|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
import numpy as np |
|
import time |
|
import copy |
|
from flcore.clients.clientbase import Client |
|
from torch.utils.data import DataLoader |
|
from utils.data_utils import read_client_data |
|
|
|
|
|
class clientFomo(Client): |
|
def __init__(self, args, id, train_samples, test_samples, **kwargs): |
|
super().__init__(args, id, train_samples, test_samples, **kwargs) |
|
|
|
self.num_clients = args.num_clients |
|
self.old_model = copy.deepcopy(self.model) |
|
self.received_ids = [] |
|
self.received_models = [] |
|
self.weight_vector = torch.zeros(self.num_clients, device=self.device) |
|
|
|
self.val_ratio = 0.2 |
|
self.train_samples = self.train_samples * (1-self.val_ratio) |
|
|
|
|
|
def train(self): |
|
trainloader, val_loader = self.load_train_data() |
|
start_time = time.time() |
|
|
|
self.aggregate_parameters(val_loader) |
|
self.clone_model(self.model, self.old_model) |
|
|
|
|
|
self.model.train() |
|
|
|
max_local_epochs = self.local_epochs |
|
if self.train_slow: |
|
max_local_epochs = np.random.randint(1, max_local_epochs // 2) |
|
|
|
for epoch in range(max_local_epochs): |
|
for x, y in trainloader: |
|
if type(x) == type([]): |
|
x[0] = x[0].to(self.device) |
|
else: |
|
x = x.to(self.device) |
|
y = y.to(self.device) |
|
if self.train_slow: |
|
time.sleep(0.1 * np.abs(np.random.rand())) |
|
output = self.model(x) |
|
loss = self.loss(output, y) |
|
self.optimizer.zero_grad() |
|
loss.backward() |
|
self.optimizer.step() |
|
|
|
|
|
|
|
if self.learning_rate_decay: |
|
self.learning_rate_scheduler.step() |
|
|
|
self.train_time_cost['num_rounds'] += 1 |
|
self.train_time_cost['total_cost'] += time.time() - start_time |
|
|
|
|
|
def load_train_data(self, batch_size=None): |
|
if batch_size == None: |
|
batch_size = self.batch_size |
|
train_data = read_client_data(self.dataset, self.id, is_train=True) |
|
val_idx = -int(self.val_ratio*len(train_data)) |
|
val_data = train_data[val_idx:] |
|
train_data = train_data[:val_idx] |
|
|
|
trainloader = DataLoader(train_data, self.batch_size, drop_last=True, shuffle=False) |
|
val_loader = DataLoader(val_data, self.batch_size, drop_last=self.has_BatchNorm, shuffle=False) |
|
|
|
return trainloader, val_loader |
|
|
|
def train_metrics(self): |
|
trainloader, val_loader = self.load_train_data() |
|
|
|
|
|
self.model.eval() |
|
|
|
train_num = 0 |
|
loss = 0 |
|
for x, y in trainloader: |
|
if type(x) == type([]): |
|
x[0] = x[0].to(self.device) |
|
else: |
|
x = x.to(self.device) |
|
y = y.to(self.device) |
|
output = self.model(x) |
|
train_num += y.shape[0] |
|
loss += self.loss(output, y).item() * y.shape[0] |
|
|
|
|
|
|
|
|
|
return loss, train_num |
|
|
|
def receive_models(self, ids, models): |
|
self.received_ids = ids |
|
self.received_models = models |
|
|
|
def weight_cal(self, val_loader): |
|
weight_list = [] |
|
L = self.recalculate_loss(self.old_model, val_loader) |
|
for received_model in self.received_models: |
|
params_dif = [] |
|
for param_n, param_i in zip(received_model.parameters(), self.old_model.parameters()): |
|
params_dif.append((param_n - param_i).view(-1)) |
|
params_dif = torch.cat(params_dif) |
|
|
|
weight_list.append((L - self.recalculate_loss(received_model, val_loader)) / (torch.norm(params_dif) + 1e-5)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self.weight_vector_update(weight_list) |
|
|
|
return torch.tensor(weight_list) |
|
|
|
|
|
|
|
def weight_vector_update(self, weight_list): |
|
|
|
|
|
|
|
|
|
self.weight_vector = np.zeros(self.num_clients) |
|
for w, id in zip(weight_list, self.received_ids): |
|
self.weight_vector[id] += w.item() |
|
self.weight_vector = torch.tensor(self.weight_vector).to(self.device) |
|
|
|
def recalculate_loss(self, new_model, val_loader): |
|
L = 0 |
|
for x, y in val_loader: |
|
if type(x) == type([]): |
|
x[0] = x[0].to(self.device) |
|
else: |
|
x = x.to(self.device) |
|
y = y.to(self.device) |
|
output = new_model(x) |
|
loss = self.loss(output, y) |
|
L += loss.item() |
|
|
|
return L / len(val_loader) |
|
|
|
def add_parameters(self, w, received_model): |
|
for param, received_param in zip(self.model.parameters(), received_model.parameters()): |
|
param.data += received_param.data.clone() * w |
|
|
|
def aggregate_parameters(self, val_loader): |
|
weights = self.weight_scale(self.weight_cal(val_loader)) |
|
|
|
if len(weights) > 0: |
|
for param in self.model.parameters(): |
|
param.data.zero_() |
|
|
|
for w, received_model in zip(weights, self.received_models): |
|
self.add_parameters(w, received_model) |
|
|
|
def weight_scale(self, weights): |
|
weights = torch.maximum(weights, torch.tensor(0)) |
|
w_sum = torch.sum(weights) |
|
if w_sum > 0: |
|
weights = [w/w_sum for w in weights] |
|
return torch.tensor(weights) |
|
else: |
|
return torch.tensor([]) |
|
|