|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import numpy as np |
|
import os |
|
import random |
|
import torchvision |
|
from utils.dataset_utils import split_data, save_file |
|
from PIL import Image |
|
|
|
|
|
random.seed(1) |
|
np.random.seed(1) |
|
dir_path = "Omniglot/" |
|
|
|
|
|
|
|
def generate_dataset(dir_path): |
|
if not os.path.exists(dir_path): |
|
os.makedirs(dir_path) |
|
|
|
|
|
config_path = dir_path + "config.json" |
|
train_path = dir_path + "train/" |
|
test_path = dir_path + "test/" |
|
|
|
if not os.path.exists(train_path): |
|
os.makedirs(train_path) |
|
if not os.path.exists(test_path): |
|
os.makedirs(test_path) |
|
|
|
root = dir_path+"rawdata" |
|
|
|
|
|
torchvision.datasets.Omniglot(root=root, background=True, download=True) |
|
torchvision.datasets.Omniglot(root=root, background=False, download=True) |
|
|
|
X = [[] for _ in range(20)] |
|
y = [[] for _ in range(20)] |
|
|
|
dir = os.path.join(root, "omniglot-py/") |
|
dirs = os.listdir(dir) |
|
label = 0 |
|
for ddir in dirs: |
|
if '.' not in ddir: |
|
ddir = os.path.join(dir, ddir) |
|
ddirs = os.listdir(ddir) |
|
for dddir in ddirs: |
|
if '.' not in dddir: |
|
dddir = os.path.join(ddir, dddir) |
|
dddirs = os.listdir(dddir) |
|
for ddddir in dddirs: |
|
ddddir = os.path.join(dddir, ddddir) |
|
file_names = os.listdir(ddddir) |
|
for i, fn in enumerate(file_names): |
|
fn = os.path.join(ddddir, fn) |
|
img = Image.open(fn) |
|
X[i].append(np.expand_dims(np.asarray(img), axis=0)) |
|
y[i].append(label) |
|
label += 1 |
|
|
|
print(f'Number of labels: {label}') |
|
|
|
train_data, test_data = split_data(X, y) |
|
save_file(config_path, train_path, test_path, train_data, test_data, 20, label, |
|
None, None, None, None) |
|
|
|
|
|
if __name__ == "__main__": |
|
generate_dataset(dir_path) |