|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import copy |
|
import torch |
|
import time |
|
from flcore.clients.clientcp import * |
|
from flcore.servers.serverbase import Server |
|
from utils.data_utils import read_client_data |
|
from threading import Thread |
|
|
|
|
|
class FedCP(Server): |
|
def __init__(self, args, times): |
|
super().__init__(args, times) |
|
|
|
in_dim = list(args.model.head.parameters())[0].shape[1] |
|
cs = ConditionalSelection(in_dim, in_dim).to(args.device) |
|
|
|
|
|
self.set_slow_clients() |
|
for i, train_slow, send_slow in zip(range(self.num_clients), self.train_slow_clients, self.send_slow_clients): |
|
train_data = read_client_data(self.dataset, i, is_train=True) |
|
test_data = read_client_data(self.dataset, i, is_train=False) |
|
client = clientCP(self.args, |
|
id=i, |
|
train_samples=len(train_data), |
|
test_samples=len(test_data), |
|
train_slow=train_slow, |
|
send_slow=send_slow, |
|
ConditionalSelection=cs) |
|
self.clients.append(client) |
|
|
|
print(f"\nJoin ratio / total clients: {self.join_ratio} / {self.num_clients}") |
|
print("Finished creating server and clients.") |
|
|
|
|
|
self.Budget = [] |
|
self.head = None |
|
self.cs = None |
|
|
|
|
|
def send_models(self): |
|
assert (len(self.clients) > 0) |
|
|
|
for client in self.clients: |
|
client.set_parameters(self.global_modules) |
|
|
|
def add_parameters(self, w, client_model): |
|
for server_param, client_param in zip(self.global_modules.parameters(), client_model.parameters()): |
|
server_param.data += client_param.data.clone() * w |
|
|
|
def aggregate_parameters(self): |
|
assert (len(self.uploaded_models) > 0) |
|
|
|
self.global_modules = copy.deepcopy(self.uploaded_models[0]) |
|
for param in self.global_modules.parameters(): |
|
param.data = torch.zeros_like(param.data) |
|
|
|
for w, client_model in zip(self.uploaded_weights, self.uploaded_models): |
|
self.add_parameters(w, client_model) |
|
|
|
def evaluate(self, acc=None): |
|
stats = self.test_metrics() |
|
|
|
test_acc = sum(stats[2])*1.0 / sum(stats[1]) |
|
test_auc = sum(stats[3])*1.0 / sum(stats[1]) |
|
|
|
if acc == None: |
|
self.rs_test_acc.append(test_acc) |
|
else: |
|
acc.append(test_acc) |
|
|
|
print("Averaged Test Accurancy: {:.4f}".format(test_acc)) |
|
print("Averaged Test AUC: {:.4f}".format(test_auc)) |
|
|
|
|
|
def train(self): |
|
for i in range(self.global_rounds+1): |
|
s_t = time.time() |
|
self.selected_clients = self.select_clients() |
|
|
|
if i%self.eval_gap == 0: |
|
print(f"\n-------------Round number: {i}-------------") |
|
print("\nEvaluate before local training") |
|
self.evaluate() |
|
|
|
for client in self.selected_clients: |
|
client.train_cs_model() |
|
client.generate_upload_head() |
|
|
|
self.receive_models() |
|
self.aggregate_parameters() |
|
self.send_models() |
|
self.global_head() |
|
self.global_cs() |
|
|
|
self.Budget.append(time.time() - s_t) |
|
print('-'*50, self.Budget[-1]) |
|
|
|
print("\nBest global accuracy.") |
|
print(max(self.rs_test_acc)) |
|
print("\nAverage time cost per round.") |
|
print(sum(self.Budget[1:])/len(self.Budget[1:])) |
|
|
|
|
|
def receive_models(self): |
|
assert (len(self.selected_clients) > 0) |
|
|
|
active_train_samples = 0 |
|
for client in self.selected_clients: |
|
active_train_samples += client.train_samples |
|
|
|
self.uploaded_weights = [] |
|
self.uploaded_ids = [] |
|
self.uploaded_models = [] |
|
for client in self.selected_clients: |
|
self.uploaded_weights.append(client.train_samples / active_train_samples) |
|
self.uploaded_ids.append(client.id) |
|
self.uploaded_models.append(client.model.model.base) |
|
|
|
def global_head(self): |
|
self.uploaded_model_gs = [] |
|
for client in self.selected_clients: |
|
self.uploaded_model_gs.append(client.model.head_g) |
|
|
|
self.head = copy.deepcopy(self.uploaded_model_gs[0]) |
|
for param in self.head.parameters(): |
|
param.data = torch.zeros_like(param.data) |
|
|
|
for w, client_model in zip(self.uploaded_weights, self.uploaded_model_gs): |
|
self.add_head(w, client_model) |
|
|
|
for client in self.selected_clients: |
|
client.set_head_g(self.head) |
|
|
|
def add_head(self, w, head): |
|
for server_param, client_param in zip(self.head.parameters(), head.parameters()): |
|
server_param.data += client_param.data.clone() * w |
|
|
|
def global_cs(self): |
|
self.uploaded_model_gs = [] |
|
for client in self.selected_clients: |
|
self.uploaded_model_gs.append(client.model.gate.cs) |
|
|
|
self.cs = copy.deepcopy(self.uploaded_model_gs[0]) |
|
for param in self.cs.parameters(): |
|
param.data = torch.zeros_like(param.data) |
|
|
|
for w, client_model in zip(self.uploaded_weights, self.uploaded_model_gs): |
|
self.add_cs(w, client_model) |
|
|
|
for client in self.selected_clients: |
|
client.set_cs(self.cs) |
|
|
|
def add_cs(self, w, cs): |
|
for server_param, client_param in zip(self.cs.parameters(), cs.parameters()): |
|
server_param.data += client_param.data.clone() * w |
|
|
|
|
|
class ConditionalSelection(nn.Module): |
|
def __init__(self, in_dim, h_dim): |
|
super(ConditionalSelection, self).__init__() |
|
|
|
self.fc = nn.Sequential( |
|
nn.Linear(in_dim, h_dim*2), |
|
nn.LayerNorm([h_dim*2]), |
|
nn.ReLU(), |
|
) |
|
|
|
def forward(self, x, tau=1, hard=False): |
|
shape = x.shape |
|
x = self.fc(x) |
|
x = x.view(shape[0], 2, -1) |
|
x = F.gumbel_softmax(x, dim=1, tau=tau, hard=hard) |
|
return x[:, 0, :], x[:, 1, :] |
|
|