|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import numpy as np |
|
import time |
|
from flcore.clients.clientbase import Client |
|
from utils.data_utils import read_client_data |
|
from utils.ALA import ALA |
|
|
|
|
|
class clientALA(Client): |
|
def __init__(self, args, id, train_samples, test_samples, **kwargs): |
|
super().__init__(args, id, train_samples, test_samples, **kwargs) |
|
|
|
self.eta = args.eta |
|
self.rand_percent = args.rand_percent |
|
self.layer_idx = args.layer_idx |
|
|
|
train_data = read_client_data(self.dataset, self.id, is_train=True) |
|
self.ALA = ALA(self.id, self.loss, train_data, self.batch_size, |
|
self.rand_percent, self.layer_idx, self.eta, self.device) |
|
|
|
def train(self): |
|
trainloader = self.load_train_data() |
|
|
|
self.model.train() |
|
|
|
start_time = time.time() |
|
|
|
max_local_epochs = self.local_epochs |
|
if self.train_slow: |
|
max_local_epochs = np.random.randint(1, max_local_epochs // 2) |
|
|
|
for epoch in range(max_local_epochs): |
|
for i, (x, y) in enumerate(trainloader): |
|
if type(x) == type([]): |
|
x[0] = x[0].to(self.device) |
|
else: |
|
x = x.to(self.device) |
|
y = y.to(self.device) |
|
if self.train_slow: |
|
time.sleep(0.1 * np.abs(np.random.rand())) |
|
output = self.model(x) |
|
loss = self.loss(output, y) |
|
self.optimizer.zero_grad() |
|
loss.backward() |
|
self.optimizer.step() |
|
|
|
|
|
|
|
if self.learning_rate_decay: |
|
self.learning_rate_scheduler.step() |
|
|
|
self.train_time_cost['num_rounds'] += 1 |
|
self.train_time_cost['total_cost'] += time.time() - start_time |
|
|
|
|
|
def local_initialization(self, received_global_model): |
|
self.ALA.adaptive_local_aggregation(received_global_model, self.model) |