|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
import numpy as np |
|
import time |
|
from flcore.clients.clientbase import Client |
|
|
|
|
|
class clientGen(Client): |
|
def __init__(self, args, id, train_samples, test_samples, **kwargs): |
|
super().__init__(args, id, train_samples, test_samples, **kwargs) |
|
|
|
trainloader = self.load_train_data() |
|
for x, y in trainloader: |
|
if type(x) == type([]): |
|
x[0] = x[0].to(self.device) |
|
else: |
|
x = x.to(self.device) |
|
y = y.to(self.device) |
|
with torch.no_grad(): |
|
rep = self.model.base(x).detach() |
|
break |
|
self.feature_dim = rep.shape[1] |
|
|
|
self.sample_per_class = torch.zeros(self.num_classes) |
|
trainloader = self.load_train_data() |
|
for x, y in trainloader: |
|
for yy in y: |
|
self.sample_per_class[yy.item()] += 1 |
|
|
|
self.qualified_labels = [] |
|
self.generative_model = None |
|
self.localize_feature_extractor = args.localize_feature_extractor |
|
|
|
|
|
def train(self): |
|
trainloader = self.load_train_data() |
|
|
|
self.model.train() |
|
|
|
start_time = time.time() |
|
|
|
max_local_epochs = self.local_epochs |
|
if self.train_slow: |
|
max_local_epochs = np.random.randint(1, max_local_epochs // 2) |
|
|
|
for epoch in range(max_local_epochs): |
|
for i, (x, y) in enumerate(trainloader): |
|
if type(x) == type([]): |
|
x[0] = x[0].to(self.device) |
|
else: |
|
x = x.to(self.device) |
|
y = y.to(self.device) |
|
if self.train_slow: |
|
time.sleep(0.1 * np.abs(np.random.rand())) |
|
output = self.model(x) |
|
loss = self.loss(output, y) |
|
|
|
labels = np.random.choice(self.qualified_labels, self.batch_size) |
|
labels = torch.LongTensor(labels).to(self.device) |
|
z = self.generative_model(labels) |
|
loss += self.loss(self.model.head(z), labels) |
|
|
|
self.optimizer.zero_grad() |
|
loss.backward() |
|
self.optimizer.step() |
|
|
|
|
|
|
|
if self.learning_rate_decay: |
|
self.learning_rate_scheduler.step() |
|
|
|
self.train_time_cost['num_rounds'] += 1 |
|
self.train_time_cost['total_cost'] += time.time() - start_time |
|
|
|
|
|
def set_parameters(self, model, generative_model): |
|
if self.localize_feature_extractor: |
|
for new_param, old_param in zip(model.parameters(), self.model.head.parameters()): |
|
old_param.data = new_param.data.clone() |
|
else: |
|
for new_param, old_param in zip(model.parameters(), self.model.parameters()): |
|
old_param.data = new_param.data.clone() |
|
|
|
self.generative_model = generative_model |
|
|
|
def train_metrics(self): |
|
trainloader = self.load_train_data() |
|
|
|
|
|
self.model.eval() |
|
|
|
train_num = 0 |
|
losses = 0 |
|
with torch.no_grad(): |
|
for x, y in trainloader: |
|
if type(x) == type([]): |
|
x[0] = x[0].to(self.device) |
|
else: |
|
x = x.to(self.device) |
|
y = y.to(self.device) |
|
output = self.model(x) |
|
loss = self.loss(output, y) |
|
|
|
labels = np.random.choice(self.qualified_labels, self.batch_size) |
|
labels = torch.LongTensor(labels).to(self.device) |
|
z = self.generative_model(labels) |
|
loss += self.loss(self.model.head(z), labels) |
|
|
|
train_num += y.shape[0] |
|
losses += loss.item() * y.shape[0] |
|
|
|
|
|
|
|
|
|
return losses, train_num |
|
|