|
import json |
|
import os |
|
|
|
import datasets |
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
_CITATION = """\ |
|
@article{park2019cord, |
|
title={CORD: A Consolidated Receipt Dataset for Post-OCR Parsing}, |
|
author={Park, Seunghyun and Shin, Seung and Lee, Bado and Lee, Junyeop and Surh, Jaeheung and Seo, Minjoon and Lee, Hwalsuk} |
|
booktitle={Document Intelligence Workshop at Neural Information Processing Systems} |
|
year={2019} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
https://huggingface.co/datasets/katanaml/cord |
|
""" |
|
|
|
|
|
def normalize_bbox(bbox, width, height): |
|
return [ |
|
int(1000 * (bbox[0] / width)), |
|
int(1000 * (bbox[1] / height)), |
|
int(1000 * (bbox[2] / width)), |
|
int(1000 * (bbox[3] / height)), |
|
] |
|
|
|
|
|
class CordConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for CORD""" |
|
|
|
def __init__(self, **kwargs): |
|
"""BuilderConfig for CORD. |
|
Args: |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(CordConfig, self).__init__(**kwargs) |
|
|
|
|
|
class Cord(datasets.GeneratorBasedBuilder): |
|
"""CORD dataset.""" |
|
|
|
BUILDER_CONFIGS = [ |
|
CordConfig(name="cord", version=datasets.Version("1.0.0"), description="CORD dataset"), |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"words": datasets.Sequence(datasets.Value("string")), |
|
"bboxes": datasets.Sequence(datasets.Sequence(datasets.Value("int64"))), |
|
"ner_tags": datasets.Sequence( |
|
datasets.features.ClassLabel( |
|
names=['O', |
|
'I-menu.cnt', |
|
'I-menu.discountprice', |
|
'I-menu.nm', |
|
'I-menu.num', |
|
'I-menu.price', |
|
'I-menu.sub_cnt', |
|
'I-menu.sub_nm', |
|
'I-menu.sub_price', |
|
'I-menu.unitprice', |
|
'I-sub_total.discount_price', |
|
'I-sub_total.etc', |
|
'I-sub_total.service_price', |
|
'I-sub_total.subtotal_price', |
|
'I-sub_total.tax_price', |
|
'I-total.cashprice', |
|
'I-total.changeprice', |
|
'I-total.creditcardprice', |
|
'I-total.emoneyprice', |
|
'I-total.menuqty_cnt', |
|
'I-total.menutype_cnt', |
|
'I-total.total_etc', |
|
'I-total.total_price'] |
|
) |
|
), |
|
"image_path": datasets.Value("string"), |
|
} |
|
), |
|
supervised_keys=None, |
|
homepage="https://huggingface.co/datasets/katanaml/cord", |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
downloaded_file = dl_manager.download_and_extract( |
|
"https://huggingface.co/datasets/katanaml/cord/resolve/main/dataset.zip") |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, gen_kwargs={"filepath": f"{downloaded_file}/CORD/train/"} |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, gen_kwargs={"filepath": f"{downloaded_file}/CORD/test/"} |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, gen_kwargs={"filepath": f"{downloaded_file}/CORD/dev/"} |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
guid = -1 |
|
|
|
replacing_labels = ['menu.etc', 'menu.itemsubtotal', 'menu.sub_etc', 'menu.sub_unitprice', 'menu.vatyn', |
|
'void_menu.nm', 'void_menu.price', 'sub_total.othersvc_price'] |
|
|
|
logger.info("⏳ Generating examples from = %s", filepath) |
|
ann_dir = os.path.join(filepath, "json") |
|
img_dir = os.path.join(filepath, "image") |
|
|
|
for file in sorted(os.listdir(ann_dir)): |
|
guid += 1 |
|
words = [] |
|
bboxes = [] |
|
ner_tags = [] |
|
|
|
file_path = os.path.join(ann_dir, file) |
|
with open(file_path, "r", encoding="utf8") as f: |
|
data = json.load(f) |
|
|
|
image_path = os.path.join(img_dir, file) |
|
image_path = image_path.replace("json", "png") |
|
|
|
width, height = data["meta"]["image_size"]["width"], data["meta"]["image_size"]["height"] |
|
image_id = data["meta"]["image_id"] |
|
for item in data["valid_line"]: |
|
for word in item['words']: |
|
|
|
txt = word['text'] |
|
|
|
|
|
x1 = abs(word['quad']['x1']) |
|
y1 = abs(word['quad']['y1']) |
|
x3 = abs(word['quad']['x3']) |
|
y3 = abs(word['quad']['y3']) |
|
|
|
x1 = width if x1 > width else x1 |
|
y1 = height if y1 > height else y1 |
|
x3 = width if x3 > width else x3 |
|
y3 = height if y3 > height else y3 |
|
|
|
box = [x1, y1, x3, y3] |
|
box = normalize_bbox(box, width=width, height=height) |
|
|
|
|
|
if len(txt) < 1: |
|
continue |
|
|
|
words.append(txt) |
|
bboxes.append(box) |
|
|
|
if item['category'] in replacing_labels: |
|
ner_tags.append('O') |
|
else: |
|
ner_tags.append('I-' + item['category']) |
|
|
|
yield guid, {"id": str(guid), "words": words, "bboxes": bboxes, "ner_tags": ner_tags, |
|
"image_path": image_path} |
|
|