Delete _hitab.py
Browse files
_hitab.py
DELETED
@@ -1,83 +0,0 @@
|
|
1 |
-
#!/usr/bin/env python3
|
2 |
-
|
3 |
-
"""
|
4 |
-
The script used to load the dataset from the original source.
|
5 |
-
"""
|
6 |
-
|
7 |
-
import json
|
8 |
-
import datasets
|
9 |
-
import glob
|
10 |
-
import os
|
11 |
-
|
12 |
-
_CITATION = """\
|
13 |
-
@article{cheng2021hitab,
|
14 |
-
title={HiTab: A Hierarchical Table Dataset for Question Answering and Natural Language Generation},
|
15 |
-
author={Cheng, Zhoujun and Dong, Haoyu and Wang, Zhiruo and Jia, Ran and Guo, Jiaqi and Gao, Yan and Han, Shi and Lou, Jian-Guang and Zhang, Dongmei},
|
16 |
-
journal={arXiv preprint arXiv:2108.06712},
|
17 |
-
year={2021}
|
18 |
-
}
|
19 |
-
"""
|
20 |
-
_DESCRIPTION = """\
|
21 |
-
HiTab is a dataset for question answering and data-to-text over hierarchical tables. It contains 10,672 samples and 3,597 tables from statistical reports (StatCan, NSF) and Wikipedia (ToTTo). 98.1% of the tables in HiTab are with hierarchies.
|
22 |
-
"""
|
23 |
-
|
24 |
-
_URL = "https://github.com/microsoft/HiTab"
|
25 |
-
_LICENSE = "C-UDA 1.0"
|
26 |
-
|
27 |
-
class HiTab(datasets.GeneratorBasedBuilder):
|
28 |
-
VERSION = datasets.Version("2022.2.7")
|
29 |
-
|
30 |
-
def _info(self):
|
31 |
-
return datasets.DatasetInfo(
|
32 |
-
description=_DESCRIPTION,
|
33 |
-
features=datasets.Features({
|
34 |
-
'id' : datasets.Value(dtype='string'),
|
35 |
-
'table_id' : datasets.Value(dtype='string'),
|
36 |
-
'table_source' : datasets.Value(dtype='string'),
|
37 |
-
'sentence_id' : datasets.Value(dtype='string'),
|
38 |
-
'sub_sentence_id' : datasets.Value(dtype='string'),
|
39 |
-
'sub_sentence' : datasets.Value(dtype='string'),
|
40 |
-
'question' : datasets.Value(dtype='string'),
|
41 |
-
'answer' : datasets.Value(dtype='large_string'),
|
42 |
-
'aggregation' : datasets.Value(dtype='large_string'),
|
43 |
-
'linked_cells' : datasets.Value(dtype='large_string'),
|
44 |
-
'answer_formulas' : datasets.Value(dtype='large_string'),
|
45 |
-
'reference_cells_map' : datasets.Value(dtype='large_string'),
|
46 |
-
'table_content' : datasets.Value(dtype='large_string'),
|
47 |
-
}),
|
48 |
-
supervised_keys=None,
|
49 |
-
homepage="https://www.microsoft.com/en-us/research/publication/hitab-a-hierarchical-table-dataset-for-question-answering-and-natural-language-generation/",
|
50 |
-
citation=_CITATION,
|
51 |
-
license=_LICENSE
|
52 |
-
)
|
53 |
-
|
54 |
-
def _split_generators(self, dl_manager):
|
55 |
-
"""Returns SplitGenerators."""
|
56 |
-
return [
|
57 |
-
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": "data", "split" : "train"}),
|
58 |
-
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": "data", "split" : "dev"}),
|
59 |
-
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": "data", "split" : "test"}),
|
60 |
-
]
|
61 |
-
|
62 |
-
def _generate_examples(self, filepath, split):
|
63 |
-
table_content = {}
|
64 |
-
data = []
|
65 |
-
|
66 |
-
for filename in glob.glob(os.path.join(filepath, "tables", "raw", "*.json")):
|
67 |
-
with open(filename) as f:
|
68 |
-
j = json.load(f)
|
69 |
-
table_name = os.path.basename(filename).rstrip(".json")
|
70 |
-
table_content[table_name] = j
|
71 |
-
|
72 |
-
with open(os.path.join(filepath, f"{split}_samples.jsonl")) as f:
|
73 |
-
for i, line in enumerate(f.readlines()):
|
74 |
-
j = json.loads(line)
|
75 |
-
data.append(j)
|
76 |
-
|
77 |
-
for example_idx, entry in enumerate(data):
|
78 |
-
entry["table_content"] = table_content.get(entry["table_id"])
|
79 |
-
yield example_idx, {key: str(value) for key, value in entry.items()}
|
80 |
-
|
81 |
-
if __name__ == '__main__':
|
82 |
-
dataset = datasets.load_dataset(__file__)
|
83 |
-
dataset.push_to_hub("kasnerz/hitab")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|