system HF staff commited on
Commit
9cc1fd0
0 Parent(s):

Update files from the datasets library (from 1.13.0)

Browse files

Release notes: https://github.com/huggingface/datasets/releases/tag/1.13.0

Files changed (5) hide show
  1. .gitattributes +27 -0
  2. README.md +200 -0
  3. casino.py +192 -0
  4. dataset_infos.json +1 -0
  5. dummy/1.1.0/dummy_data.zip +3 -0
.gitattributes ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bin.* filter=lfs diff=lfs merge=lfs -text
5
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.model filter=lfs diff=lfs merge=lfs -text
12
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
13
+ *.onnx filter=lfs diff=lfs merge=lfs -text
14
+ *.ot filter=lfs diff=lfs merge=lfs -text
15
+ *.parquet filter=lfs diff=lfs merge=lfs -text
16
+ *.pb filter=lfs diff=lfs merge=lfs -text
17
+ *.pt filter=lfs diff=lfs merge=lfs -text
18
+ *.pth filter=lfs diff=lfs merge=lfs -text
19
+ *.rar filter=lfs diff=lfs merge=lfs -text
20
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
21
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
22
+ *.tflite filter=lfs diff=lfs merge=lfs -text
23
+ *.tgz filter=lfs diff=lfs merge=lfs -text
24
+ *.xz filter=lfs diff=lfs merge=lfs -text
25
+ *.zip filter=lfs diff=lfs merge=lfs -text
26
+ *.zstandard filter=lfs diff=lfs merge=lfs -text
27
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,200 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ annotations_creators:
3
+ - expert-generated
4
+ language_creators:
5
+ - crowdsourced
6
+ languages:
7
+ - en
8
+ licenses:
9
+ - cc-by-4-0
10
+ multilinguality:
11
+ - monolingual
12
+ size_categories:
13
+ - 1K<n<10K
14
+ source_datasets:
15
+ - original
16
+ task_categories:
17
+ - conditional-text-generation
18
+ - sequence-modeling
19
+ task_ids:
20
+ - conditional-text-generation-other-dialogue-generation
21
+ - dialogue-modeling
22
+ pretty_name: Campsite Negotiation Dialogues
23
+ paperswithcode_id: casino
24
+
25
+ ---
26
+
27
+
28
+ # Dataset Card for Casino
29
+
30
+ ## Table of Contents
31
+ - [Dataset Description](#dataset-description)
32
+ - [Dataset Summary](#dataset-summary)
33
+ - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
34
+ - [Languages](#languages)
35
+ - [Dataset Structure](#dataset-structure)
36
+ - [Data Instances](#data-instances)
37
+ - [Data Fields](#data-fields)
38
+ - [Data Splits](#data-splits)
39
+ - [Dataset Creation](#dataset-creation)
40
+ - [Curation Rationale](#curation-rationale)
41
+ - [Source Data](#source-data)
42
+ - [Annotations](#annotations)
43
+ - [Personal and Sensitive Information](#personal-and-sensitive-information)
44
+ - [Considerations for Using the Data](#considerations-for-using-the-data)
45
+ - [Social Impact of Dataset](#social-impact-of-dataset)
46
+ - [Discussion of Biases](#discussion-of-biases)
47
+ - [Other Known Limitations](#other-known-limitations)
48
+ - [Additional Information](#additional-information)
49
+ - [Dataset Curators](#dataset-curators)
50
+ - [Licensing Information](#licensing-information)
51
+ - [Citation Information](#citation-information)
52
+ - [Contributions](#contributions)
53
+
54
+ ## Dataset Description
55
+
56
+ - **Repository:** [Github: Kushal Chawla CaSiNo](https://github.com/kushalchawla/CaSiNo)
57
+ - **Paper:** [CaSiNo: A Corpus of Campsite Negotiation Dialogues for Automatic Negotiation Systems](https://aclanthology.org/2021.naacl-main.254.pdf)
58
+ - **Point of Contact:** [Kushal Chawla]([email protected])
59
+
60
+ ### Dataset Summary
61
+
62
+ We provide a novel dataset (referred to as CaSiNo) of 1030 negotiation dialogues. Two participants take the role of campsite neighbors and negotiate for Food, Water, and Firewood packages, based on their individual preferences and requirements. This design keeps the task tractable, while still facilitating linguistically rich and personal conversations. This helps to overcome the limitations of prior negotiation datasets such as Deal or No Deal and Craigslist Bargain. Each dialogue consists of rich meta-data including participant demographics, personality, and their subjective evaluation of the negotiation in terms of satisfaction and opponent likeness.
63
+
64
+ ### Supported Tasks and Leaderboards
65
+
66
+ Train end-to-end models for negotiation
67
+
68
+ ### Languages
69
+
70
+ English
71
+
72
+ ## Dataset Structure
73
+
74
+ ### Data Instances
75
+
76
+ ```
77
+ {
78
+ "chat_logs": [
79
+ {
80
+ "text": "Hello! \ud83d\ude42 Let's work together on a deal for these packages, shall we? What are you most interested in?",
81
+ "task_data": {},
82
+ "id": "mturk_agent_1"
83
+ },
84
+ ...
85
+ ],
86
+ "participant_info": {
87
+ "mturk_agent_1":
88
+ {
89
+ "value2issue": ...
90
+ "value2reason": ...
91
+ "outcomes": ...
92
+ "demographics": ...
93
+ "personality": ...
94
+ },
95
+ "mturk_agent_2": ...
96
+ },
97
+ "annotations": [
98
+ ["Hello! \ud83d\ude42 Let's work together on a deal for these packages, shall we? What are you most interested in?", "promote-coordination,elicit-pref"],
99
+ ...
100
+ ]
101
+ }
102
+ ```
103
+
104
+ ### Data Fields
105
+
106
+ - `chat_logs`: The negotiation dialogue between two participants
107
+ - `text`: The dialogue utterance
108
+ - `task_data`: Meta-data associated with the utterance such as the deal submitted by a participant
109
+ - `id`: The ID of the participant who typed this utterance
110
+ - `participant_info`: Meta-data about the two participants in this conversation
111
+ - `mturk_agent_1`: For the first participant (Note that 'first' is just for reference. There is no order between the participants and any participant can start the conversation)
112
+ - `value2issue`: The priority order of this participant among Food, Water, Firewood
113
+ - `value2reason`: The personal arguments given by the participants themselves, consistent with the above preference order. This preference order and these arguments were submitted before the negotiation began.
114
+ - `outcomes`: The negotiation outcomes for this participant including objective and subjective assessment.
115
+ - `demographics`: Demographic attributes of the participant in terms of age, gender, ethnicity, and education.
116
+ - `personality`: Personality attributes for this participant, in terms of Big-5 and Social Value Orientation
117
+ - `mturk_agent_2`: For the second participant; follows the same structure as above
118
+ - `annotations`: Strategy annotations for each utterance in the dialogue, wherever available. The first element represents the utterance and the second represents a comma-separated list of all strategies present in that utterance.
119
+
120
+ ### Data Splits
121
+
122
+ No default data split has been provided. Hence, all 1030 data points are under the 'train' split.
123
+
124
+ | | Train |
125
+ | ----- | ----- |
126
+ | total dialogues | 1030 |
127
+ | annotated dialogues | 396 |
128
+
129
+ ## Dataset Creation
130
+
131
+ ### Curation Rationale
132
+
133
+ The dataset was collected to address the limitations in prior negotiation datasets from the perspective of downstream applications in pedagogy and conversational AI. Please refer to the original paper published at NAACL 2021 for details about the rationale and data curation steps ([source paper](https://aclanthology.org/2021.naacl-main.254.pdf)).
134
+
135
+ ### Source Data
136
+
137
+ #### Initial Data Collection and Normalization
138
+
139
+ The dialogues were crowdsourced on Amazon Mechanical Turk. The strategy annotations were performed by expert annotators (first three authors of the paper). Please refer to the original dataset paper published at NAACL 2021 for more details ([source paper](https://aclanthology.org/2021.naacl-main.254.pdf)).
140
+
141
+ #### Who are the source language producers?
142
+
143
+ The primary producers are Turkers on Amazon Mechanical Turk platform. Two turkers were randomly paired with each other to engage in a negotiation via a chat interface. Please refer to the original dataset paper published at NAACL 2021 for more details ([source paper](https://aclanthology.org/2021.naacl-main.254.pdf)).
144
+
145
+ ### Annotations
146
+
147
+ #### Annotation process
148
+
149
+ From the [source paper](https://aclanthology.org/2021.naacl-main.254.pdf) for this dataset:
150
+
151
+ >Three expert annotators independently annotated 396 dialogues containing 4615 utterances. The annotation guidelines were iterated over a subset of 5 dialogues, while the reliability scores were computed on a different subset of 10 dialogues. We use the nominal form of Krippendorff’s alpha (Krippendorff, 2018) to measure the inter-annotator agreement. We provide the annotation statistics in Table 2. Although we release all the annotations, we skip Coordination and Empathy for our analysis in this work, due to higher subjectivity resulting in relatively lower reliability scores.
152
+
153
+ #### Who are the annotators?
154
+
155
+ Three expert annotators (first three authors of the paper).
156
+
157
+ ### Personal and Sensitive Information
158
+
159
+ All personally identifiable information about the participants such as MTurk Ids or HIT Ids was removed before releasing the data.
160
+
161
+ ## Considerations for Using the Data
162
+
163
+ ### Social Impact of Dataset
164
+
165
+ Please refer to Section 8.2 in the [source paper](https://aclanthology.org/2021.naacl-main.254.pdf).
166
+
167
+ ### Discussion of Biases
168
+
169
+ Please refer to Section 8.2 in the [source paper](https://aclanthology.org/2021.naacl-main.254.pdf).
170
+
171
+ ### Other Known Limitations
172
+
173
+ Please refer to Section 7 in the [source paper](https://aclanthology.org/2021.naacl-main.254.pdf).
174
+
175
+ ## Additional Information
176
+
177
+ ### Dataset Curators
178
+
179
+ Corresponding Author: Kushal Chawla (`[email protected]`)\
180
+ Affiliation: University of Southern California\
181
+ Please refer to the [source paper](https://aclanthology.org/2021.naacl-main.254.pdf) for the complete author list.
182
+
183
+ ### Licensing Information
184
+
185
+ The project is licensed under CC-by-4.0
186
+
187
+ ### Citation Information
188
+ ```
189
+ @inproceedings{chawla2021casino,
190
+ title={CaSiNo: A Corpus of Campsite Negotiation Dialogues for Automatic Negotiation Systems},
191
+ author={Chawla, Kushal and Ramirez, Jaysa and Clever, Rene and Lucas, Gale and May, Jonathan and Gratch, Jonathan},
192
+ booktitle={Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies},
193
+ pages={3167--3185},
194
+ year={2021}
195
+ }
196
+ ```
197
+
198
+ ### Contributions
199
+
200
+ Thanks to [Kushal Chawla](https://kushalchawla.github.io/) for adding this dataset.
casino.py ADDED
@@ -0,0 +1,192 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """Campsite Negotiation Dialogues"""
16
+
17
+ import json
18
+
19
+ import datasets
20
+
21
+
22
+ _CITATION = """\
23
+ @inproceedings{chawla2021casino,
24
+ title={CaSiNo: A Corpus of Campsite Negotiation Dialogues for Automatic Negotiation Systems},
25
+ author={Chawla, Kushal and Ramirez, Jaysa and Clever, Rene and Lucas, Gale and May, Jonathan and Gratch, Jonathan},
26
+ booktitle={Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies},
27
+ pages={3167--3185},
28
+ year={2021}
29
+ }
30
+ """
31
+
32
+ _DESCRIPTION = """\
33
+ We provide a novel dataset (referred to as CaSiNo) of 1030 negotiation dialogues. Two participants take the role of campsite neighbors and negotiate for Food, Water, and Firewood packages, based on their individual preferences and requirements. This design keeps the task tractable, while still facilitating linguistically rich and personal conversations. This helps to overcome the limitations of prior negotiation datasets such as Deal or No Deal and Craigslist Bargain. Each dialogue consists of rich meta-data including participant demographics, personality, and their subjective evaluation of the negotiation in terms of satisfaction and opponent likeness.
34
+ """
35
+
36
+ _HOMEPAGE = "https://github.com/kushalchawla/CaSiNo"
37
+
38
+ _LICENSE = "The project is licensed under CC-BY-4.0"
39
+
40
+ _URLs = {
41
+ "train": "https://raw.githubusercontent.com/kushalchawla/CaSiNo/main/data/casino.json",
42
+ }
43
+
44
+
45
+ class Casino(datasets.GeneratorBasedBuilder):
46
+ """Campsite Negotiation Dialogues"""
47
+
48
+ VERSION = datasets.Version("1.1.0")
49
+
50
+ def _info(self):
51
+
52
+ features = datasets.Features(
53
+ {
54
+ "chat_logs": [
55
+ {
56
+ "text": datasets.Value("string"),
57
+ "task_data": {
58
+ "data": datasets.Value("string"),
59
+ "issue2youget": {
60
+ "Firewood": datasets.Value("string"),
61
+ "Water": datasets.Value("string"),
62
+ "Food": datasets.Value("string"),
63
+ },
64
+ "issue2theyget": {
65
+ "Firewood": datasets.Value("string"),
66
+ "Water": datasets.Value("string"),
67
+ "Food": datasets.Value("string"),
68
+ },
69
+ },
70
+ "id": datasets.Value("string"),
71
+ },
72
+ ],
73
+ "participant_info": {
74
+ "mturk_agent_1": {
75
+ "value2issue": {
76
+ "Low": datasets.Value("string"),
77
+ "Medium": datasets.Value("string"),
78
+ "High": datasets.Value("string"),
79
+ },
80
+ "value2reason": {
81
+ "Low": datasets.Value("string"),
82
+ "Medium": datasets.Value("string"),
83
+ "High": datasets.Value("string"),
84
+ },
85
+ "outcomes": {
86
+ "points_scored": datasets.Value("int32"),
87
+ "satisfaction": datasets.Value("string"),
88
+ "opponent_likeness": datasets.Value("string"),
89
+ },
90
+ "demographics": {
91
+ "age": datasets.Value("int32"),
92
+ "gender": datasets.Value("string"),
93
+ "ethnicity": datasets.Value("string"),
94
+ "education": datasets.Value("string"),
95
+ },
96
+ "personality": {
97
+ "svo": datasets.Value("string"),
98
+ "big-five": {
99
+ "extraversion": datasets.Value("float"),
100
+ "agreeableness": datasets.Value("float"),
101
+ "conscientiousness": datasets.Value("float"),
102
+ "emotional-stability": datasets.Value("float"),
103
+ "openness-to-experiences": datasets.Value("float"),
104
+ },
105
+ },
106
+ },
107
+ "mturk_agent_2": {
108
+ "value2issue": {
109
+ "Low": datasets.Value("string"),
110
+ "Medium": datasets.Value("string"),
111
+ "High": datasets.Value("string"),
112
+ },
113
+ "value2reason": {
114
+ "Low": datasets.Value("string"),
115
+ "Medium": datasets.Value("string"),
116
+ "High": datasets.Value("string"),
117
+ },
118
+ "outcomes": {
119
+ "points_scored": datasets.Value("int32"),
120
+ "satisfaction": datasets.Value("string"),
121
+ "opponent_likeness": datasets.Value("string"),
122
+ },
123
+ "demographics": {
124
+ "age": datasets.Value("int32"),
125
+ "gender": datasets.Value("string"),
126
+ "ethnicity": datasets.Value("string"),
127
+ "education": datasets.Value("string"),
128
+ },
129
+ "personality": {
130
+ "svo": datasets.Value("string"),
131
+ "big-five": {
132
+ "extraversion": datasets.Value("float"),
133
+ "agreeableness": datasets.Value("float"),
134
+ "conscientiousness": datasets.Value("float"),
135
+ "emotional-stability": datasets.Value("float"),
136
+ "openness-to-experiences": datasets.Value("float"),
137
+ },
138
+ },
139
+ },
140
+ },
141
+ "annotations": [[datasets.Value("string")]],
142
+ }
143
+ )
144
+
145
+ return datasets.DatasetInfo(
146
+ description=_DESCRIPTION,
147
+ features=features,
148
+ supervised_keys=None,
149
+ homepage=_HOMEPAGE,
150
+ license=_LICENSE,
151
+ citation=_CITATION,
152
+ )
153
+
154
+ def _split_generators(self, dl_manager):
155
+ """Returns SplitGenerators."""
156
+ path = dl_manager.download_and_extract(_URLs["train"])
157
+ return [
158
+ datasets.SplitGenerator(
159
+ name=datasets.Split.TRAIN,
160
+ gen_kwargs={
161
+ "filepath": path,
162
+ "split": "train",
163
+ },
164
+ ),
165
+ ]
166
+
167
+ def _generate_examples(self, filepath, split="train"):
168
+ """Yields examples."""
169
+
170
+ with open(filepath, encoding="utf-8") as f:
171
+ all_data = json.load(f)
172
+
173
+ for idx, item in enumerate(all_data):
174
+
175
+ for chat_item in item["chat_logs"]:
176
+ if "data" not in chat_item["task_data"]:
177
+ chat_item["task_data"]["data"] = ""
178
+ if "issue2youget" not in chat_item["task_data"]:
179
+ chat_item["task_data"]["issue2youget"] = {
180
+ "Food": "",
181
+ "Firewood": "",
182
+ "Water": "",
183
+ }
184
+ if "issue2theyget" not in chat_item["task_data"]:
185
+ chat_item["task_data"]["issue2theyget"] = {
186
+ "Food": "",
187
+ "Firewood": "",
188
+ "Water": "",
189
+ }
190
+
191
+ item.pop("dialogue_id")
192
+ yield idx, item
dataset_infos.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"default": {"description": "We provide a novel dataset (referred to as CaSiNo) of 1030 negotiation dialogues. Two participants take the role of campsite neighbors and negotiate for Food, Water, and Firewood packages, based on their individual preferences and requirements. This design keeps the task tractable, while still facilitating linguistically rich and personal conversations. This helps to overcome the limitations of prior negotiation datasets such as Deal or No Deal and Craigslist Bargain. Each dialogue consists of rich meta-data including participant demographics, personality, and their subjective evaluation of the negotiation in terms of satisfaction and opponent likeness.\n", "citation": "@inproceedings{chawla2021casino,\n title={CaSiNo: A Corpus of Campsite Negotiation Dialogues for Automatic Negotiation Systems},\n author={Chawla, Kushal and Ramirez, Jaysa and Clever, Rene and Lucas, Gale and May, Jonathan and Gratch, Jonathan},\n booktitle={Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies},\n pages={3167--3185},\n year={2021}\n}\n", "homepage": "https://github.com/kushalchawla/CaSiNo", "license": "The project is licensed under CC-BY-4.0", "features": {"chat_logs": [{"text": {"dtype": "string", "id": null, "_type": "Value"}, "task_data": {"data": {"dtype": "string", "id": null, "_type": "Value"}, "issue2youget": {"Firewood": {"dtype": "string", "id": null, "_type": "Value"}, "Water": {"dtype": "string", "id": null, "_type": "Value"}, "Food": {"dtype": "string", "id": null, "_type": "Value"}}, "issue2theyget": {"Firewood": {"dtype": "string", "id": null, "_type": "Value"}, "Water": {"dtype": "string", "id": null, "_type": "Value"}, "Food": {"dtype": "string", "id": null, "_type": "Value"}}}, "id": {"dtype": "string", "id": null, "_type": "Value"}}], "participant_info": {"mturk_agent_1": {"value2issue": {"Low": {"dtype": "string", "id": null, "_type": "Value"}, "Medium": {"dtype": "string", "id": null, "_type": "Value"}, "High": {"dtype": "string", "id": null, "_type": "Value"}}, "value2reason": {"Low": {"dtype": "string", "id": null, "_type": "Value"}, "Medium": {"dtype": "string", "id": null, "_type": "Value"}, "High": {"dtype": "string", "id": null, "_type": "Value"}}, "outcomes": {"points_scored": {"dtype": "int32", "id": null, "_type": "Value"}, "satisfaction": {"dtype": "string", "id": null, "_type": "Value"}, "opponent_likeness": {"dtype": "string", "id": null, "_type": "Value"}}, "demographics": {"age": {"dtype": "int32", "id": null, "_type": "Value"}, "gender": {"dtype": "string", "id": null, "_type": "Value"}, "ethnicity": {"dtype": "string", "id": null, "_type": "Value"}, "education": {"dtype": "string", "id": null, "_type": "Value"}}, "personality": {"svo": {"dtype": "string", "id": null, "_type": "Value"}, "big-five": {"extraversion": {"dtype": "float32", "id": null, "_type": "Value"}, "agreeableness": {"dtype": "float32", "id": null, "_type": "Value"}, "conscientiousness": {"dtype": "float32", "id": null, "_type": "Value"}, "emotional-stability": {"dtype": "float32", "id": null, "_type": "Value"}, "openness-to-experiences": {"dtype": "float32", "id": null, "_type": "Value"}}}}, "mturk_agent_2": {"value2issue": {"Low": {"dtype": "string", "id": null, "_type": "Value"}, "Medium": {"dtype": "string", "id": null, "_type": "Value"}, "High": {"dtype": "string", "id": null, "_type": "Value"}}, "value2reason": {"Low": {"dtype": "string", "id": null, "_type": "Value"}, "Medium": {"dtype": "string", "id": null, "_type": "Value"}, "High": {"dtype": "string", "id": null, "_type": "Value"}}, "outcomes": {"points_scored": {"dtype": "int32", "id": null, "_type": "Value"}, "satisfaction": {"dtype": "string", "id": null, "_type": "Value"}, "opponent_likeness": {"dtype": "string", "id": null, "_type": "Value"}}, "demographics": {"age": {"dtype": "int32", "id": null, "_type": "Value"}, "gender": {"dtype": "string", "id": null, "_type": "Value"}, "ethnicity": {"dtype": "string", "id": null, "_type": "Value"}, "education": {"dtype": "string", "id": null, "_type": "Value"}}, "personality": {"svo": {"dtype": "string", "id": null, "_type": "Value"}, "big-five": {"extraversion": {"dtype": "float32", "id": null, "_type": "Value"}, "agreeableness": {"dtype": "float32", "id": null, "_type": "Value"}, "conscientiousness": {"dtype": "float32", "id": null, "_type": "Value"}, "emotional-stability": {"dtype": "float32", "id": null, "_type": "Value"}, "openness-to-experiences": {"dtype": "float32", "id": null, "_type": "Value"}}}}}, "annotations": [[{"dtype": "string", "id": null, "_type": "Value"}]]}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "casino", "config_name": "default", "version": {"version_str": "1.1.0", "description": null, "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 3211555, "num_examples": 1030, "dataset_name": "casino"}}, "download_checksums": {"https://raw.githubusercontent.com/kushalchawla/CaSiNo/main/data/casino.json": {"num_bytes": 4300019, "checksum": "4f2c4560a0070906ed018c3f0766e35f8f8f31b36274ebf35b608621915744ab"}}, "download_size": 4300019, "post_processing_size": null, "dataset_size": 3211555, "size_in_bytes": 7511574}}
dummy/1.1.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f791e11fd39f7986319f43e3f8621066d18228de344340fc6f629475e3de1d0e
3
+ size 4977