kisejin's picture
Upload 486 files
9f61031 verified
# PFLlib: Personalized Federated Learning Algorithm Library
# Copyright (C) 2021 Jianqing Zhang
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
import copy
import torch
import torch.nn as nn
import numpy as np
import time
import torch.nn.functional as F
from flcore.clients.clientbase import Client
class clientFML(Client):
def __init__(self, args, id, train_samples, test_samples, **kwargs):
super().__init__(args, id, train_samples, test_samples, **kwargs)
self.alpha = args.alpha
self.beta = args.beta
self.global_model = copy.deepcopy(args.model)
self.optimizer_g = torch.optim.SGD(self.global_model.parameters(), lr=self.learning_rate)
self.learning_rate_scheduler_g = torch.optim.lr_scheduler.ExponentialLR(
optimizer=self.optimizer_g,
gamma=args.learning_rate_decay_gamma
)
self.KL = nn.KLDivLoss()
def train(self):
trainloader = self.load_train_data()
# self.model.to(self.device)
self.model.train()
start_time = time.time()
max_local_epochs = self.local_epochs
if self.train_slow:
max_local_epochs = np.random.randint(1, max_local_epochs // 2)
for epoch in range(max_local_epochs):
for i, (x, y) in enumerate(trainloader):
if type(x) == type([]):
x[0] = x[0].to(self.device)
else:
x = x.to(self.device)
y = y.to(self.device)
if self.train_slow:
time.sleep(0.1 * np.abs(np.random.rand()))
output = self.model(x)
output_g = self.global_model(x)
loss = self.loss(output, y) * self.alpha + self.KL(F.log_softmax(output, dim=1), F.softmax(output_g, dim=1)) * (1-self.alpha)
loss_g = self.loss(output_g, y) * self.beta + self.KL(F.log_softmax(output_g, dim=1), F.softmax(output, dim=1)) * (1-self.beta)
self.optimizer.zero_grad()
self.optimizer_g.zero_grad()
loss.backward(retain_graph=True)
loss_g.backward()
# prevent divergency on specifical tasks
torch.nn.utils.clip_grad_norm_(self.model.parameters(), 10)
torch.nn.utils.clip_grad_norm_(self.global_model.parameters(), 10)
self.optimizer.step()
self.optimizer_g.step()
# self.model.cpu()
if self.learning_rate_decay:
self.learning_rate_scheduler.step()
self.learning_rate_scheduler_g.step()
self.train_time_cost['num_rounds'] += 1
self.train_time_cost['total_cost'] += time.time() - start_time
def set_parameters(self, global_model):
for new_param, old_param in zip(global_model.parameters(), self.global_model.parameters()):
old_param.data = new_param.data.clone()
def test_metrics(self):
testloaderfull = self.load_test_data()
# self.model = self.load_model('model')
# self.model.to(self.device)
self.model.eval()
test_acc = 0
test_num = 0
with torch.no_grad():
for x, y in testloaderfull:
if type(x) == type([]):
x[0] = x[0].to(self.device)
else:
x = x.to(self.device)
y = y.to(self.device)
output = self.model(x)
test_acc += (torch.sum(torch.argmax(output, dim=1) == y)).item()
test_num += y.shape[0]
return test_acc, test_num, 0
def train_metrics(self):
trainloader = self.load_train_data()
# self.model = self.load_model('model')
# self.model.to(self.device)
self.model.eval()
train_num = 0
losses = 0
with torch.no_grad():
for x, y in trainloader:
if type(x) == type([]):
x[0] = x[0].to(self.device)
else:
x = x.to(self.device)
y = y.to(self.device)
output = self.model(x)
output_g = self.global_model(x)
loss = self.loss(output, y) * self.alpha + self.KL(F.log_softmax(output, dim=1), F.softmax(output_g, dim=1)) * (1-self.alpha)
train_num += y.shape[0]
losses += loss.item() * y.shape[0]
# self.model.cpu()
# self.save_model(self.model, 'model')
return losses, train_num