|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import copy |
|
import torch |
|
import torch.nn as nn |
|
import numpy as np |
|
import time |
|
from flcore.clients.clientbase import Client |
|
from collections import defaultdict |
|
|
|
|
|
class clientProto(Client): |
|
def __init__(self, args, id, train_samples, test_samples, **kwargs): |
|
super().__init__(args, id, train_samples, test_samples, **kwargs) |
|
|
|
self.protos = None |
|
self.global_protos = None |
|
self.loss_mse = nn.MSELoss() |
|
|
|
self.lamda = args.lamda |
|
|
|
|
|
def train(self): |
|
trainloader = self.load_train_data() |
|
start_time = time.time() |
|
|
|
|
|
self.model.train() |
|
|
|
max_local_epochs = self.local_epochs |
|
if self.train_slow: |
|
max_local_epochs = np.random.randint(1, max_local_epochs // 2) |
|
|
|
protos = defaultdict(list) |
|
for epoch in range(max_local_epochs): |
|
for i, (x, y) in enumerate(trainloader): |
|
if type(x) == type([]): |
|
x[0] = x[0].to(self.device) |
|
else: |
|
x = x.to(self.device) |
|
y = y.to(self.device) |
|
if self.train_slow: |
|
time.sleep(0.1 * np.abs(np.random.rand())) |
|
rep = self.model.base(x) |
|
output = self.model.head(rep) |
|
loss = self.loss(output, y) |
|
|
|
if self.global_protos is not None: |
|
proto_new = copy.deepcopy(rep.detach()) |
|
for i, yy in enumerate(y): |
|
y_c = yy.item() |
|
if type(self.global_protos[y_c]) != type([]): |
|
proto_new[i, :] = self.global_protos[y_c].data |
|
loss += self.loss_mse(proto_new, rep) * self.lamda |
|
|
|
for i, yy in enumerate(y): |
|
y_c = yy.item() |
|
protos[y_c].append(rep[i, :].detach().data) |
|
|
|
self.optimizer.zero_grad() |
|
loss.backward() |
|
self.optimizer.step() |
|
|
|
|
|
|
|
|
|
|
|
|
|
self.protos = agg_func(protos) |
|
|
|
if self.learning_rate_decay: |
|
self.learning_rate_scheduler.step() |
|
|
|
self.train_time_cost['num_rounds'] += 1 |
|
self.train_time_cost['total_cost'] += time.time() - start_time |
|
|
|
|
|
def set_protos(self, global_protos): |
|
self.global_protos = global_protos |
|
|
|
def collect_protos(self): |
|
trainloader = self.load_train_data() |
|
self.model.eval() |
|
|
|
protos = defaultdict(list) |
|
with torch.no_grad(): |
|
for i, (x, y) in enumerate(trainloader): |
|
if type(x) == type([]): |
|
x[0] = x[0].to(self.device) |
|
else: |
|
x = x.to(self.device) |
|
y = y.to(self.device) |
|
if self.train_slow: |
|
time.sleep(0.1 * np.abs(np.random.rand())) |
|
rep = self.model.base(x) |
|
|
|
for i, yy in enumerate(y): |
|
y_c = yy.item() |
|
protos[y_c].append(rep[i, :].detach().data) |
|
|
|
self.protos = agg_func(protos) |
|
|
|
def test_metrics(self): |
|
testloaderfull = self.load_test_data() |
|
|
|
|
|
self.model.eval() |
|
|
|
test_acc = 0 |
|
test_num = 0 |
|
|
|
if self.global_protos is not None: |
|
with torch.no_grad(): |
|
for x, y in testloaderfull: |
|
if type(x) == type([]): |
|
x[0] = x[0].to(self.device) |
|
else: |
|
x = x.to(self.device) |
|
y = y.to(self.device) |
|
rep = self.model.base(x) |
|
|
|
output = float('inf') * torch.ones(y.shape[0], self.num_classes).to(self.device) |
|
for i, r in enumerate(rep): |
|
for j, pro in self.global_protos.items(): |
|
if type(pro) != type([]): |
|
output[i, j] = self.loss_mse(r, pro) |
|
|
|
test_acc += (torch.sum(torch.argmin(output, dim=1) == y)).item() |
|
test_num += y.shape[0] |
|
|
|
return test_acc, test_num, 0 |
|
else: |
|
return 0, 1e-5, 0 |
|
|
|
def train_metrics(self): |
|
trainloader = self.load_train_data() |
|
|
|
|
|
self.model.eval() |
|
|
|
train_num = 0 |
|
losses = 0 |
|
with torch.no_grad(): |
|
for x, y in trainloader: |
|
if type(x) == type([]): |
|
x[0] = x[0].to(self.device) |
|
else: |
|
x = x.to(self.device) |
|
y = y.to(self.device) |
|
rep = self.model.base(x) |
|
output = self.model.head(rep) |
|
loss = self.loss(output, y) |
|
|
|
if self.global_protos is not None: |
|
proto_new = copy.deepcopy(rep.detach()) |
|
for i, yy in enumerate(y): |
|
y_c = yy.item() |
|
if type(self.global_protos[y_c]) != type([]): |
|
proto_new[i, :] = self.global_protos[y_c].data |
|
loss += self.loss_mse(proto_new, rep) * self.lamda |
|
train_num += y.shape[0] |
|
losses += loss.item() * y.shape[0] |
|
|
|
|
|
|
|
|
|
return losses, train_num |
|
|
|
|
|
|
|
def agg_func(protos): |
|
""" |
|
Returns the average of the weights. |
|
""" |
|
|
|
for [label, proto_list] in protos.items(): |
|
if len(proto_list) > 1: |
|
proto = 0 * proto_list[0].data |
|
for i in proto_list: |
|
proto += i.data |
|
protos[label] = proto / len(proto_list) |
|
else: |
|
protos[label] = proto_list[0] |
|
|
|
return protos |