kisejin's picture
Upload 486 files
9f61031 verified
# PFLlib: Personalized Federated Learning Algorithm Library
# Copyright (C) 2021 Jianqing Zhang
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
import torch
import numpy as np
import time
from flcore.clients.clientbase import Client
class clientGen(Client):
def __init__(self, args, id, train_samples, test_samples, **kwargs):
super().__init__(args, id, train_samples, test_samples, **kwargs)
trainloader = self.load_train_data()
for x, y in trainloader:
if type(x) == type([]):
x[0] = x[0].to(self.device)
else:
x = x.to(self.device)
y = y.to(self.device)
with torch.no_grad():
rep = self.model.base(x).detach()
break
self.feature_dim = rep.shape[1]
self.sample_per_class = torch.zeros(self.num_classes)
trainloader = self.load_train_data()
for x, y in trainloader:
for yy in y:
self.sample_per_class[yy.item()] += 1
self.qualified_labels = []
self.generative_model = None
self.localize_feature_extractor = args.localize_feature_extractor
def train(self):
trainloader = self.load_train_data()
# self.model.to(self.device)
self.model.train()
start_time = time.time()
max_local_epochs = self.local_epochs
if self.train_slow:
max_local_epochs = np.random.randint(1, max_local_epochs // 2)
for epoch in range(max_local_epochs):
for i, (x, y) in enumerate(trainloader):
if type(x) == type([]):
x[0] = x[0].to(self.device)
else:
x = x.to(self.device)
y = y.to(self.device)
if self.train_slow:
time.sleep(0.1 * np.abs(np.random.rand()))
output = self.model(x)
loss = self.loss(output, y)
labels = np.random.choice(self.qualified_labels, self.batch_size)
labels = torch.LongTensor(labels).to(self.device)
z = self.generative_model(labels)
loss += self.loss(self.model.head(z), labels)
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
# self.model.cpu()
if self.learning_rate_decay:
self.learning_rate_scheduler.step()
self.train_time_cost['num_rounds'] += 1
self.train_time_cost['total_cost'] += time.time() - start_time
def set_parameters(self, model, generative_model):
if self.localize_feature_extractor:
for new_param, old_param in zip(model.parameters(), self.model.head.parameters()):
old_param.data = new_param.data.clone()
else:
for new_param, old_param in zip(model.parameters(), self.model.parameters()):
old_param.data = new_param.data.clone()
self.generative_model = generative_model
def train_metrics(self):
trainloader = self.load_train_data()
# self.model = self.load_model('model')
# self.model.to(self.device)
self.model.eval()
train_num = 0
losses = 0
with torch.no_grad():
for x, y in trainloader:
if type(x) == type([]):
x[0] = x[0].to(self.device)
else:
x = x.to(self.device)
y = y.to(self.device)
output = self.model(x)
loss = self.loss(output, y)
labels = np.random.choice(self.qualified_labels, self.batch_size)
labels = torch.LongTensor(labels).to(self.device)
z = self.generative_model(labels)
loss += self.loss(self.model.head(z), labels)
train_num += y.shape[0]
losses += loss.item() * y.shape[0]
# self.model.cpu()
# self.save_model(self.model, 'model')
return losses, train_num