File size: 27,612 Bytes
9f61031
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
# Introduction: Briefly explain federated learning, FedAvg, and FedProx.

## 1. Federated Learning:
   Federated learning is a machine learning approach that enables training a global model across multiple decentralized clients without exchanging raw data. In federated learning, the model is trained locally on each client using its own data, and only the model updates are shared with the central server. This decentralized training process allows for privacy-preserving machine learning, as the raw data remains on the client devices and is not shared with the central server. Federated learning is particularly useful in scenarios where data privacy is a concern, such as healthcare, finance, and other sensitive domains.

Hiệu quả của việc các local clients chia sẻ random seed cho initialize weights. Đây là ý tưởng cơ bản của FedAvg để server shared weight model cho các clients

## 2. FedAvg:

- Điểm mạnh:

  - Một số experimental results trong FedAvg paper cho thấy rằng algorithm cần ít số lần commnunication rounds hơn SGD và tùy ý điều chỉnh các tham số như learning rate, batch size, và batch size. Điều này giúp cho việc training model trở nên nhanh hơn khi giữa local clients và server communication ở mỗi round.

- Điểm hạn chế:
  - Có thể thấy algorithm cần nhiều tùy chỉnh tham số để đạt được hiệu quả tốt nhất. Điều này có thể làm cho việc triển khai trở nên phức tạp hơn.

Pseudocode:

![](/images/pseudo_code_fedavg.png)

## 3. FedProx:



# Dataset and Data Partitioning: Describe the CIFAR-10 dataset and your data partitioning


1. CIFAR-10 Dataset:
   The CIFAR-10 dataset is a widely used benchmark dataset for image classification tasks. It consists of 60,000 32x32 color images in 10 different classes, with 6,000 images per class. The dataset is divided into 50,000 training images and 10,000 test images. Each image is labeled with one of the following classes: airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and truck. The CIFAR-10 dataset provides a diverse set of images that allows for the evaluation of various image classification algorithms.

2. Data Partitioning Strategy for IID and Non-IID Scenarios:

- Trước đó tôi có fixed # clients là 100 do size của client cuối có mật độ cao hơn khoảng x10 lần nên tôi fixed lại về 50 như kết quả cho cả IID và Non-IID dataset.
  
- Trong trường hợp IID, với việc định nghĩa # clients, # classes, # class_per_client, số client được chọn để chia data tương ứng với mỗi class được tính M = (# clients/ # classes)\* # class_per_client. Do ta mong muốn mỗi client có data chứa toàn bộ các class, khi đó M = # clients. Khi đó # client - 1 sẽ được chia đều nhau tương ứng với class i theo n_i / # clients, client cuối sẽ lấy số data còn lại. Ta tiếp tục như thế cho đến khi mỗi client đều có đủ # classses.
  
- Còn với trường hợp Non-IID, Cách lấy data unbalance cho non-I.I.D dataset, với việc định nghĩa # clients, # classes, # class*per_client, số client được chọn để chia data tương ứng với mỗi class được tính M = (# clients/ # classes)* # class*per_client (e.g lần lượt 50 clients, 10 classes, 2 per client) thì n_i số lượng sample chứa class i sẽ chia cho 10 clients. Tiếp tục cho đến khi 10 clients có sample đủ 2 class, thì ta sẽ xét tiếp 10 clients khác tiếp theo. Kết quả nhận được M clients được xét sẽ có 2 class liền kề nhau và các M', M'' tiếp theo sẽ được phân 2 class liền kề còn lại. Đặc biệt, để đảm bảo mỗi client luôn có data thì tác giả của repo PFllib có định nghĩa số lượng samples ít nhất là $\min(\frac{\text{batch_size}}{1-\text{train_ratio}}, \frac{\text{\# data}}{2* \text{\# clients}})$

Example of data partitioning for Non-IID scenario

Command:

```
$python generate_Cifar10.py noniid - pat 50
```

Result

```
Number of classes: 10
Client 0	 Size of data: 433	 Labels:  [0 1]
		 Samples of labels:  [(0, 97), (1, 336)]
--------------------------------------------------
Client 1	 Size of data: 609	 Labels:  [0 1]
		 Samples of labels:  [(0, 295), (1, 314)]
--------------------------------------------------
Client 2	 Size of data: 549	 Labels:  [0 1]
		 Samples of labels:  [(0, 132), (1, 417)]
--------------------------------------------------
```

<details>
    <summary>Show more</summary>
    ```
    Client 3	 Size of data: 732	 Labels:  [0 1]
            Samples of labels:  [(0, 204), (1, 528)]
    --------------------------------------------------
    Client 4	 Size of data: 501	 Labels:  [0 1]
            Samples of labels:  [(0, 189), (1, 312)]
    --------------------------------------------------
    Client 5	 Size of data: 1118	 Labels:  [0 1]
            Samples of labels:  [(0, 568), (1, 550)]
    --------------------------------------------------
    Client 6	 Size of data: 908	 Labels:  [0 1]
            Samples of labels:  [(0, 450), (1, 458)]
    --------------------------------------------------
    Client 7	 Size of data: 616	 Labels:  [0 1]
            Samples of labels:  [(0, 341), (1, 275)]
    --------------------------------------------------
    Client 8	 Size of data: 801	 Labels:  [0 1]
            Samples of labels:  [(0, 238), (1, 563)]
    --------------------------------------------------
    Client 9	 Size of data: 5733	 Labels:  [0 1]
            Samples of labels:  [(0, 3486), (1, 2247)]
    --------------------------------------------------
    Client 10	 Size of data: 914	 Labels:  [2 3]
            Samples of labels:  [(2, 538), (3, 376)]
    --------------------------------------------------
    Client 11	 Size of data: 415	 Labels:  [2 3]
            Samples of labels:  [(2, 146), (3, 269)]
    --------------------------------------------------
    Client 12	 Size of data: 525	 Labels:  [2 3]
            Samples of labels:  [(2, 201), (3, 324)]
    --------------------------------------------------
    Client 13	 Size of data: 944	 Labels:  [2 3]
            Samples of labels:  [(2, 453), (3, 491)]
    --------------------------------------------------
    Client 14	 Size of data: 583	 Labels:  [2 3]
            Samples of labels:  [(2, 67), (3, 516)]
    --------------------------------------------------
    Client 15	 Size of data: 510	 Labels:  [2 3]
            Samples of labels:  [(2, 379), (3, 131)]
    --------------------------------------------------
    Client 16	 Size of data: 1041	 Labels:  [2 3]
            Samples of labels:  [(2, 594), (3, 447)]
    --------------------------------------------------
    Client 17	 Size of data: 887	 Labels:  [2 3]
            Samples of labels:  [(2, 373), (3, 514)]
    --------------------------------------------------
    Client 18	 Size of data: 946	 Labels:  [2 3]
            Samples of labels:  [(2, 573), (3, 373)]
    --------------------------------------------------
    Client 19	 Size of data: 5235	 Labels:  [2 3]
            Samples of labels:  [(2, 2676), (3, 2559)]
    --------------------------------------------------
    Client 20	 Size of data: 831	 Labels:  [4 5]
            Samples of labels:  [(4, 575), (5, 256)]
    --------------------------------------------------
    Client 21	 Size of data: 642	 Labels:  [4 5]
            Samples of labels:  [(4, 557), (5, 85)]
    --------------------------------------------------
    Client 22	 Size of data: 530	 Labels:  [4 5]
            Samples of labels:  [(4, 103), (5, 427)]
    --------------------------------------------------
    Client 23	 Size of data: 617	 Labels:  [4 5]
            Samples of labels:  [(4, 86), (5, 531)]
    --------------------------------------------------
    Client 24	 Size of data: 738	 Labels:  [4 5]
            Samples of labels:  [(4, 396), (5, 342)]
    --------------------------------------------------
    Client 25	 Size of data: 439	 Labels:  [4 5]
            Samples of labels:  [(4, 357), (5, 82)]
    --------------------------------------------------
    Client 26	 Size of data: 712	 Labels:  [4 5]
            Samples of labels:  [(4, 526), (5, 186)]
    --------------------------------------------------
    Client 27	 Size of data: 414	 Labels:  [4 5]
            Samples of labels:  [(4, 75), (5, 339)]
    --------------------------------------------------
    Client 28	 Size of data: 565	 Labels:  [4 5]
            Samples of labels:  [(4, 124), (5, 441)]
    --------------------------------------------------
    Client 29	 Size of data: 6512	 Labels:  [4 5]
            Samples of labels:  [(4, 3201), (5, 3311)]
    --------------------------------------------------
    Client 30	 Size of data: 824	 Labels:  [6 7]
            Samples of labels:  [(6, 416), (7, 408)]
    --------------------------------------------------
    Client 31	 Size of data: 465	 Labels:  [6 7]
            Samples of labels:  [(6, 215), (7, 250)]
    --------------------------------------------------
    Client 32	 Size of data: 735	 Labels:  [6 7]
            Samples of labels:  [(6, 373), (7, 362)]
    --------------------------------------------------
    Client 33	 Size of data: 437	 Labels:  [6 7]
            Samples of labels:  [(6, 226), (7, 211)]
    --------------------------------------------------
    Client 34	 Size of data: 729	 Labels:  [6 7]
            Samples of labels:  [(6, 348), (7, 381)]
    --------------------------------------------------
    Client 35	 Size of data: 907	 Labels:  [6 7]
            Samples of labels:  [(6, 478), (7, 429)]
    --------------------------------------------------
    Client 36	 Size of data: 652	 Labels:  [6 7]
            Samples of labels:  [(6, 339), (7, 313)]
    --------------------------------------------------
    Client 37	 Size of data: 668	 Labels:  [6 7]
            Samples of labels:  [(6, 147), (7, 521)]
    --------------------------------------------------
    Client 38	 Size of data: 832	 Labels:  [6 7]
            Samples of labels:  [(6, 303), (7, 529)]
    --------------------------------------------------
    Client 39	 Size of data: 5751	 Labels:  [6 7]
            Samples of labels:  [(6, 3155), (7, 2596)]
    --------------------------------------------------
    Client 40	 Size of data: 1082	 Labels:  [8 9]
            Samples of labels:  [(8, 514), (9, 568)]
    --------------------------------------------------
    Client 41	 Size of data: 844	 Labels:  [8 9]
            Samples of labels:  [(8, 574), (9, 270)]
    --------------------------------------------------
    Client 42	 Size of data: 365	 Labels:  [8 9]
            Samples of labels:  [(8, 209), (9, 156)]
    --------------------------------------------------
    Client 43	 Size of data: 652	 Labels:  [8 9]
            Samples of labels:  [(8, 323), (9, 329)]
    --------------------------------------------------
    Client 44	 Size of data: 207	 Labels:  [8 9]
            Samples of labels:  [(8, 137), (9, 70)]
    --------------------------------------------------
    Client 45	 Size of data: 474	 Labels:  [8 9]
            Samples of labels:  [(8, 135), (9, 339)]
    --------------------------------------------------
    Client 46	 Size of data: 604	 Labels:  [8 9]
            Samples of labels:  [(8, 392), (9, 212)]
    --------------------------------------------------
    Client 47	 Size of data: 639	 Labels:  [8 9]
            Samples of labels:  [(8, 103), (9, 536)]
    --------------------------------------------------
    Client 48	 Size of data: 1068	 Labels:  [8 9]
            Samples of labels:  [(8, 592), (9, 476)]
    --------------------------------------------------
    Client 49	 Size of data: 6065	 Labels:  [8 9]
            Samples of labels:  [(8, 3021), (9, 3044)]
    --------------------------------------------------
    Total number of samples: 60000
    The number of train samples: [324, 456, 411, 549, 375, 838, 681, 462, 600, 4299, 685, 311, 393, 708, 437, 382, 780, 665, 709, 3926, 623, 481, 397, 462, 553, 329, 534, 310, 423, 4884, 618, 348, 551, 327, 546, 680, 489, 501, 624, 4313, 811, 633, 273, 489, 155, 355, 453, 479, 801, 4548]
    The number of test samples: [109, 153, 138, 183, 126, 280, 227, 154, 201, 1434, 229, 104, 132, 236, 146, 128, 261, 222, 237, 1309, 208, 161, 133, 155, 185, 110, 178, 104, 142, 1628, 206, 117, 184, 110, 183, 227, 163, 167, 208, 1438, 271, 211, 92, 163, 52, 119, 151, 160, 267, 1517]
    ```
</details>

Example of data partitioning for IID scenario:
Command:

```bash
$python generate_Cifar10.py iid balance - 50
```

Result

```
Number of classes: 10
Client 0	 Size of data: 1200	 Labels:  [0 1 2 3 4 5 6 7 8 9]
		 Samples of labels:  [(0, 120), (1, 120), (2, 120), (3, 120), (4, 120), (5, 120), (6, 120), (7, 120), (8, 120), (9, 120)]
--------------------------------------------------
Client 1	 Size of data: 1200	 Labels:  [0 1 2 3 4 5 6 7 8 9]
		 Samples of labels:  [(0, 120), (1, 120), (2, 120), (3, 120), (4, 120), (5, 120), (6, 120), (7, 120), (8, 120), (9, 120)]
--------------------------------------------------
Client 2	 Size of data: 1200	 Labels:  [0 1 2 3 4 5 6 7 8 9]
		 Samples of labels:  [(0, 120), (1, 120), (2, 120), (3, 120), (4, 120), (5, 120), (6, 120), (7, 120), (8, 120), (9, 120)]
--------------------------------------------------
```

<details>
    <summary>Show more</summary>

    Client 3	 Size of data: 1200	 Labels:  [0 1 2 3 4 5 6 7 8 9]
            Samples of labels:  [(0, 120), (1, 120), (2, 120), (3, 120), (4, 120), (5, 120), (6, 120), (7, 120), (8, 120), (9, 120)]
    --------------------------------------------------
    Client 4	 Size of data: 1200	 Labels:  [0 1 2 3 4 5 6 7 8 9]
            Samples of labels:  [(0, 120), (1, 120), (2, 120), (3, 120), (4, 120), (5, 120), (6, 120), (7, 120), (8, 120), (9, 120)]
    --------------------------------------------------
    Client 5	 Size of data: 1200	 Labels:  [0 1 2 3 4 5 6 7 8 9]
            Samples of labels:  [(0, 120), (1, 120), (2, 120), (3, 120), (4, 120), (5, 120), (6, 120), (7, 120), (8, 120), (9, 120)]
    --------------------------------------------------
    Client 6	 Size of data: 1200	 Labels:  [0 1 2 3 4 5 6 7 8 9]
            Samples of labels:  [(0, 120), (1, 120), (2, 120), (3, 120), (4, 120), (5, 120), (6, 120), (7, 120), (8, 120), (9, 120)]
    --------------------------------------------------
    Client 7	 Size of data: 1200	 Labels:  [0 1 2 3 4 5 6 7 8 9]
            Samples of labels:  [(0, 120), (1, 120), (2, 120), (3, 120), (4, 120), (5, 120), (6, 120), (7, 120), (8, 120), (9, 120)]
    --------------------------------------------------
    Client 8	 Size of data: 1200	 Labels:  [0 1 2 3 4 5 6 7 8 9]
            Samples of labels:  [(0, 120), (1, 120), (2, 120), (3, 120), (4, 120), (5, 120), (6, 120), (7, 120), (8, 120), (9, 120)]
    --------------------------------------------------
    Client 9	 Size of data: 1200	 Labels:  [0 1 2 3 4 5 6 7 8 9]
            Samples of labels:  [(0, 120), (1, 120), (2, 120), (3, 120), (4, 120), (5, 120), (6, 120), (7, 120), (8, 120), (9, 120)]
    --------------------------------------------------
    Client 10	 Size of data: 1200	 Labels:  [0 1 2 3 4 5 6 7 8 9]
            Samples of labels:  [(0, 120), (1, 120), (2, 120), (3, 120), (4, 120), (5, 120), (6, 120), (7, 120), (8, 120), (9, 120)]
    --------------------------------------------------
    Client 11	 Size of data: 1200	 Labels:  [0 1 2 3 4 5 6 7 8 9]
            Samples of labels:  [(0, 120), (1, 120), (2, 120), (3, 120), (4, 120), (5, 120), (6, 120), (7, 120), (8, 120), (9, 120)]
    --------------------------------------------------
    Client 12	 Size of data: 1200	 Labels:  [0 1 2 3 4 5 6 7 8 9]
            Samples of labels:  [(0, 120), (1, 120), (2, 120), (3, 120), (4, 120), (5, 120), (6, 120), (7, 120), (8, 120), (9, 120)]
    --------------------------------------------------
    Client 13	 Size of data: 1200	 Labels:  [0 1 2 3 4 5 6 7 8 9]
            Samples of labels:  [(0, 120), (1, 120), (2, 120), (3, 120), (4, 120), (5, 120), (6, 120), (7, 120), (8, 120), (9, 120)]
    --------------------------------------------------
    Client 14	 Size of data: 1200	 Labels:  [0 1 2 3 4 5 6 7 8 9]
            Samples of labels:  [(0, 120), (1, 120), (2, 120), (3, 120), (4, 120), (5, 120), (6, 120), (7, 120), (8, 120), (9, 120)]
    --------------------------------------------------
    Client 15	 Size of data: 1200	 Labels:  [0 1 2 3 4 5 6 7 8 9]
            Samples of labels:  [(0, 120), (1, 120), (2, 120), (3, 120), (4, 120), (5, 120), (6, 120), (7, 120), (8, 120), (9, 120)]
    --------------------------------------------------
    Client 16	 Size of data: 1200	 Labels:  [0 1 2 3 4 5 6 7 8 9]
            Samples of labels:  [(0, 120), (1, 120), (2, 120), (3, 120), (4, 120), (5, 120), (6, 120), (7, 120), (8, 120), (9, 120)]
    --------------------------------------------------
    Client 17	 Size of data: 1200	 Labels:  [0 1 2 3 4 5 6 7 8 9]
            Samples of labels:  [(0, 120), (1, 120), (2, 120), (3, 120), (4, 120), (5, 120), (6, 120), (7, 120), (8, 120), (9, 120)]
    --------------------------------------------------
    Client 18	 Size of data: 1200	 Labels:  [0 1 2 3 4 5 6 7 8 9]
            Samples of labels:  [(0, 120), (1, 120), (2, 120), (3, 120), (4, 120), (5, 120), (6, 120), (7, 120), (8, 120), (9, 120)]
    --------------------------------------------------
    Client 19	 Size of data: 1200	 Labels:  [0 1 2 3 4 5 6 7 8 9]
            Samples of labels:  [(0, 120), (1, 120), (2, 120), (3, 120), (4, 120), (5, 120), (6, 120), (7, 120), (8, 120), (9, 120)]
    --------------------------------------------------
    Client 20	 Size of data: 1200	 Labels:  [0 1 2 3 4 5 6 7 8 9]
            Samples of labels:  [(0, 120), (1, 120), (2, 120), (3, 120), (4, 120), (5, 120), (6, 120), (7, 120), (8, 120), (9, 120)]
    --------------------------------------------------
    Client 21	 Size of data: 1200	 Labels:  [0 1 2 3 4 5 6 7 8 9]
            Samples of labels:  [(0, 120), (1, 120), (2, 120), (3, 120), (4, 120), (5, 120), (6, 120), (7, 120), (8, 120), (9, 120)]
    --------------------------------------------------
    Client 22	 Size of data: 1200	 Labels:  [0 1 2 3 4 5 6 7 8 9]
            Samples of labels:  [(0, 120), (1, 120), (2, 120), (3, 120), (4, 120), (5, 120), (6, 120), (7, 120), (8, 120), (9, 120)]
    --------------------------------------------------
    Client 23	 Size of data: 1200	 Labels:  [0 1 2 3 4 5 6 7 8 9]
            Samples of labels:  [(0, 120), (1, 120), (2, 120), (3, 120), (4, 120), (5, 120), (6, 120), (7, 120), (8, 120), (9, 120)]
    --------------------------------------------------
    Client 24	 Size of data: 1200	 Labels:  [0 1 2 3 4 5 6 7 8 9]
            Samples of labels:  [(0, 120), (1, 120), (2, 120), (3, 120), (4, 120), (5, 120), (6, 120), (7, 120), (8, 120), (9, 120)]
    --------------------------------------------------
    Client 25	 Size of data: 1200	 Labels:  [0 1 2 3 4 5 6 7 8 9]
            Samples of labels:  [(0, 120), (1, 120), (2, 120), (3, 120), (4, 120), (5, 120), (6, 120), (7, 120), (8, 120), (9, 120)]
    --------------------------------------------------
    Client 26	 Size of data: 1200	 Labels:  [0 1 2 3 4 5 6 7 8 9]
            Samples of labels:  [(0, 120), (1, 120), (2, 120), (3, 120), (4, 120), (5, 120), (6, 120), (7, 120), (8, 120), (9, 120)]
    --------------------------------------------------
    Client 27	 Size of data: 1200	 Labels:  [0 1 2 3 4 5 6 7 8 9]
            Samples of labels:  [(0, 120), (1, 120), (2, 120), (3, 120), (4, 120), (5, 120), (6, 120), (7, 120), (8, 120), (9, 120)]
    --------------------------------------------------
    Client 28	 Size of data: 1200	 Labels:  [0 1 2 3 4 5 6 7 8 9]
            Samples of labels:  [(0, 120), (1, 120), (2, 120), (3, 120), (4, 120), (5, 120), (6, 120), (7, 120), (8, 120), (9, 120)]
    --------------------------------------------------
    Client 29	 Size of data: 1200	 Labels:  [0 1 2 3 4 5 6 7 8 9]
            Samples of labels:  [(0, 120), (1, 120), (2, 120), (3, 120), (4, 120), (5, 120), (6, 120), (7, 120), (8, 120), (9, 120)]
    --------------------------------------------------
    Client 30	 Size of data: 1200	 Labels:  [0 1 2 3 4 5 6 7 8 9]
            Samples of labels:  [(0, 120), (1, 120), (2, 120), (3, 120), (4, 120), (5, 120), (6, 120), (7, 120), (8, 120), (9, 120)]
    --------------------------------------------------
    Client 31	 Size of data: 1200	 Labels:  [0 1 2 3 4 5 6 7 8 9]
            Samples of labels:  [(0, 120), (1, 120), (2, 120), (3, 120), (4, 120), (5, 120), (6, 120), (7, 120), (8, 120), (9, 120)]
    --------------------------------------------------
    Client 32	 Size of data: 1200	 Labels:  [0 1 2 3 4 5 6 7 8 9]
            Samples of labels:  [(0, 120), (1, 120), (2, 120), (3, 120), (4, 120), (5, 120), (6, 120), (7, 120), (8, 120), (9, 120)]
    --------------------------------------------------
    Client 33	 Size of data: 1200	 Labels:  [0 1 2 3 4 5 6 7 8 9]
            Samples of labels:  [(0, 120), (1, 120), (2, 120), (3, 120), (4, 120), (5, 120), (6, 120), (7, 120), (8, 120), (9, 120)]
    --------------------------------------------------
    Client 34	 Size of data: 1200	 Labels:  [0 1 2 3 4 5 6 7 8 9]
            Samples of labels:  [(0, 120), (1, 120), (2, 120), (3, 120), (4, 120), (5, 120), (6, 120), (7, 120), (8, 120), (9, 120)]
    --------------------------------------------------
    Client 35	 Size of data: 1200	 Labels:  [0 1 2 3 4 5 6 7 8 9]
            Samples of labels:  [(0, 120), (1, 120), (2, 120), (3, 120), (4, 120), (5, 120), (6, 120), (7, 120), (8, 120), (9, 120)]
    --------------------------------------------------
    Client 36	 Size of data: 1200	 Labels:  [0 1 2 3 4 5 6 7 8 9]
            Samples of labels:  [(0, 120), (1, 120), (2, 120), (3, 120), (4, 120), (5, 120), (6, 120), (7, 120), (8, 120), (9, 120)]
    --------------------------------------------------
    Client 37	 Size of data: 1200	 Labels:  [0 1 2 3 4 5 6 7 8 9]
            Samples of labels:  [(0, 120), (1, 120), (2, 120), (3, 120), (4, 120), (5, 120), (6, 120), (7, 120), (8, 120), (9, 120)]
    --------------------------------------------------
    Client 38	 Size of data: 1200	 Labels:  [0 1 2 3 4 5 6 7 8 9]
            Samples of labels:  [(0, 120), (1, 120), (2, 120), (3, 120), (4, 120), (5, 120), (6, 120), (7, 120), (8, 120), (9, 120)]
    --------------------------------------------------
    Client 39	 Size of data: 1200	 Labels:  [0 1 2 3 4 5 6 7 8 9]
            Samples of labels:  [(0, 120), (1, 120), (2, 120), (3, 120), (4, 120), (5, 120), (6, 120), (7, 120), (8, 120), (9, 120)]
    --------------------------------------------------
    Client 40	 Size of data: 1200	 Labels:  [0 1 2 3 4 5 6 7 8 9]
            Samples of labels:  [(0, 120), (1, 120), (2, 120), (3, 120), (4, 120), (5, 120), (6, 120), (7, 120), (8, 120), (9, 120)]
    --------------------------------------------------
    Client 41	 Size of data: 1200	 Labels:  [0 1 2 3 4 5 6 7 8 9]
            Samples of labels:  [(0, 120), (1, 120), (2, 120), (3, 120), (4, 120), (5, 120), (6, 120), (7, 120), (8, 120), (9, 120)]
    --------------------------------------------------
    Client 42	 Size of data: 1200	 Labels:  [0 1 2 3 4 5 6 7 8 9]
            Samples of labels:  [(0, 120), (1, 120), (2, 120), (3, 120), (4, 120), (5, 120), (6, 120), (7, 120), (8, 120), (9, 120)]
    --------------------------------------------------
    Client 43	 Size of data: 1200	 Labels:  [0 1 2 3 4 5 6 7 8 9]
            Samples of labels:  [(0, 120), (1, 120), (2, 120), (3, 120), (4, 120), (5, 120), (6, 120), (7, 120), (8, 120), (9, 120)]
    --------------------------------------------------
    Client 44	 Size of data: 1200	 Labels:  [0 1 2 3 4 5 6 7 8 9]
            Samples of labels:  [(0, 120), (1, 120), (2, 120), (3, 120), (4, 120), (5, 120), (6, 120), (7, 120), (8, 120), (9, 120)]
    --------------------------------------------------
    Client 45	 Size of data: 1200	 Labels:  [0 1 2 3 4 5 6 7 8 9]
            Samples of labels:  [(0, 120), (1, 120), (2, 120), (3, 120), (4, 120), (5, 120), (6, 120), (7, 120), (8, 120), (9, 120)]
    --------------------------------------------------
    Client 46	 Size of data: 1200	 Labels:  [0 1 2 3 4 5 6 7 8 9]
            Samples of labels:  [(0, 120), (1, 120), (2, 120), (3, 120), (4, 120), (5, 120), (6, 120), (7, 120), (8, 120), (9, 120)]
    --------------------------------------------------
    Client 47	 Size of data: 1200	 Labels:  [0 1 2 3 4 5 6 7 8 9]
            Samples of labels:  [(0, 120), (1, 120), (2, 120), (3, 120), (4, 120), (5, 120), (6, 120), (7, 120), (8, 120), (9, 120)]
    --------------------------------------------------
    Client 48	 Size of data: 1200	 Labels:  [0 1 2 3 4 5 6 7 8 9]
            Samples of labels:  [(0, 120), (1, 120), (2, 120), (3, 120), (4, 120), (5, 120), (6, 120), (7, 120), (8, 120), (9, 120)]
    --------------------------------------------------
    Client 49	 Size of data: 1200	 Labels:  [0 1 2 3 4 5 6 7 8 9]
            Samples of labels:  [(0, 120), (1, 120), (2, 120), (3, 120), (4, 120), (5, 120), (6, 120), (7, 120), (8, 120), (9, 120)]
    --------------------------------------------------
    Total number of samples: 60000
    The number of train samples: [900, 900, 900, 900, 900, 900, 900, 900, 900, 900, 900, 900, 900, 900, 900, 900, 900, 900, 900, 900, 900, 900, 900, 900, 900, 900, 900, 900, 900, 900, 900, 900, 900, 900, 900, 900, 900, 900, 900, 900, 900, 900, 900, 900, 900, 900, 900, 900, 900, 900]
    The number of test samples: [300, 300, 300, 300, 300, 300, 300, 300, 300, 300, 300, 300, 300, 300, 300, 300, 300, 300, 300, 300, 300, 300, 300, 300, 300, 300, 300, 300, 300, 300, 300, 300, 300, 300, 300, 300, 300, 300, 300, 300, 300, 300, 300, 300, 300, 300, 300, 300, 300, 300]

</details>

# Model Architecture: Specify the CNN architecture used for the image classification task.

Với data CIFAR-10, tôi sử dụng kiến trúc CNN cơ bản được đề xuất trong FedAvg paper. Kiến trúc bao gồm 2 convolutional layers 5x5 lần lượt là 32 và 64 channels, mỗi convolutional layer được kết hợp với một max pooling layer 2x2. Sau đó là fully connected layers với 512 units cùng với ReLU activation. Cuối cùng là một softmax layer với 10 classes. (Tổng có 1,663,370 parameters). Tôi có sử dụng các kĩ thuật transform được đề xuất trong FedAvg paper như crop về size 24x24, randomly horizontal flip, adjusting the contrast, brightness and whitening nhưng không đạt hiệu suất mong muốn so với việc chỉ normalize pixel như đề của repo PFllib nên tôi giữ nguyên transform từ library.

# Federated Learning Setup: Explain the chosen FL framework, number of clients, commu-

nication rounds, and any other relevant hyperparameters.

# Results: Present the obtained test accuracy for FedAvg and FedProx under both data distri-

bution scenarios, preferably with visualizations (e.g., plots showing accuracy over communica-
tion rounds).

# Analysis and Discussion: Analyze the results and discuss the impact of data distribution

and different aggregation methods on model performance.

# Instructions to run the code: Provide clear instructions to reproduce your results.

```

```