kisejin's picture
Upload 486 files
9f61031 verified
# PFLlib: Personalized Federated Learning Algorithm Library
# Copyright (C) 2021 Jianqing Zhang
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
import copy
import torch
import torch.nn as nn
import numpy as np
import time
import torch.nn.functional as F
from flcore.clients.clientbase import Client
class clientKD(Client):
def __init__(self, args, id, train_samples, test_samples, **kwargs):
super().__init__(args, id, train_samples, test_samples, **kwargs)
self.mentee_learning_rate = args.mentee_learning_rate
self.global_model = copy.deepcopy(args.model)
self.optimizer_g = torch.optim.SGD(self.global_model.parameters(), lr=self.mentee_learning_rate)
self.learning_rate_scheduler_g = torch.optim.lr_scheduler.ExponentialLR(
optimizer=self.optimizer_g,
gamma=args.learning_rate_decay_gamma
)
self.feature_dim = list(args.model.head.parameters())[0].shape[1]
self.W_h = nn.Linear(self.feature_dim, self.feature_dim, bias=False).to(self.device)
self.optimizer_W = torch.optim.SGD(self.W_h.parameters(), lr=self.learning_rate)
self.learning_rate_scheduler_W = torch.optim.lr_scheduler.ExponentialLR(
optimizer=self.optimizer_W,
gamma=args.learning_rate_decay_gamma
)
self.KL = nn.KLDivLoss()
self.MSE = nn.MSELoss()
self.compressed_param = {}
self.energy = None
def train(self):
trainloader = self.load_train_data()
# self.model.to(self.device)
self.model.train()
start_time = time.time()
max_local_epochs = self.local_epochs
if self.train_slow:
max_local_epochs = np.random.randint(1, max_local_epochs // 2)
for epoch in range(max_local_epochs):
for i, (x, y) in enumerate(trainloader):
if type(x) == type([]):
x[0] = x[0].to(self.device)
else:
x = x.to(self.device)
y = y.to(self.device)
if self.train_slow:
time.sleep(0.1 * np.abs(np.random.rand()))
rep = self.model.base(x)
rep_g = self.global_model.base(x)
output = self.model.head(rep)
output_g = self.global_model.head(rep_g)
CE_loss = self.loss(output, y)
CE_loss_g = self.loss(output_g, y)
L_d = self.KL(F.log_softmax(output, dim=1), F.softmax(output_g, dim=1)) / (CE_loss + CE_loss_g)
L_d_g = self.KL(F.log_softmax(output_g, dim=1), F.softmax(output, dim=1)) / (CE_loss + CE_loss_g)
L_h = self.MSE(rep, self.W_h(rep_g)) / (CE_loss + CE_loss_g)
L_h_g = self.MSE(rep, self.W_h(rep_g)) / (CE_loss + CE_loss_g)
loss = CE_loss + L_d + L_h
loss_g = CE_loss_g + L_d_g + L_h_g
self.optimizer.zero_grad()
self.optimizer_g.zero_grad()
self.optimizer_W.zero_grad()
loss.backward(retain_graph=True)
loss_g.backward()
# prevent divergency on specifical tasks
torch.nn.utils.clip_grad_norm_(self.model.parameters(), 10)
torch.nn.utils.clip_grad_norm_(self.global_model.parameters(), 10)
torch.nn.utils.clip_grad_norm_(self.W_h.parameters(), 10)
self.optimizer.step()
self.optimizer_g.step()
self.optimizer_W.step()
# self.model.cpu()
self.decomposition()
if self.learning_rate_decay:
self.learning_rate_scheduler.step()
self.learning_rate_scheduler_g.step()
self.learning_rate_scheduler_W.step()
self.train_time_cost['num_rounds'] += 1
self.train_time_cost['total_cost'] += time.time() - start_time
def set_parameters(self, global_param, energy):
# recover
for k in global_param.keys():
if len(global_param[k]) == 3:
# use np.matmul to support high-dimensional CNN param
global_param[k] = np.matmul(global_param[k][0] * global_param[k][1][..., None, :], global_param[k][2])
for name, old_param in self.global_model.named_parameters():
if name in global_param:
old_param.data = torch.tensor(global_param[name], device=self.device).data.clone()
self.energy = energy
def train_metrics(self):
trainloader = self.load_train_data()
# self.model = self.load_model('model')
# self.model.to(self.device)
self.model.eval()
train_num = 0
losses = 0
with torch.no_grad():
for x, y in trainloader:
if type(x) == type([]):
x[0] = x[0].to(self.device)
else:
x = x.to(self.device)
y = y.to(self.device)
rep = self.model.base(x)
rep_g = self.global_model.base(x)
output = self.model.head(rep)
output_g = self.global_model.head(rep_g)
CE_loss = self.loss(output, y)
CE_loss_g = self.loss(output_g, y)
L_d = self.KL(F.log_softmax(output, dim=1), F.softmax(output_g, dim=1)) / (CE_loss + CE_loss_g)
L_h = self.MSE(rep, self.W_h(rep_g)) / (CE_loss + CE_loss_g)
loss = CE_loss + L_d + L_h
train_num += y.shape[0]
losses += loss.item() * y.shape[0]
# self.model.cpu()
# self.save_model(self.model, 'model')
return losses, train_num
def decomposition(self):
self.compressed_param = {}
for name, param in self.global_model.named_parameters():
param_cpu = param.detach().cpu().numpy()
# refer to https://github.com/wuch15/FedKD/blob/main/run.py#L187
if param_cpu.shape[0]>1 and len(param_cpu.shape)>1 and 'embeddings' not in name:
u, sigma, v = np.linalg.svd(param_cpu, full_matrices=False)
# support high-dimensional CNN param
if len(u.shape)==4:
u = np.transpose(u, (2, 3, 0, 1))
sigma = np.transpose(sigma, (2, 0, 1))
v = np.transpose(v, (2, 3, 0, 1))
threshold=0
if np.sum(np.square(sigma))==0:
compressed_param_cpu=param_cpu
else:
for singular_value_num in range(len(sigma)):
if np.sum(np.square(sigma[:singular_value_num]))>self.energy*np.sum(np.square(sigma)):
threshold=singular_value_num
break
u=u[:, :threshold]
sigma=sigma[:threshold]
v=v[:threshold, :]
# support high-dimensional CNN param
if len(u.shape)==4:
u = np.transpose(u, (2, 3, 0, 1))
sigma = np.transpose(sigma, (1, 2, 0))
v = np.transpose(v, (2, 3, 0, 1))
compressed_param_cpu=[u,sigma,v]
elif 'embeddings' not in name:
compressed_param_cpu=param_cpu
self.compressed_param[name] = compressed_param_cpu