|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import copy |
|
import torch |
|
import torch.nn as nn |
|
import numpy as np |
|
import time |
|
import torch.nn.functional as F |
|
from flcore.clients.clientbase import Client |
|
|
|
|
|
class clientFML(Client): |
|
def __init__(self, args, id, train_samples, test_samples, **kwargs): |
|
super().__init__(args, id, train_samples, test_samples, **kwargs) |
|
|
|
self.alpha = args.alpha |
|
self.beta = args.beta |
|
|
|
self.global_model = copy.deepcopy(args.model) |
|
self.optimizer_g = torch.optim.SGD(self.global_model.parameters(), lr=self.learning_rate) |
|
self.learning_rate_scheduler_g = torch.optim.lr_scheduler.ExponentialLR( |
|
optimizer=self.optimizer_g, |
|
gamma=args.learning_rate_decay_gamma |
|
) |
|
|
|
self.KL = nn.KLDivLoss() |
|
|
|
def train(self): |
|
trainloader = self.load_train_data() |
|
|
|
self.model.train() |
|
|
|
start_time = time.time() |
|
|
|
max_local_epochs = self.local_epochs |
|
if self.train_slow: |
|
max_local_epochs = np.random.randint(1, max_local_epochs // 2) |
|
|
|
for epoch in range(max_local_epochs): |
|
for i, (x, y) in enumerate(trainloader): |
|
if type(x) == type([]): |
|
x[0] = x[0].to(self.device) |
|
else: |
|
x = x.to(self.device) |
|
y = y.to(self.device) |
|
if self.train_slow: |
|
time.sleep(0.1 * np.abs(np.random.rand())) |
|
output = self.model(x) |
|
output_g = self.global_model(x) |
|
loss = self.loss(output, y) * self.alpha + self.KL(F.log_softmax(output, dim=1), F.softmax(output_g, dim=1)) * (1-self.alpha) |
|
loss_g = self.loss(output_g, y) * self.beta + self.KL(F.log_softmax(output_g, dim=1), F.softmax(output, dim=1)) * (1-self.beta) |
|
|
|
self.optimizer.zero_grad() |
|
self.optimizer_g.zero_grad() |
|
loss.backward(retain_graph=True) |
|
loss_g.backward() |
|
|
|
torch.nn.utils.clip_grad_norm_(self.model.parameters(), 10) |
|
torch.nn.utils.clip_grad_norm_(self.global_model.parameters(), 10) |
|
self.optimizer.step() |
|
self.optimizer_g.step() |
|
|
|
|
|
|
|
if self.learning_rate_decay: |
|
self.learning_rate_scheduler.step() |
|
self.learning_rate_scheduler_g.step() |
|
|
|
self.train_time_cost['num_rounds'] += 1 |
|
self.train_time_cost['total_cost'] += time.time() - start_time |
|
|
|
def set_parameters(self, global_model): |
|
for new_param, old_param in zip(global_model.parameters(), self.global_model.parameters()): |
|
old_param.data = new_param.data.clone() |
|
|
|
def test_metrics(self): |
|
testloaderfull = self.load_test_data() |
|
|
|
|
|
self.model.eval() |
|
|
|
test_acc = 0 |
|
test_num = 0 |
|
|
|
with torch.no_grad(): |
|
for x, y in testloaderfull: |
|
if type(x) == type([]): |
|
x[0] = x[0].to(self.device) |
|
else: |
|
x = x.to(self.device) |
|
y = y.to(self.device) |
|
output = self.model(x) |
|
|
|
test_acc += (torch.sum(torch.argmax(output, dim=1) == y)).item() |
|
test_num += y.shape[0] |
|
|
|
return test_acc, test_num, 0 |
|
|
|
def train_metrics(self): |
|
trainloader = self.load_train_data() |
|
|
|
|
|
self.model.eval() |
|
|
|
train_num = 0 |
|
losses = 0 |
|
with torch.no_grad(): |
|
for x, y in trainloader: |
|
if type(x) == type([]): |
|
x[0] = x[0].to(self.device) |
|
else: |
|
x = x.to(self.device) |
|
y = y.to(self.device) |
|
output = self.model(x) |
|
output_g = self.global_model(x) |
|
loss = self.loss(output, y) * self.alpha + self.KL(F.log_softmax(output, dim=1), F.softmax(output_g, dim=1)) * (1-self.alpha) |
|
|
|
train_num += y.shape[0] |
|
losses += loss.item() * y.shape[0] |
|
|
|
|
|
|
|
|
|
return losses, train_num |