kisejin's picture
Upload 486 files
9f61031 verified
# PFLlib: Personalized Federated Learning Algorithm Library
# Copyright (C) 2021 Jianqing Zhang
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
import copy
import torch
import numpy as np
import time
from flcore.clients.clientbase import Client
from sklearn.preprocessing import label_binarize
from sklearn import metrics
class clientAPFL(Client):
def __init__(self, args, id, train_samples, test_samples, **kwargs):
super().__init__(args, id, train_samples, test_samples, **kwargs)
self.alpha = args.alpha
self.model_per = copy.deepcopy(self.model)
self.optimizer_per = torch.optim.SGD(self.model_per.parameters(), lr=self.learning_rate)
self.learning_rate_scheduler_per = torch.optim.lr_scheduler.ExponentialLR(
optimizer=self.optimizer_per,
gamma=args.learning_rate_decay_gamma
)
def train(self):
trainloader = self.load_train_data()
start_time = time.time()
# self.model.to(self.device)
self.model.train()
self.model_per.train()
max_local_epochs = self.local_epochs
if self.train_slow:
max_local_epochs = np.random.randint(1, max_local_epochs // 2)
for epoch in range(max_local_epochs):
for i, (x, y) in enumerate(trainloader):
if type(x) == type([]):
x[0] = x[0].to(self.device)
else:
x = x.to(self.device)
y = y.to(self.device)
if self.train_slow:
time.sleep(0.1 * np.abs(np.random.rand()))
output = self.model(x)
loss = self.loss(output, y)
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
output_per = self.model_per(x)
loss_per = self.loss(output_per, y)
self.optimizer_per.zero_grad()
loss_per.backward()
self.optimizer_per.step()
self.alpha_update()
for lp, p in zip(self.model_per.parameters(), self.model.parameters()):
lp.data = (1 - self.alpha) * p + self.alpha * lp
if self.learning_rate_decay:
self.learning_rate_scheduler.step()
self.learning_rate_scheduler_per.step()
self.train_time_cost['num_rounds'] += 1
self.train_time_cost['total_cost'] += time.time() - start_time
# https://github.com/MLOPTPSU/FedTorch/blob/b58da7408d783fd426872b63fbe0c0352c7fa8e4/fedtorch/comms/utils/flow_utils.py#L240
def alpha_update(self):
grad_alpha = 0
for l_params, p_params in zip(self.model.parameters(), self.model_per.parameters()):
dif = p_params.data - l_params.data
grad = self.alpha * p_params.grad.data + (1-self.alpha) * l_params.grad.data
grad_alpha += dif.view(-1).T.dot(grad.view(-1))
grad_alpha += 0.02 * self.alpha
self.alpha = self.alpha - self.learning_rate * grad_alpha
self.alpha = np.clip(self.alpha.item(), 0.0, 1.0)
def test_metrics(self):
testloaderfull = self.load_test_data()
self.model_per.eval()
test_acc = 0
test_num = 0
y_prob = []
y_true = []
with torch.no_grad():
for x, y in testloaderfull:
if type(x) == type([]):
x[0] = x[0].to(self.device)
else:
x = x.to(self.device)
y = y.to(self.device)
output = self.model_per(x)
test_acc += (torch.sum(torch.argmax(output, dim=1) == y)).item()
test_num += y.shape[0]
y_prob.append(output.detach().cpu().numpy())
y_true.append(label_binarize(y.detach().cpu().numpy(), classes=np.arange(self.num_classes)))
y_prob = np.concatenate(y_prob, axis=0)
y_true = np.concatenate(y_true, axis=0)
auc = metrics.roc_auc_score(y_true, y_prob, average='micro')
return test_acc, test_num, auc
def train_metrics(self):
trainloader = self.load_train_data()
self.model_per.train()
train_num = 0
losses = 0
with torch.no_grad():
for x, y in trainloader:
if type(x) == type([]):
x[0] = x[0].to(self.device)
else:
x = x.to(self.device)
y = y.to(self.device)
output_per = self.model_per(x)
loss_per = self.loss(output_per, y)
train_num += y.shape[0]
losses += loss_per.item() * y.shape[0]
return losses, train_num