--- annotations_creators: - expert-generated language_creators: - found language: - en license: - cc-by-nc-nd-4.0 multilinguality: - monolingual size_categories: - 1K, 'objects': { 'bbox': [ [0 0.230078 0.317081 0.239062 0.331367], [1 0.5017185 0.0306425 0.5185935 0.0410975], [1 0.695078 0.0710145 0.7109375 0.0863355], [1 0.4089065 0.31646 0.414375 0.32764], [0 0.1843745 0.403416 0.201093 0.414182], [0 0.7132 0.3393474 0.717922 0.3514285] ] } } ``` ### Data Fields - `image`: A `PIL.Image.Image` object containing the image. Note that when accessing the image column: `dataset[0]["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the `"image"` column, *i.e.* `dataset[0]["image"]` should **always** be preferred over `dataset["image"][0]` - `objects`: a dictionary of face and license plate bounding boxes present on the image - `bbox`: the bounding box of each face and license plate (in the [yolo](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#yolo) format). Basically, each row in annotation `.txt` file for each image `.png` file consists of data in format: ` `: - `object-class`: integer number of object from 0 to 1, where 0 indicate face object, and 1 indicate licese plate object - `x_center`: normalized x-axis coordinate of the center of the bounding box. `x_center = / ` - `y_center`: normalized y-axis coordinate of the center of the bounding box. `y_center = / ` - `width`: normalized width of the bounding box. `width = / ` - `height`: normalized wheightdth of the bounding box. `height = / ` - Example lines in YOLO v1.1 format `.txt' annotation file: `1 0.716797 0.395833 0.216406 0.147222 0 0.687109 0.379167 0.255469 0.158333 1 0.420312 0.395833 0.140625 0.166667 ` ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed] ### Discussion of Biases [More Information Needed] ### Other Known Limitations [More Information Needed] ## Additional Information ### Baseline Model Pretrained weight and demo of baseline model are available in [self-driving-anonymization huggingface spaces](https://huggingface.co/spaces/khaclinh/self-driving-anonymization) ### Dataset Curators Linh Trinh ### Licensing Information [Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)](https://creativecommons.org/licenses/by-nc-nd/4.0/). ### Citation Information ``` @article{PP4AV2022, title = {PP4AV: A benchmarking Dataset for Privacy-preserving Autonomous Driving}, author = {Linh Trinh, Phuong Pham, Hoang Trinh, Nguyen Bach, Dung Nguyen, Giang Nguyen, Huy Nguyen}, booktitle = {IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)}, year = {2023} } ``` ### Contributions Thanks to [@khaclinh](https://github.com/khaclinh) for adding this dataset.