|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import copy |
|
import math |
|
import torch |
|
import numpy as np |
|
import time |
|
from flcore.clients.clientbase import Client |
|
|
|
|
|
class clientAPPLE(Client): |
|
def __init__(self, args, id, train_samples, test_samples, **kwargs): |
|
super().__init__(args, id, train_samples, test_samples, **kwargs) |
|
|
|
self.drlr = args.dr_learning_rate |
|
self.num_clients = args.num_clients |
|
self.lamda = 1 |
|
self.mu = args.mu |
|
self.L = int(args.L * args.global_rounds) |
|
self.learning_rate = self.learning_rate * self.num_clients |
|
|
|
self.model_cs = [] |
|
|
|
self.ps = [1/args.num_clients for _ in range(self.num_clients)] |
|
self.p0 = None |
|
self.model_c = copy.deepcopy(self.model) |
|
|
|
def train(self, R): |
|
trainloader = self.load_train_data() |
|
|
|
start_time = time.time() |
|
|
|
|
|
self.model.train() |
|
|
|
max_local_epochs = self.local_epochs |
|
if self.train_slow: |
|
max_local_epochs = np.random.randint(1, max_local_epochs // 2) |
|
|
|
for epoch in range(max_local_epochs): |
|
for i, (x, y) in enumerate(trainloader): |
|
if type(x) == type([]): |
|
x[0] = x[0].to(self.device) |
|
else: |
|
x = x.to(self.device) |
|
y = y.to(self.device) |
|
if self.train_slow: |
|
time.sleep(0.1 * np.abs(np.random.rand())) |
|
|
|
self.aggregate_parameters() |
|
|
|
output = self.model(x) |
|
loss = self.loss(output, y) |
|
self.optimizer.zero_grad() |
|
loss.backward() |
|
|
|
for param_c, param in zip(self.model_cs[self.id].parameters(), self.model.parameters()): |
|
param_c.data = param_c - self.learning_rate * param.grad * self.ps[self.id] |
|
|
|
for cid in range(self.num_clients): |
|
cnt = 0 |
|
p_grad = 0 |
|
for param_c, param in zip(self.model_cs[cid].parameters(), self.model.parameters()): |
|
p_grad += torch.mean(param.grad * param_c).item() |
|
cnt += 1 |
|
p_grad = p_grad / cnt |
|
p_grad = p_grad + self.lamda * self.mu * (self.ps[cid] - self.p0[cid]) |
|
self.ps[cid] = self.ps[cid] - self.drlr * p_grad |
|
|
|
if R < self.L: |
|
self.lamda = (math.cos(R * math.pi / self.L) + 1) / 2 |
|
else: |
|
self.lamda = 0 |
|
|
|
|
|
for param_c, param_ in zip(self.model_cs[self.id].parameters(), self.model_c.parameters()): |
|
param_c.data = param_.data.clone() |
|
|
|
self.model_c = copy.deepcopy(self.model) |
|
|
|
if self.learning_rate_decay: |
|
self.learning_rate_scheduler.step() |
|
|
|
self.train_time_cost['num_rounds'] += 1 |
|
self.train_time_cost['total_cost'] += time.time() - start_time |
|
|
|
|
|
def set_models(self, model_cs): |
|
self.model_cs = model_cs |
|
|
|
def add_parameters(self, w, client_model): |
|
for server_param, client_param in zip(self.model.parameters(), client_model.parameters()): |
|
server_param.data += client_param.data.clone() * w |
|
|
|
def aggregate_parameters(self): |
|
assert (len(self.model_cs) > 0) |
|
|
|
for param in self.model.parameters(): |
|
param.data = torch.zeros_like(param.data) |
|
|
|
for w, client_model in zip(self.ps, self.model_cs): |
|
self.add_parameters(w, client_model) |