|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
from torch.optim import Optimizer |
|
|
|
|
|
class PerAvgOptimizer(Optimizer): |
|
def __init__(self, params, lr): |
|
defaults = dict(lr=lr) |
|
super(PerAvgOptimizer, self).__init__(params, defaults) |
|
|
|
def step(self, beta=0): |
|
for group in self.param_groups: |
|
for p in group['params']: |
|
if p.grad is None: |
|
continue |
|
d_p = p.grad.data |
|
if(beta != 0): |
|
p.data.add_(other=d_p, alpha=-beta) |
|
else: |
|
p.data.add_(other=d_p, alpha=-group['lr']) |
|
|
|
|
|
class SCAFFOLDOptimizer(Optimizer): |
|
def __init__(self, params, lr): |
|
defaults = dict(lr=lr) |
|
super(SCAFFOLDOptimizer, self).__init__(params, defaults) |
|
|
|
def step(self, server_cs, client_cs): |
|
for group in self.param_groups: |
|
for p, sc, cc in zip(group['params'], server_cs, client_cs): |
|
p.data.add_(other=(p.grad.data + sc - cc), alpha=-group['lr']) |
|
|
|
|
|
class pFedMeOptimizer(Optimizer): |
|
def __init__(self, params, lr=0.01, lamda=0.1, mu=0.001): |
|
defaults = dict(lr=lr, lamda=lamda, mu=mu) |
|
super(pFedMeOptimizer, self).__init__(params, defaults) |
|
|
|
def step(self, local_model, device): |
|
group = None |
|
weight_update = local_model.copy() |
|
for group in self.param_groups: |
|
for p, localweight in zip(group['params'], weight_update): |
|
localweight = localweight.to(device) |
|
|
|
p.data = p.data - group['lr'] * (p.grad.data + group['lamda'] * (p.data - localweight.data) + group['mu'] * p.data) |
|
|
|
return group['params'] |
|
|
|
|
|
class APFLOptimizer(Optimizer): |
|
def __init__(self, params, lr): |
|
defaults = dict(lr=lr) |
|
super(APFLOptimizer, self).__init__(params, defaults) |
|
|
|
def step(self, beta=1, n_k=1): |
|
for group in self.param_groups: |
|
for p in group['params']: |
|
if p.grad is None: |
|
continue |
|
d_p = beta * n_k * p.grad.data |
|
p.data.add_(-group['lr'], d_p) |
|
|
|
|
|
class PerturbedGradientDescent(Optimizer): |
|
def __init__(self, params, lr=0.01, mu=0.0): |
|
default = dict(lr=lr, mu=mu) |
|
super().__init__(params, default) |
|
|
|
@torch.no_grad() |
|
def step(self, global_params, device): |
|
for group in self.param_groups: |
|
for p, g in zip(group['params'], global_params): |
|
g = g.to(device) |
|
d_p = p.grad.data + group['mu'] * (p.data - g.data) |
|
p.data.add_(d_p, alpha=-group['lr']) |
|
|