kisejin's picture
Upload 486 files
9f61031 verified
# PFLlib: Personalized Federated Learning Algorithm Library
# Copyright (C) 2021 Jianqing Zhang
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
import time
from flcore.clients.clientavgDBE import clientAvgDBE
from flcore.servers.serverbase import Server
from threading import Thread
class FedAvgDBE(Server):
def __init__(self, args, times):
super().__init__(args, times)
# select slow clients
self.set_slow_clients()
# initialization period
self.set_clients(clientAvgDBE)
self.selected_clients = self.clients
for client in self.selected_clients:
client.train() # no DBE
self.uploaded_ids = []
self.uploaded_weights = []
tot_samples = 0
for client in self.selected_clients:
tot_samples += client.train_samples
self.uploaded_ids.append(client.id)
self.uploaded_weights.append(client.train_samples)
for i, w in enumerate(self.uploaded_weights):
self.uploaded_weights[i] = w / tot_samples
global_mean = 0
for cid, w in zip(self.uploaded_ids, self.uploaded_weights):
global_mean += self.clients[cid].running_mean * w
print('>>>> global_mean <<<<', global_mean)
for client in self.selected_clients:
client.global_mean = global_mean.data.clone()
print(f"\nJoin ratio / total clients: {self.join_ratio} / {self.num_clients}")
print("Finished creating server and clients.")
# self.load_model()
self.Budget = []
print('featrue map shape: ', self.clients[0].client_mean.shape)
print('featrue map numel: ', self.clients[0].client_mean.numel())
def train(self):
for i in range(self.global_rounds+1):
s_t = time.time()
self.selected_clients = self.select_clients()
self.send_models()
if i%self.eval_gap == 0:
print(f"\n-------------Round number: {i}-------------")
print("\nEvaluate model")
self.evaluate()
for client in self.selected_clients:
client.train()
# threads = [Thread(target=client.train)
# for client in self.selected_clients]
# [t.start() for t in threads]
# [t.join() for t in threads]
self.receive_models()
self.aggregate_parameters()
self.Budget.append(time.time() - s_t)
print('-'*25, 'time cost', '-'*25, self.Budget[-1])
if self.auto_break and self.check_done(acc_lss=[self.rs_test_acc], top_cnt=self.top_cnt):
break
print("\nBest accuracy.")
print(max(self.rs_test_acc))
print("\nAverage time cost per round.")
print(sum(self.Budget[1:])/len(self.Budget[1:]))
self.save_results()
self.save_global_model()