Commit
•
9cc1fd0
0
Parent(s):
Update files from the datasets library (from 1.13.0)
Browse filesRelease notes: https://github.com/huggingface/datasets/releases/tag/1.13.0
- .gitattributes +27 -0
- README.md +200 -0
- casino.py +192 -0
- dataset_infos.json +1 -0
- dummy/1.1.0/dummy_data.zip +3 -0
.gitattributes
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bin.* filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
20 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
+
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,200 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
annotations_creators:
|
3 |
+
- expert-generated
|
4 |
+
language_creators:
|
5 |
+
- crowdsourced
|
6 |
+
languages:
|
7 |
+
- en
|
8 |
+
licenses:
|
9 |
+
- cc-by-4-0
|
10 |
+
multilinguality:
|
11 |
+
- monolingual
|
12 |
+
size_categories:
|
13 |
+
- 1K<n<10K
|
14 |
+
source_datasets:
|
15 |
+
- original
|
16 |
+
task_categories:
|
17 |
+
- conditional-text-generation
|
18 |
+
- sequence-modeling
|
19 |
+
task_ids:
|
20 |
+
- conditional-text-generation-other-dialogue-generation
|
21 |
+
- dialogue-modeling
|
22 |
+
pretty_name: Campsite Negotiation Dialogues
|
23 |
+
paperswithcode_id: casino
|
24 |
+
|
25 |
+
---
|
26 |
+
|
27 |
+
|
28 |
+
# Dataset Card for Casino
|
29 |
+
|
30 |
+
## Table of Contents
|
31 |
+
- [Dataset Description](#dataset-description)
|
32 |
+
- [Dataset Summary](#dataset-summary)
|
33 |
+
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
|
34 |
+
- [Languages](#languages)
|
35 |
+
- [Dataset Structure](#dataset-structure)
|
36 |
+
- [Data Instances](#data-instances)
|
37 |
+
- [Data Fields](#data-fields)
|
38 |
+
- [Data Splits](#data-splits)
|
39 |
+
- [Dataset Creation](#dataset-creation)
|
40 |
+
- [Curation Rationale](#curation-rationale)
|
41 |
+
- [Source Data](#source-data)
|
42 |
+
- [Annotations](#annotations)
|
43 |
+
- [Personal and Sensitive Information](#personal-and-sensitive-information)
|
44 |
+
- [Considerations for Using the Data](#considerations-for-using-the-data)
|
45 |
+
- [Social Impact of Dataset](#social-impact-of-dataset)
|
46 |
+
- [Discussion of Biases](#discussion-of-biases)
|
47 |
+
- [Other Known Limitations](#other-known-limitations)
|
48 |
+
- [Additional Information](#additional-information)
|
49 |
+
- [Dataset Curators](#dataset-curators)
|
50 |
+
- [Licensing Information](#licensing-information)
|
51 |
+
- [Citation Information](#citation-information)
|
52 |
+
- [Contributions](#contributions)
|
53 |
+
|
54 |
+
## Dataset Description
|
55 |
+
|
56 |
+
- **Repository:** [Github: Kushal Chawla CaSiNo](https://github.com/kushalchawla/CaSiNo)
|
57 |
+
- **Paper:** [CaSiNo: A Corpus of Campsite Negotiation Dialogues for Automatic Negotiation Systems](https://aclanthology.org/2021.naacl-main.254.pdf)
|
58 |
+
- **Point of Contact:** [Kushal Chawla]([email protected])
|
59 |
+
|
60 |
+
### Dataset Summary
|
61 |
+
|
62 |
+
We provide a novel dataset (referred to as CaSiNo) of 1030 negotiation dialogues. Two participants take the role of campsite neighbors and negotiate for Food, Water, and Firewood packages, based on their individual preferences and requirements. This design keeps the task tractable, while still facilitating linguistically rich and personal conversations. This helps to overcome the limitations of prior negotiation datasets such as Deal or No Deal and Craigslist Bargain. Each dialogue consists of rich meta-data including participant demographics, personality, and their subjective evaluation of the negotiation in terms of satisfaction and opponent likeness.
|
63 |
+
|
64 |
+
### Supported Tasks and Leaderboards
|
65 |
+
|
66 |
+
Train end-to-end models for negotiation
|
67 |
+
|
68 |
+
### Languages
|
69 |
+
|
70 |
+
English
|
71 |
+
|
72 |
+
## Dataset Structure
|
73 |
+
|
74 |
+
### Data Instances
|
75 |
+
|
76 |
+
```
|
77 |
+
{
|
78 |
+
"chat_logs": [
|
79 |
+
{
|
80 |
+
"text": "Hello! \ud83d\ude42 Let's work together on a deal for these packages, shall we? What are you most interested in?",
|
81 |
+
"task_data": {},
|
82 |
+
"id": "mturk_agent_1"
|
83 |
+
},
|
84 |
+
...
|
85 |
+
],
|
86 |
+
"participant_info": {
|
87 |
+
"mturk_agent_1":
|
88 |
+
{
|
89 |
+
"value2issue": ...
|
90 |
+
"value2reason": ...
|
91 |
+
"outcomes": ...
|
92 |
+
"demographics": ...
|
93 |
+
"personality": ...
|
94 |
+
},
|
95 |
+
"mturk_agent_2": ...
|
96 |
+
},
|
97 |
+
"annotations": [
|
98 |
+
["Hello! \ud83d\ude42 Let's work together on a deal for these packages, shall we? What are you most interested in?", "promote-coordination,elicit-pref"],
|
99 |
+
...
|
100 |
+
]
|
101 |
+
}
|
102 |
+
```
|
103 |
+
|
104 |
+
### Data Fields
|
105 |
+
|
106 |
+
- `chat_logs`: The negotiation dialogue between two participants
|
107 |
+
- `text`: The dialogue utterance
|
108 |
+
- `task_data`: Meta-data associated with the utterance such as the deal submitted by a participant
|
109 |
+
- `id`: The ID of the participant who typed this utterance
|
110 |
+
- `participant_info`: Meta-data about the two participants in this conversation
|
111 |
+
- `mturk_agent_1`: For the first participant (Note that 'first' is just for reference. There is no order between the participants and any participant can start the conversation)
|
112 |
+
- `value2issue`: The priority order of this participant among Food, Water, Firewood
|
113 |
+
- `value2reason`: The personal arguments given by the participants themselves, consistent with the above preference order. This preference order and these arguments were submitted before the negotiation began.
|
114 |
+
- `outcomes`: The negotiation outcomes for this participant including objective and subjective assessment.
|
115 |
+
- `demographics`: Demographic attributes of the participant in terms of age, gender, ethnicity, and education.
|
116 |
+
- `personality`: Personality attributes for this participant, in terms of Big-5 and Social Value Orientation
|
117 |
+
- `mturk_agent_2`: For the second participant; follows the same structure as above
|
118 |
+
- `annotations`: Strategy annotations for each utterance in the dialogue, wherever available. The first element represents the utterance and the second represents a comma-separated list of all strategies present in that utterance.
|
119 |
+
|
120 |
+
### Data Splits
|
121 |
+
|
122 |
+
No default data split has been provided. Hence, all 1030 data points are under the 'train' split.
|
123 |
+
|
124 |
+
| | Train |
|
125 |
+
| ----- | ----- |
|
126 |
+
| total dialogues | 1030 |
|
127 |
+
| annotated dialogues | 396 |
|
128 |
+
|
129 |
+
## Dataset Creation
|
130 |
+
|
131 |
+
### Curation Rationale
|
132 |
+
|
133 |
+
The dataset was collected to address the limitations in prior negotiation datasets from the perspective of downstream applications in pedagogy and conversational AI. Please refer to the original paper published at NAACL 2021 for details about the rationale and data curation steps ([source paper](https://aclanthology.org/2021.naacl-main.254.pdf)).
|
134 |
+
|
135 |
+
### Source Data
|
136 |
+
|
137 |
+
#### Initial Data Collection and Normalization
|
138 |
+
|
139 |
+
The dialogues were crowdsourced on Amazon Mechanical Turk. The strategy annotations were performed by expert annotators (first three authors of the paper). Please refer to the original dataset paper published at NAACL 2021 for more details ([source paper](https://aclanthology.org/2021.naacl-main.254.pdf)).
|
140 |
+
|
141 |
+
#### Who are the source language producers?
|
142 |
+
|
143 |
+
The primary producers are Turkers on Amazon Mechanical Turk platform. Two turkers were randomly paired with each other to engage in a negotiation via a chat interface. Please refer to the original dataset paper published at NAACL 2021 for more details ([source paper](https://aclanthology.org/2021.naacl-main.254.pdf)).
|
144 |
+
|
145 |
+
### Annotations
|
146 |
+
|
147 |
+
#### Annotation process
|
148 |
+
|
149 |
+
From the [source paper](https://aclanthology.org/2021.naacl-main.254.pdf) for this dataset:
|
150 |
+
|
151 |
+
>Three expert annotators independently annotated 396 dialogues containing 4615 utterances. The annotation guidelines were iterated over a subset of 5 dialogues, while the reliability scores were computed on a different subset of 10 dialogues. We use the nominal form of Krippendorff’s alpha (Krippendorff, 2018) to measure the inter-annotator agreement. We provide the annotation statistics in Table 2. Although we release all the annotations, we skip Coordination and Empathy for our analysis in this work, due to higher subjectivity resulting in relatively lower reliability scores.
|
152 |
+
|
153 |
+
#### Who are the annotators?
|
154 |
+
|
155 |
+
Three expert annotators (first three authors of the paper).
|
156 |
+
|
157 |
+
### Personal and Sensitive Information
|
158 |
+
|
159 |
+
All personally identifiable information about the participants such as MTurk Ids or HIT Ids was removed before releasing the data.
|
160 |
+
|
161 |
+
## Considerations for Using the Data
|
162 |
+
|
163 |
+
### Social Impact of Dataset
|
164 |
+
|
165 |
+
Please refer to Section 8.2 in the [source paper](https://aclanthology.org/2021.naacl-main.254.pdf).
|
166 |
+
|
167 |
+
### Discussion of Biases
|
168 |
+
|
169 |
+
Please refer to Section 8.2 in the [source paper](https://aclanthology.org/2021.naacl-main.254.pdf).
|
170 |
+
|
171 |
+
### Other Known Limitations
|
172 |
+
|
173 |
+
Please refer to Section 7 in the [source paper](https://aclanthology.org/2021.naacl-main.254.pdf).
|
174 |
+
|
175 |
+
## Additional Information
|
176 |
+
|
177 |
+
### Dataset Curators
|
178 |
+
|
179 |
+
Corresponding Author: Kushal Chawla (`[email protected]`)\
|
180 |
+
Affiliation: University of Southern California\
|
181 |
+
Please refer to the [source paper](https://aclanthology.org/2021.naacl-main.254.pdf) for the complete author list.
|
182 |
+
|
183 |
+
### Licensing Information
|
184 |
+
|
185 |
+
The project is licensed under CC-by-4.0
|
186 |
+
|
187 |
+
### Citation Information
|
188 |
+
```
|
189 |
+
@inproceedings{chawla2021casino,
|
190 |
+
title={CaSiNo: A Corpus of Campsite Negotiation Dialogues for Automatic Negotiation Systems},
|
191 |
+
author={Chawla, Kushal and Ramirez, Jaysa and Clever, Rene and Lucas, Gale and May, Jonathan and Gratch, Jonathan},
|
192 |
+
booktitle={Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies},
|
193 |
+
pages={3167--3185},
|
194 |
+
year={2021}
|
195 |
+
}
|
196 |
+
```
|
197 |
+
|
198 |
+
### Contributions
|
199 |
+
|
200 |
+
Thanks to [Kushal Chawla](https://kushalchawla.github.io/) for adding this dataset.
|
casino.py
ADDED
@@ -0,0 +1,192 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Campsite Negotiation Dialogues"""
|
16 |
+
|
17 |
+
import json
|
18 |
+
|
19 |
+
import datasets
|
20 |
+
|
21 |
+
|
22 |
+
_CITATION = """\
|
23 |
+
@inproceedings{chawla2021casino,
|
24 |
+
title={CaSiNo: A Corpus of Campsite Negotiation Dialogues for Automatic Negotiation Systems},
|
25 |
+
author={Chawla, Kushal and Ramirez, Jaysa and Clever, Rene and Lucas, Gale and May, Jonathan and Gratch, Jonathan},
|
26 |
+
booktitle={Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies},
|
27 |
+
pages={3167--3185},
|
28 |
+
year={2021}
|
29 |
+
}
|
30 |
+
"""
|
31 |
+
|
32 |
+
_DESCRIPTION = """\
|
33 |
+
We provide a novel dataset (referred to as CaSiNo) of 1030 negotiation dialogues. Two participants take the role of campsite neighbors and negotiate for Food, Water, and Firewood packages, based on their individual preferences and requirements. This design keeps the task tractable, while still facilitating linguistically rich and personal conversations. This helps to overcome the limitations of prior negotiation datasets such as Deal or No Deal and Craigslist Bargain. Each dialogue consists of rich meta-data including participant demographics, personality, and their subjective evaluation of the negotiation in terms of satisfaction and opponent likeness.
|
34 |
+
"""
|
35 |
+
|
36 |
+
_HOMEPAGE = "https://github.com/kushalchawla/CaSiNo"
|
37 |
+
|
38 |
+
_LICENSE = "The project is licensed under CC-BY-4.0"
|
39 |
+
|
40 |
+
_URLs = {
|
41 |
+
"train": "https://raw.githubusercontent.com/kushalchawla/CaSiNo/main/data/casino.json",
|
42 |
+
}
|
43 |
+
|
44 |
+
|
45 |
+
class Casino(datasets.GeneratorBasedBuilder):
|
46 |
+
"""Campsite Negotiation Dialogues"""
|
47 |
+
|
48 |
+
VERSION = datasets.Version("1.1.0")
|
49 |
+
|
50 |
+
def _info(self):
|
51 |
+
|
52 |
+
features = datasets.Features(
|
53 |
+
{
|
54 |
+
"chat_logs": [
|
55 |
+
{
|
56 |
+
"text": datasets.Value("string"),
|
57 |
+
"task_data": {
|
58 |
+
"data": datasets.Value("string"),
|
59 |
+
"issue2youget": {
|
60 |
+
"Firewood": datasets.Value("string"),
|
61 |
+
"Water": datasets.Value("string"),
|
62 |
+
"Food": datasets.Value("string"),
|
63 |
+
},
|
64 |
+
"issue2theyget": {
|
65 |
+
"Firewood": datasets.Value("string"),
|
66 |
+
"Water": datasets.Value("string"),
|
67 |
+
"Food": datasets.Value("string"),
|
68 |
+
},
|
69 |
+
},
|
70 |
+
"id": datasets.Value("string"),
|
71 |
+
},
|
72 |
+
],
|
73 |
+
"participant_info": {
|
74 |
+
"mturk_agent_1": {
|
75 |
+
"value2issue": {
|
76 |
+
"Low": datasets.Value("string"),
|
77 |
+
"Medium": datasets.Value("string"),
|
78 |
+
"High": datasets.Value("string"),
|
79 |
+
},
|
80 |
+
"value2reason": {
|
81 |
+
"Low": datasets.Value("string"),
|
82 |
+
"Medium": datasets.Value("string"),
|
83 |
+
"High": datasets.Value("string"),
|
84 |
+
},
|
85 |
+
"outcomes": {
|
86 |
+
"points_scored": datasets.Value("int32"),
|
87 |
+
"satisfaction": datasets.Value("string"),
|
88 |
+
"opponent_likeness": datasets.Value("string"),
|
89 |
+
},
|
90 |
+
"demographics": {
|
91 |
+
"age": datasets.Value("int32"),
|
92 |
+
"gender": datasets.Value("string"),
|
93 |
+
"ethnicity": datasets.Value("string"),
|
94 |
+
"education": datasets.Value("string"),
|
95 |
+
},
|
96 |
+
"personality": {
|
97 |
+
"svo": datasets.Value("string"),
|
98 |
+
"big-five": {
|
99 |
+
"extraversion": datasets.Value("float"),
|
100 |
+
"agreeableness": datasets.Value("float"),
|
101 |
+
"conscientiousness": datasets.Value("float"),
|
102 |
+
"emotional-stability": datasets.Value("float"),
|
103 |
+
"openness-to-experiences": datasets.Value("float"),
|
104 |
+
},
|
105 |
+
},
|
106 |
+
},
|
107 |
+
"mturk_agent_2": {
|
108 |
+
"value2issue": {
|
109 |
+
"Low": datasets.Value("string"),
|
110 |
+
"Medium": datasets.Value("string"),
|
111 |
+
"High": datasets.Value("string"),
|
112 |
+
},
|
113 |
+
"value2reason": {
|
114 |
+
"Low": datasets.Value("string"),
|
115 |
+
"Medium": datasets.Value("string"),
|
116 |
+
"High": datasets.Value("string"),
|
117 |
+
},
|
118 |
+
"outcomes": {
|
119 |
+
"points_scored": datasets.Value("int32"),
|
120 |
+
"satisfaction": datasets.Value("string"),
|
121 |
+
"opponent_likeness": datasets.Value("string"),
|
122 |
+
},
|
123 |
+
"demographics": {
|
124 |
+
"age": datasets.Value("int32"),
|
125 |
+
"gender": datasets.Value("string"),
|
126 |
+
"ethnicity": datasets.Value("string"),
|
127 |
+
"education": datasets.Value("string"),
|
128 |
+
},
|
129 |
+
"personality": {
|
130 |
+
"svo": datasets.Value("string"),
|
131 |
+
"big-five": {
|
132 |
+
"extraversion": datasets.Value("float"),
|
133 |
+
"agreeableness": datasets.Value("float"),
|
134 |
+
"conscientiousness": datasets.Value("float"),
|
135 |
+
"emotional-stability": datasets.Value("float"),
|
136 |
+
"openness-to-experiences": datasets.Value("float"),
|
137 |
+
},
|
138 |
+
},
|
139 |
+
},
|
140 |
+
},
|
141 |
+
"annotations": [[datasets.Value("string")]],
|
142 |
+
}
|
143 |
+
)
|
144 |
+
|
145 |
+
return datasets.DatasetInfo(
|
146 |
+
description=_DESCRIPTION,
|
147 |
+
features=features,
|
148 |
+
supervised_keys=None,
|
149 |
+
homepage=_HOMEPAGE,
|
150 |
+
license=_LICENSE,
|
151 |
+
citation=_CITATION,
|
152 |
+
)
|
153 |
+
|
154 |
+
def _split_generators(self, dl_manager):
|
155 |
+
"""Returns SplitGenerators."""
|
156 |
+
path = dl_manager.download_and_extract(_URLs["train"])
|
157 |
+
return [
|
158 |
+
datasets.SplitGenerator(
|
159 |
+
name=datasets.Split.TRAIN,
|
160 |
+
gen_kwargs={
|
161 |
+
"filepath": path,
|
162 |
+
"split": "train",
|
163 |
+
},
|
164 |
+
),
|
165 |
+
]
|
166 |
+
|
167 |
+
def _generate_examples(self, filepath, split="train"):
|
168 |
+
"""Yields examples."""
|
169 |
+
|
170 |
+
with open(filepath, encoding="utf-8") as f:
|
171 |
+
all_data = json.load(f)
|
172 |
+
|
173 |
+
for idx, item in enumerate(all_data):
|
174 |
+
|
175 |
+
for chat_item in item["chat_logs"]:
|
176 |
+
if "data" not in chat_item["task_data"]:
|
177 |
+
chat_item["task_data"]["data"] = ""
|
178 |
+
if "issue2youget" not in chat_item["task_data"]:
|
179 |
+
chat_item["task_data"]["issue2youget"] = {
|
180 |
+
"Food": "",
|
181 |
+
"Firewood": "",
|
182 |
+
"Water": "",
|
183 |
+
}
|
184 |
+
if "issue2theyget" not in chat_item["task_data"]:
|
185 |
+
chat_item["task_data"]["issue2theyget"] = {
|
186 |
+
"Food": "",
|
187 |
+
"Firewood": "",
|
188 |
+
"Water": "",
|
189 |
+
}
|
190 |
+
|
191 |
+
item.pop("dialogue_id")
|
192 |
+
yield idx, item
|
dataset_infos.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"default": {"description": "We provide a novel dataset (referred to as CaSiNo) of 1030 negotiation dialogues. Two participants take the role of campsite neighbors and negotiate for Food, Water, and Firewood packages, based on their individual preferences and requirements. This design keeps the task tractable, while still facilitating linguistically rich and personal conversations. This helps to overcome the limitations of prior negotiation datasets such as Deal or No Deal and Craigslist Bargain. Each dialogue consists of rich meta-data including participant demographics, personality, and their subjective evaluation of the negotiation in terms of satisfaction and opponent likeness.\n", "citation": "@inproceedings{chawla2021casino,\n title={CaSiNo: A Corpus of Campsite Negotiation Dialogues for Automatic Negotiation Systems},\n author={Chawla, Kushal and Ramirez, Jaysa and Clever, Rene and Lucas, Gale and May, Jonathan and Gratch, Jonathan},\n booktitle={Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies},\n pages={3167--3185},\n year={2021}\n}\n", "homepage": "https://github.com/kushalchawla/CaSiNo", "license": "The project is licensed under CC-BY-4.0", "features": {"chat_logs": [{"text": {"dtype": "string", "id": null, "_type": "Value"}, "task_data": {"data": {"dtype": "string", "id": null, "_type": "Value"}, "issue2youget": {"Firewood": {"dtype": "string", "id": null, "_type": "Value"}, "Water": {"dtype": "string", "id": null, "_type": "Value"}, "Food": {"dtype": "string", "id": null, "_type": "Value"}}, "issue2theyget": {"Firewood": {"dtype": "string", "id": null, "_type": "Value"}, "Water": {"dtype": "string", "id": null, "_type": "Value"}, "Food": {"dtype": "string", "id": null, "_type": "Value"}}}, "id": {"dtype": "string", "id": null, "_type": "Value"}}], "participant_info": {"mturk_agent_1": {"value2issue": {"Low": {"dtype": "string", "id": null, "_type": "Value"}, "Medium": {"dtype": "string", "id": null, "_type": "Value"}, "High": {"dtype": "string", "id": null, "_type": "Value"}}, "value2reason": {"Low": {"dtype": "string", "id": null, "_type": "Value"}, "Medium": {"dtype": "string", "id": null, "_type": "Value"}, "High": {"dtype": "string", "id": null, "_type": "Value"}}, "outcomes": {"points_scored": {"dtype": "int32", "id": null, "_type": "Value"}, "satisfaction": {"dtype": "string", "id": null, "_type": "Value"}, "opponent_likeness": {"dtype": "string", "id": null, "_type": "Value"}}, "demographics": {"age": {"dtype": "int32", "id": null, "_type": "Value"}, "gender": {"dtype": "string", "id": null, "_type": "Value"}, "ethnicity": {"dtype": "string", "id": null, "_type": "Value"}, "education": {"dtype": "string", "id": null, "_type": "Value"}}, "personality": {"svo": {"dtype": "string", "id": null, "_type": "Value"}, "big-five": {"extraversion": {"dtype": "float32", "id": null, "_type": "Value"}, "agreeableness": {"dtype": "float32", "id": null, "_type": "Value"}, "conscientiousness": {"dtype": "float32", "id": null, "_type": "Value"}, "emotional-stability": {"dtype": "float32", "id": null, "_type": "Value"}, "openness-to-experiences": {"dtype": "float32", "id": null, "_type": "Value"}}}}, "mturk_agent_2": {"value2issue": {"Low": {"dtype": "string", "id": null, "_type": "Value"}, "Medium": {"dtype": "string", "id": null, "_type": "Value"}, "High": {"dtype": "string", "id": null, "_type": "Value"}}, "value2reason": {"Low": {"dtype": "string", "id": null, "_type": "Value"}, "Medium": {"dtype": "string", "id": null, "_type": "Value"}, "High": {"dtype": "string", "id": null, "_type": "Value"}}, "outcomes": {"points_scored": {"dtype": "int32", "id": null, "_type": "Value"}, "satisfaction": {"dtype": "string", "id": null, "_type": "Value"}, "opponent_likeness": {"dtype": "string", "id": null, "_type": "Value"}}, "demographics": {"age": {"dtype": "int32", "id": null, "_type": "Value"}, "gender": {"dtype": "string", "id": null, "_type": "Value"}, "ethnicity": {"dtype": "string", "id": null, "_type": "Value"}, "education": {"dtype": "string", "id": null, "_type": "Value"}}, "personality": {"svo": {"dtype": "string", "id": null, "_type": "Value"}, "big-five": {"extraversion": {"dtype": "float32", "id": null, "_type": "Value"}, "agreeableness": {"dtype": "float32", "id": null, "_type": "Value"}, "conscientiousness": {"dtype": "float32", "id": null, "_type": "Value"}, "emotional-stability": {"dtype": "float32", "id": null, "_type": "Value"}, "openness-to-experiences": {"dtype": "float32", "id": null, "_type": "Value"}}}}}, "annotations": [[{"dtype": "string", "id": null, "_type": "Value"}]]}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "casino", "config_name": "default", "version": {"version_str": "1.1.0", "description": null, "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 3211555, "num_examples": 1030, "dataset_name": "casino"}}, "download_checksums": {"https://raw.githubusercontent.com/kushalchawla/CaSiNo/main/data/casino.json": {"num_bytes": 4300019, "checksum": "4f2c4560a0070906ed018c3f0766e35f8f8f31b36274ebf35b608621915744ab"}}, "download_size": 4300019, "post_processing_size": null, "dataset_size": 3211555, "size_in_bytes": 7511574}}
|
dummy/1.1.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f791e11fd39f7986319f43e3f8621066d18228de344340fc6f629475e3de1d0e
|
3 |
+
size 4977
|