kisejin's picture
Upload 486 files
9f61031 verified
# PFLlib: Personalized Federated Learning Algorithm Library
# Copyright (C) 2021 Jianqing Zhang
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
import torch
import torch.nn as nn
import numpy as np
import time
from flcore.clients.clientbase import Client
from sklearn.preprocessing import label_binarize
from sklearn import metrics
class clientGC(Client):
def __init__(self, args, id, train_samples, test_samples, **kwargs):
super().__init__(args, id, train_samples, test_samples, **kwargs)
trainloader = self.load_train_data()
for x, y in trainloader:
if type(x) == type([]):
x[0] = x[0].to(self.device)
else:
x = x.to(self.device)
y = y.to(self.device)
with torch.no_grad():
rep = self.model.base(x).detach()
break
self.feature_dim = rep.shape[1]
sample_per_class = torch.zeros(self.num_classes)
trainloader = self.load_train_data()
for x, y in trainloader:
for yy in y:
sample_per_class[yy.item()] += 1
self.classes_index = []
self.index_classes = torch.zeros(self.num_classes, dtype=torch.int64)
for idx, c in enumerate(sample_per_class):
if c > 0:
self.classes_index.append(idx)
self.index_classes[idx] += len(self.classes_index) - 1
self.classes_index = torch.tensor(self.classes_index, device=self.device)
self.num_classes = torch.sum(sample_per_class > 0).item()
print(f'Client {self.id} has {self.num_classes} classes.')
self.model.head = nn.Linear(self.feature_dim, self.num_classes, bias=False).to(self.device)
self.optimizer = torch.optim.SGD(self.model.parameters(), lr=self.learning_rate)
self.learning_rate_scheduler = torch.optim.lr_scheduler.ExponentialLR(
optimizer=self.optimizer,
gamma=args.learning_rate_decay_gamma
)
self.learning_rate_decay = args.learning_rate_decay
def train(self):
trainloader = self.load_train_data()
# self.model.to(self.device)
self.model.train()
start_time = time.time()
max_local_epochs = self.local_epochs
if self.train_slow:
max_local_epochs = np.random.randint(1, max_local_epochs // 2)
for epoch in range(max_local_epochs):
for i, (x, y) in enumerate(trainloader):
if type(x) == type([]):
x[0] = x[0].to(self.device)
else:
x = x.to(self.device)
y = self.index_classes[y].to(self.device)
if self.train_slow:
time.sleep(0.1 * np.abs(np.random.rand()))
output = self.model(x)
loss = self.loss(output, y) # softmax loss
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
# self.model.cpu()
if self.learning_rate_decay:
self.learning_rate_scheduler.step()
self.train_time_cost['num_rounds'] += 1
self.train_time_cost['total_cost'] += time.time() - start_time
def set_base(self, base):
for new_param, old_param in zip(base.parameters(), self.model.base.parameters()):
old_param.data = new_param.data.clone()
def set_head(self, head):
for new_param, old_param in zip(head.parameters(), self.model.head.parameters()):
old_param.data = new_param.data.clone()
def test_metrics(self):
testloaderfull = self.load_test_data()
# self.model = self.load_model('model')
# self.model.to(self.device)
self.model.eval()
test_acc = 0
test_num = 0
y_prob = []
y_true = []
with torch.no_grad():
for x, y in testloaderfull:
if type(x) == type([]):
x[0] = x[0].to(self.device)
else:
x = x.to(self.device)
y = self.index_classes[y].to(self.device)
output = self.model(x)
test_acc += (torch.sum(torch.argmax(output, dim=1) == y)).item()
test_num += y.shape[0]
if len(set(y)) > 1:
y_prob.append(output.detach().cpu().numpy())
nc = self.num_classes
if self.num_classes == 2:
nc += 1
lb = label_binarize(y.detach().cpu().numpy(), classes=np.arange(nc))
if self.num_classes == 2:
lb = lb[:, :2]
y_true.append(lb)
# self.model.cpu()
# self.save_model(self.model, 'model')
y_prob = np.concatenate(y_prob, axis=0)
y_true = np.concatenate(y_true, axis=0)
auc = metrics.roc_auc_score(y_true, y_prob, average='micro')
return test_acc, test_num, auc
def train_metrics(self):
trainloader = self.load_train_data()
# self.model = self.load_model('model')
# self.model.to(self.device)
self.model.eval()
train_num = 0
losses = 0
with torch.no_grad():
for x, y in trainloader:
if type(x) == type([]):
x[0] = x[0].to(self.device)
else:
x = x.to(self.device)
y = self.index_classes[y].to(self.device)
output = self.model(x)
loss = self.loss(output, y)
train_num += y.shape[0]
losses += loss.item() * y.shape[0]
# self.model.cpu()
# self.save_model(self.model, 'model')
return losses, train_num