|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import numpy as np |
|
import os |
|
import random |
|
from utils.dataset_utils import split_data, save_file |
|
from scipy.sparse import coo_matrix |
|
from os import path |
|
|
|
|
|
|
|
def load_amazon(base_path): |
|
dimension = 5000 |
|
amazon = np.load(path.join(base_path, "amazon.npz")) |
|
amazon_xx = coo_matrix((amazon['xx_data'], (amazon['xx_col'], amazon['xx_row'])), |
|
shape=amazon['xx_shape'][::-1]).tocsc() |
|
amazon_xx = amazon_xx[:, :dimension] |
|
amazon_yy = amazon['yy'] |
|
amazon_yy = (amazon_yy + 1) / 2 |
|
amazon_offset = amazon['offset'].flatten() |
|
|
|
data_name = ["books", "dvd", "electronics", "kitchen"] |
|
num_data_sets = 4 |
|
data_insts, data_labels, num_insts = [], [], [] |
|
for i in range(num_data_sets): |
|
data_insts.append(amazon_xx[amazon_offset[i]: amazon_offset[i + 1], :]) |
|
data_labels.append(amazon_yy[amazon_offset[i]: amazon_offset[i + 1], :]) |
|
num_insts.append(amazon_offset[i + 1] - amazon_offset[i]) |
|
|
|
r_order = np.arange(num_insts[i]) |
|
np.random.shuffle(r_order) |
|
data_insts[i] = data_insts[i][r_order, :] |
|
data_labels[i] = data_labels[i][r_order, :] |
|
data_insts[i] = data_insts[i].todense().astype(np.float32) |
|
data_labels[i] = data_labels[i].ravel().astype(np.int64) |
|
return data_insts, data_labels |
|
|
|
|
|
random.seed(1) |
|
np.random.seed(1) |
|
data_path = "AmazonReview/" |
|
dir_path = "AmazonReview/" |
|
|
|
|
|
def generate_dataset(dir_path): |
|
if not os.path.exists(dir_path): |
|
os.makedirs(dir_path) |
|
|
|
|
|
config_path = dir_path + "config.json" |
|
train_path = dir_path + "train/" |
|
test_path = dir_path + "test/" |
|
|
|
if not os.path.exists(train_path): |
|
os.makedirs(train_path) |
|
if not os.path.exists(test_path): |
|
os.makedirs(test_path) |
|
|
|
root = data_path+"rawdata" |
|
|
|
|
|
if not os.path.exists(root): |
|
os.makedirs(root) |
|
os.system(f'wget https://drive.google.com/u/0/uc?id=1QbXFENNyqor1IlCpRRFtOluI2_hMEd1W&export=download -P {root}') |
|
|
|
X, y = load_amazon(root) |
|
|
|
labelss = [] |
|
for yy in y: |
|
labelss.append(len(set(yy))) |
|
num_clients = len(y) |
|
print(f'Number of labels: {labelss}') |
|
print(f'Number of clients: {num_clients}') |
|
|
|
statistic = [[] for _ in range(num_clients)] |
|
for client in range(num_clients): |
|
for i in np.unique(y[client]): |
|
statistic[client].append((int(i), int(sum(y[client]==i)))) |
|
|
|
|
|
train_data, test_data = split_data(X, y) |
|
save_file(config_path, train_path, test_path, train_data, test_data, num_clients, max(labelss), |
|
statistic, None, None, None) |
|
|
|
|
|
if __name__ == "__main__": |
|
generate_dataset(dir_path) |