kisejin's picture
Upload 486 files
9f61031 verified
# PFLlib: Personalized Federated Learning Algorithm Library
# Copyright (C) 2021 Jianqing Zhang
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
import torch
import time
from flcore.clients.clientapple import clientAPPLE
from flcore.servers.serverbase import Server
from threading import Thread
from utils.dlg import DLG
from utils.data_utils import read_client_data
class APPLE(Server):
def __init__(self, args, times):
super().__init__(args, times)
# select slow clients
self.set_slow_clients()
self.set_clients(clientAPPLE)
print(f"\nJoin ratio / total clients: {self.join_ratio} / {self.num_clients}")
print("Finished creating server and clients.")
# self.load_model()
self.Budget = []
self.client_models = [c.model_c for c in self.clients]
train_samples = 0
for client in self.clients:
train_samples += client.train_samples
p0 = [client.train_samples / train_samples for client in self.clients]
for c in self.clients:
c.p0 = p0
def train(self):
for i in range(self.global_rounds+1):
s_t = time.time()
self.selected_clients = self.select_clients()
self.send_models()
if i%self.eval_gap == 0:
print(f"\n-------------Round number: {i}-------------")
print("\nEvaluate personalized models")
self.evaluate()
for client in self.clients:
client.train(i)
# threads = [Thread(target=client.train)
# for client in self.clients]
# [t.start() for t in threads]
# [t.join() for t in threads]
if self.dlg_eval and i%self.dlg_gap == 0:
self.call_dlg(i)
self.Budget.append(time.time() - s_t)
print('-'*50, self.Budget[-1])
if self.auto_break and self.check_done(acc_lss=[self.rs_test_acc], top_cnt=self.top_cnt):
break
print("\nBest accuracy.")
# self.print_(max(self.rs_test_acc), max(
# self.rs_train_acc), min(self.rs_train_loss))
print(max(self.rs_test_acc))
print("\nAverage time cost per round.")
print(sum(self.Budget[1:])/len(self.Budget[1:]))
self.save_results()
if self.num_new_clients > 0:
self.eval_new_clients = True
self.set_new_clients(clientAPPLE)
print(f"\n-------------Fine tuning round-------------")
print("\nEvaluate new clients")
self.evaluate()
self.args.num_clients = self.num_clients
def send_models(self):
assert (len(self.clients) > 0)
self.client_models = [c.model_c for c in self.clients]
for client in self.clients:
start_time = time.time()
client.set_models(self.client_models)
client.send_time_cost['num_rounds'] += 1
client.send_time_cost['total_cost'] += 2 * (time.time() - start_time)
def call_dlg(self, R):
# items = []
cnt = 0
psnr_val = 0
for cid, client_model_server in zip(range(self.num_clients), self.client_models):
client_model = self.clients[cid].model
client_model.eval()
origin_grad = []
for gp, pp in zip(client_model_server.parameters(), client_model.parameters()):
origin_grad.append(gp.data - pp.data)
target_inputs = []
trainloader = self.clients[cid].load_train_data()
with torch.no_grad():
for i, (x, y) in enumerate(trainloader):
if i >= self.batch_num_per_client:
break
if type(x) == type([]):
x[0] = x[0].to(self.device)
else:
x = x.to(self.device)
y = y.to(self.device)
output = client_model(x)
target_inputs.append((x, output))
d = DLG(client_model, origin_grad, target_inputs)
if d is not None:
psnr_val += d
cnt += 1
# items.append((client_model, origin_grad, target_inputs))
if cnt > 0:
print('PSNR value is {:.2f} dB'.format(psnr_val / cnt))
else:
print('PSNR error')
# self.save_item(items, f'DLG_{R}')
def set_new_clients(self, clientObj):
self.args.num_clients = self.num_clients + self.num_new_clients
for i in range(self.num_clients, self.num_clients + self.num_new_clients):
train_data = read_client_data(self.dataset, i, is_train=True)
test_data = read_client_data(self.dataset, i, is_train=False)
client = clientObj(self.args,
id=i,
train_samples=len(train_data),
test_samples=len(test_data),
train_slow=False,
send_slow=False)
self.new_clients.append(client)