FL_fundamental / PFLlib /dataset /generate_Digit5.py
kisejin's picture
Upload 486 files
9f61031 verified
# PFLlib: Personalized Federated Learning Algorithm Library
# Copyright (C) 2021 Jianqing Zhang
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
import numpy as np
import os
import random
import torchvision.transforms as transforms
import torch.utils.data as data
from utils.dataset_utils import split_data, save_file
from os import path
from scipy.io import loadmat
from PIL import Image
from torch.utils.data import DataLoader
# https://github.com/FengHZ/KD3A/blob/master/datasets/DigitFive.py
def load_mnist(base_path):
print("load mnist")
mnist_data = loadmat(path.join(base_path, "mnist_data.mat"))
mnist_train = np.reshape(mnist_data['train_32'], (55000, 32, 32, 1))
mnist_test = np.reshape(mnist_data['test_32'], (10000, 32, 32, 1))
# turn to the 3 channel image with C*H*W
mnist_train = np.concatenate([mnist_train, mnist_train, mnist_train], 3)
mnist_test = np.concatenate([mnist_test, mnist_test, mnist_test], 3)
mnist_train = mnist_train.transpose(0, 3, 1, 2).astype(np.float32)
mnist_test = mnist_test.transpose(0, 3, 1, 2).astype(np.float32)
# get labels
mnist_labels_train = mnist_data['label_train']
mnist_labels_test = mnist_data['label_test']
# random sample 25000 from train dataset and random sample 9000 from test dataset
train_label = np.argmax(mnist_labels_train, axis=1)
inds = np.random.permutation(mnist_train.shape[0])
mnist_train = mnist_train[inds]
train_label = train_label[inds]
test_label = np.argmax(mnist_labels_test, axis=1)
mnist_train = mnist_train[:25000]
train_label = train_label[:25000]
mnist_test = mnist_test[:9000]
test_label = test_label[:9000]
return mnist_train, train_label, mnist_test, test_label
def load_mnist_m(base_path):
print("load mnist_m")
mnistm_data = loadmat(path.join(base_path, "mnistm_with_label.mat"))
mnistm_train = mnistm_data['train']
mnistm_test = mnistm_data['test']
mnistm_train = mnistm_train.transpose(0, 3, 1, 2).astype(np.float32)
mnistm_test = mnistm_test.transpose(0, 3, 1, 2).astype(np.float32)
# get labels
mnistm_labels_train = mnistm_data['label_train']
mnistm_labels_test = mnistm_data['label_test']
# random sample 25000 from train dataset and random sample 9000 from test dataset
train_label = np.argmax(mnistm_labels_train, axis=1)
inds = np.random.permutation(mnistm_train.shape[0])
mnistm_train = mnistm_train[inds]
train_label = train_label[inds]
test_label = np.argmax(mnistm_labels_test, axis=1)
mnistm_train = mnistm_train[:25000]
train_label = train_label[:25000]
mnistm_test = mnistm_test[:9000]
test_label = test_label[:9000]
return mnistm_train, train_label, mnistm_test, test_label
def load_svhn(base_path):
print("load svhn")
svhn_train_data = loadmat(path.join(base_path, "svhn_train_32x32.mat"))
svhn_test_data = loadmat(path.join(base_path, "svhn_test_32x32.mat"))
svhn_train = svhn_train_data['X']
svhn_train = svhn_train.transpose(3, 2, 0, 1).astype(np.float32)
svhn_test = svhn_test_data['X']
svhn_test = svhn_test.transpose(3, 2, 0, 1).astype(np.float32)
train_label = svhn_train_data["y"].reshape(-1)
test_label = svhn_test_data["y"].reshape(-1)
inds = np.random.permutation(svhn_train.shape[0])
svhn_train = svhn_train[inds]
train_label = train_label[inds]
svhn_train = svhn_train[:25000]
train_label = train_label[:25000]
svhn_test = svhn_test[:9000]
test_label = test_label[:9000]
train_label[train_label == 10] = 0
test_label[test_label == 10] = 0
return svhn_train, train_label, svhn_test, test_label
def load_syn(base_path):
print("load syn")
syn_train_data = loadmat(path.join(base_path, "synth_train_32x32.mat"))
syn_test_data = loadmat(path.join(base_path, "synth_test_32x32.mat"))
syn_train = syn_train_data["X"]
syn_test = syn_test_data["X"]
syn_train = syn_train.transpose(3, 2, 0, 1).astype(np.float32)
syn_test = syn_test.transpose(3, 2, 0, 1).astype(np.float32)
train_label = syn_train_data["y"].reshape(-1)
test_label = syn_test_data["y"].reshape(-1)
syn_train = syn_train[:25000]
syn_test = syn_test[:9000]
train_label = train_label[:25000]
test_label = test_label[:9000]
train_label[train_label == 10] = 0
test_label[test_label == 10] = 0
return syn_train, train_label, syn_test, test_label
def load_usps(base_path):
print("load usps")
usps_dataset = loadmat(path.join(base_path, "usps_28x28.mat"))
usps_dataset = usps_dataset["dataset"]
usps_train = usps_dataset[0][0]
train_label = usps_dataset[0][1]
train_label = train_label.reshape(-1)
train_label[train_label == 10] = 0
usps_test = usps_dataset[1][0]
test_label = usps_dataset[1][1]
test_label = test_label.reshape(-1)
test_label[test_label == 10] = 0
usps_train = usps_train * 255
usps_test = usps_test * 255
usps_train = np.concatenate([usps_train, usps_train, usps_train], 1)
usps_train = np.tile(usps_train, (4, 1, 1, 1))
train_label = np.tile(train_label,4)
usps_train = usps_train[:25000]
train_label = train_label[:25000]
usps_test = np.concatenate([usps_test, usps_test, usps_test], 1)
return usps_train, train_label, usps_test, test_label
class Digit5Dataset(data.Dataset):
def __init__(self, data, labels, transform=None, target_transform=None):
super(Digit5Dataset, self).__init__()
self.data = data
self.labels = labels
self.transform = transform
self.target_transform = target_transform
def __getitem__(self, index):
img, label = self.data[index], self.labels[index]
if img.shape[0] != 1:
# transpose to Image type,so that the transform function can be used
img = Image.fromarray(np.uint8(np.asarray(img.transpose((1, 2, 0)))))
elif img.shape[0] == 1:
im = np.uint8(np.asarray(img))
# turn the raw image into 3 channels
im = np.vstack([im, im, im]).transpose((1, 2, 0))
img = Image.fromarray(im)
# do transform with PIL
if self.transform is not None:
img = self.transform(img)
if self.target_transform is not None:
label = self.target_transform(label)
return img, label
def __len__(self):
return self.data.shape[0]
def digit5_dataset_read(base_path, domain):
if domain == "mnist":
train_image, train_label, test_image, test_label = load_mnist(base_path)
elif domain == "mnistm":
train_image, train_label, test_image, test_label = load_mnist_m(base_path)
elif domain == "svhn":
train_image, train_label, test_image, test_label = load_svhn(base_path)
elif domain == "syn":
train_image, train_label, test_image, test_label = load_syn(base_path)
elif domain == "usps":
train_image, train_label, test_image, test_label = load_usps(base_path)
else:
raise NotImplementedError("Domain {} Not Implemented".format(domain))
# define the transform function
transform = transforms.Compose([
transforms.Resize(32),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
# raise train and test data loader
train_dataset = Digit5Dataset(data=train_image, labels=train_label, transform=transform)
train_loader = DataLoader(dataset=train_dataset, batch_size=len(train_dataset), shuffle=False)
test_dataset = Digit5Dataset(data=test_image, labels=test_label, transform=transform)
test_loader = DataLoader(dataset=test_dataset, batch_size=len(test_dataset), shuffle=False)
return train_loader, test_loader
random.seed(1)
np.random.seed(1)
data_path = "Digit5/"
dir_path = "Digit5/"
# Allocate data to usersz``
def generate_dataset(dir_path):
if not os.path.exists(dir_path):
os.makedirs(dir_path)
# Setup directory for train/test data
config_path = dir_path + "config.json"
train_path = dir_path + "train/"
test_path = dir_path + "test/"
if not os.path.exists(train_path):
os.makedirs(train_path)
if not os.path.exists(test_path):
os.makedirs(test_path)
root = data_path+"rawdata"
# Get Digit5 data
if not os.path.exists(root):
os.makedirs(root)
os.system(f'wget https://drive.google.com/u/0/uc?id=1PT6K-_wmsUEUCxoYzDy0mxF-15tvb2Eu&export=download -P {root}')
os.system(f'unzip {root}/Digit5.zip -d {root}')
X, y = [], []
domains = ['mnistm', 'mnist', 'syn', 'usps', 'svhn']
for d in domains:
train_loader, test_loader = digit5_dataset_read(root, d)
for _, tt in enumerate(train_loader):
train_data, train_label = tt
for _, tt in enumerate(test_loader):
test_data, test_label = tt
dataset_image = []
dataset_label = []
dataset_image.extend(train_data.cpu().detach().numpy())
dataset_image.extend(test_data.cpu().detach().numpy())
dataset_label.extend(train_label.cpu().detach().numpy())
dataset_label.extend(test_label.cpu().detach().numpy())
X.append(np.array(dataset_image))
y.append(np.array(dataset_label))
labelss = []
for yy in y:
labelss.append(len(set(yy)))
num_clients = len(y)
print(f'Number of labels: {labelss}')
print(f'Number of clients: {num_clients}')
statistic = [[] for _ in range(num_clients)]
for client in range(num_clients):
for i in np.unique(y[client]):
statistic[client].append((int(i), int(sum(y[client]==i))))
train_data, test_data = split_data(X, y)
save_file(config_path, train_path, test_path, train_data, test_data, num_clients, max(labelss),
statistic, None, None, None)
if __name__ == "__main__":
generate_dataset(dir_path)