|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
import torch.nn as nn |
|
import numpy as np |
|
import time |
|
from flcore.clients.clientbase import Client |
|
from sklearn.preprocessing import label_binarize |
|
from sklearn import metrics |
|
|
|
|
|
class clientGC(Client): |
|
def __init__(self, args, id, train_samples, test_samples, **kwargs): |
|
super().__init__(args, id, train_samples, test_samples, **kwargs) |
|
|
|
trainloader = self.load_train_data() |
|
for x, y in trainloader: |
|
if type(x) == type([]): |
|
x[0] = x[0].to(self.device) |
|
else: |
|
x = x.to(self.device) |
|
y = y.to(self.device) |
|
with torch.no_grad(): |
|
rep = self.model.base(x).detach() |
|
break |
|
self.feature_dim = rep.shape[1] |
|
|
|
sample_per_class = torch.zeros(self.num_classes) |
|
trainloader = self.load_train_data() |
|
for x, y in trainloader: |
|
for yy in y: |
|
sample_per_class[yy.item()] += 1 |
|
self.classes_index = [] |
|
self.index_classes = torch.zeros(self.num_classes, dtype=torch.int64) |
|
for idx, c in enumerate(sample_per_class): |
|
if c > 0: |
|
self.classes_index.append(idx) |
|
self.index_classes[idx] += len(self.classes_index) - 1 |
|
self.classes_index = torch.tensor(self.classes_index, device=self.device) |
|
self.num_classes = torch.sum(sample_per_class > 0).item() |
|
print(f'Client {self.id} has {self.num_classes} classes.') |
|
|
|
self.model.head = nn.Linear(self.feature_dim, self.num_classes, bias=False).to(self.device) |
|
self.optimizer = torch.optim.SGD(self.model.parameters(), lr=self.learning_rate) |
|
self.learning_rate_scheduler = torch.optim.lr_scheduler.ExponentialLR( |
|
optimizer=self.optimizer, |
|
gamma=args.learning_rate_decay_gamma |
|
) |
|
self.learning_rate_decay = args.learning_rate_decay |
|
|
|
def train(self): |
|
trainloader = self.load_train_data() |
|
|
|
self.model.train() |
|
|
|
start_time = time.time() |
|
|
|
max_local_epochs = self.local_epochs |
|
if self.train_slow: |
|
max_local_epochs = np.random.randint(1, max_local_epochs // 2) |
|
|
|
for epoch in range(max_local_epochs): |
|
for i, (x, y) in enumerate(trainloader): |
|
if type(x) == type([]): |
|
x[0] = x[0].to(self.device) |
|
else: |
|
x = x.to(self.device) |
|
y = self.index_classes[y].to(self.device) |
|
if self.train_slow: |
|
time.sleep(0.1 * np.abs(np.random.rand())) |
|
output = self.model(x) |
|
loss = self.loss(output, y) |
|
self.optimizer.zero_grad() |
|
loss.backward() |
|
self.optimizer.step() |
|
|
|
|
|
|
|
if self.learning_rate_decay: |
|
self.learning_rate_scheduler.step() |
|
|
|
self.train_time_cost['num_rounds'] += 1 |
|
self.train_time_cost['total_cost'] += time.time() - start_time |
|
|
|
|
|
def set_base(self, base): |
|
for new_param, old_param in zip(base.parameters(), self.model.base.parameters()): |
|
old_param.data = new_param.data.clone() |
|
|
|
def set_head(self, head): |
|
for new_param, old_param in zip(head.parameters(), self.model.head.parameters()): |
|
old_param.data = new_param.data.clone() |
|
|
|
def test_metrics(self): |
|
testloaderfull = self.load_test_data() |
|
|
|
|
|
self.model.eval() |
|
|
|
test_acc = 0 |
|
test_num = 0 |
|
y_prob = [] |
|
y_true = [] |
|
|
|
with torch.no_grad(): |
|
for x, y in testloaderfull: |
|
if type(x) == type([]): |
|
x[0] = x[0].to(self.device) |
|
else: |
|
x = x.to(self.device) |
|
y = self.index_classes[y].to(self.device) |
|
output = self.model(x) |
|
|
|
test_acc += (torch.sum(torch.argmax(output, dim=1) == y)).item() |
|
test_num += y.shape[0] |
|
|
|
if len(set(y)) > 1: |
|
y_prob.append(output.detach().cpu().numpy()) |
|
nc = self.num_classes |
|
if self.num_classes == 2: |
|
nc += 1 |
|
lb = label_binarize(y.detach().cpu().numpy(), classes=np.arange(nc)) |
|
if self.num_classes == 2: |
|
lb = lb[:, :2] |
|
y_true.append(lb) |
|
|
|
|
|
|
|
|
|
y_prob = np.concatenate(y_prob, axis=0) |
|
y_true = np.concatenate(y_true, axis=0) |
|
|
|
auc = metrics.roc_auc_score(y_true, y_prob, average='micro') |
|
|
|
return test_acc, test_num, auc |
|
|
|
def train_metrics(self): |
|
trainloader = self.load_train_data() |
|
|
|
|
|
self.model.eval() |
|
|
|
train_num = 0 |
|
losses = 0 |
|
with torch.no_grad(): |
|
for x, y in trainloader: |
|
if type(x) == type([]): |
|
x[0] = x[0].to(self.device) |
|
else: |
|
x = x.to(self.device) |
|
y = self.index_classes[y].to(self.device) |
|
output = self.model(x) |
|
loss = self.loss(output, y) |
|
train_num += y.shape[0] |
|
losses += loss.item() * y.shape[0] |
|
|
|
|
|
|
|
|
|
return losses, train_num |