Value"
|
22 |
+
},
|
23 |
+
"sub_sentence_id": {
|
24 |
+
"dtype": "string",
|
25 |
+
"_type": "Value"
|
26 |
+
},
|
27 |
+
"sub_sentence": {
|
28 |
+
"dtype": "string",
|
29 |
+
"_type": "Value"
|
30 |
+
},
|
31 |
+
"question": {
|
32 |
+
"dtype": "string",
|
33 |
+
"_type": "Value"
|
34 |
+
},
|
35 |
+
"answer": {
|
36 |
+
"dtype": "large_string",
|
37 |
+
"_type": "Value"
|
38 |
+
},
|
39 |
+
"aggregation": {
|
40 |
+
"dtype": "large_string",
|
41 |
+
"_type": "Value"
|
42 |
+
},
|
43 |
+
"linked_cells": {
|
44 |
+
"dtype": "large_string",
|
45 |
+
"_type": "Value"
|
46 |
+
},
|
47 |
+
"answer_formulas": {
|
48 |
+
"dtype": "large_string",
|
49 |
+
"_type": "Value"
|
50 |
+
},
|
51 |
+
"reference_cells_map": {
|
52 |
+
"dtype": "large_string",
|
53 |
+
"_type": "Value"
|
54 |
+
},
|
55 |
+
"table_content": {
|
56 |
+
"dtype": "large_string",
|
57 |
+
"_type": "Value"
|
58 |
+
}
|
59 |
+
},
|
60 |
+
"builder_name": "hitab",
|
61 |
+
"config_name": "default",
|
62 |
+
"version": {
|
63 |
+
"version_str": "2022.2.7",
|
64 |
+
"major": 2022,
|
65 |
+
"minor": 2,
|
66 |
+
"patch": 7
|
67 |
+
},
|
68 |
+
"splits": {
|
69 |
+
"train": {
|
70 |
+
"name": "train",
|
71 |
+
"num_bytes": 36419103,
|
72 |
+
"num_examples": 7417,
|
73 |
+
"dataset_name": null
|
74 |
+
},
|
75 |
+
"validation": {
|
76 |
+
"name": "validation",
|
77 |
+
"num_bytes": 8312699,
|
78 |
+
"num_examples": 1671,
|
79 |
+
"dataset_name": null
|
80 |
+
},
|
81 |
+
"test": {
|
82 |
+
"name": "test",
|
83 |
+
"num_bytes": 7710891,
|
84 |
+
"num_examples": 1584,
|
85 |
+
"dataset_name": null
|
86 |
+
}
|
87 |
+
},
|
88 |
+
"download_size": 6462957,
|
89 |
+
"dataset_size": 52442693,
|
90 |
+
"size_in_bytes": 58905650
|
91 |
+
}}
|