kisejin's picture
Upload 486 files
9f61031 verified
# PFLlib: Personalized Federated Learning Algorithm Library
# Copyright (C) 2021 Jianqing Zhang
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
import copy
import torch
import time
from flcore.clients.clientcp import *
from flcore.servers.serverbase import Server
from utils.data_utils import read_client_data
from threading import Thread
class FedCP(Server):
def __init__(self, args, times):
super().__init__(args, times)
in_dim = list(args.model.head.parameters())[0].shape[1]
cs = ConditionalSelection(in_dim, in_dim).to(args.device)
# select slow clients
self.set_slow_clients()
for i, train_slow, send_slow in zip(range(self.num_clients), self.train_slow_clients, self.send_slow_clients):
train_data = read_client_data(self.dataset, i, is_train=True)
test_data = read_client_data(self.dataset, i, is_train=False)
client = clientCP(self.args,
id=i,
train_samples=len(train_data),
test_samples=len(test_data),
train_slow=train_slow,
send_slow=send_slow,
ConditionalSelection=cs)
self.clients.append(client)
print(f"\nJoin ratio / total clients: {self.join_ratio} / {self.num_clients}")
print("Finished creating server and clients.")
# self.load_model()
self.Budget = []
self.head = None
self.cs = None
def send_models(self):
assert (len(self.clients) > 0)
for client in self.clients:
client.set_parameters(self.global_modules)
def add_parameters(self, w, client_model):
for server_param, client_param in zip(self.global_modules.parameters(), client_model.parameters()):
server_param.data += client_param.data.clone() * w
def aggregate_parameters(self):
assert (len(self.uploaded_models) > 0)
self.global_modules = copy.deepcopy(self.uploaded_models[0])
for param in self.global_modules.parameters():
param.data = torch.zeros_like(param.data)
for w, client_model in zip(self.uploaded_weights, self.uploaded_models):
self.add_parameters(w, client_model)
def evaluate(self, acc=None):
stats = self.test_metrics()
test_acc = sum(stats[2])*1.0 / sum(stats[1])
test_auc = sum(stats[3])*1.0 / sum(stats[1])
if acc == None:
self.rs_test_acc.append(test_acc)
else:
acc.append(test_acc)
print("Averaged Test Accurancy: {:.4f}".format(test_acc))
print("Averaged Test AUC: {:.4f}".format(test_auc))
def train(self):
for i in range(self.global_rounds+1):
s_t = time.time()
self.selected_clients = self.select_clients()
if i%self.eval_gap == 0:
print(f"\n-------------Round number: {i}-------------")
print("\nEvaluate before local training")
self.evaluate()
for client in self.selected_clients:
client.train_cs_model()
client.generate_upload_head()
self.receive_models()
self.aggregate_parameters()
self.send_models()
self.global_head()
self.global_cs()
self.Budget.append(time.time() - s_t)
print('-'*50, self.Budget[-1])
print("\nBest global accuracy.")
print(max(self.rs_test_acc))
print("\nAverage time cost per round.")
print(sum(self.Budget[1:])/len(self.Budget[1:]))
def receive_models(self):
assert (len(self.selected_clients) > 0)
active_train_samples = 0
for client in self.selected_clients:
active_train_samples += client.train_samples
self.uploaded_weights = []
self.uploaded_ids = []
self.uploaded_models = []
for client in self.selected_clients:
self.uploaded_weights.append(client.train_samples / active_train_samples)
self.uploaded_ids.append(client.id)
self.uploaded_models.append(client.model.model.base)
def global_head(self):
self.uploaded_model_gs = []
for client in self.selected_clients:
self.uploaded_model_gs.append(client.model.head_g)
self.head = copy.deepcopy(self.uploaded_model_gs[0])
for param in self.head.parameters():
param.data = torch.zeros_like(param.data)
for w, client_model in zip(self.uploaded_weights, self.uploaded_model_gs):
self.add_head(w, client_model)
for client in self.selected_clients:
client.set_head_g(self.head)
def add_head(self, w, head):
for server_param, client_param in zip(self.head.parameters(), head.parameters()):
server_param.data += client_param.data.clone() * w
def global_cs(self):
self.uploaded_model_gs = []
for client in self.selected_clients:
self.uploaded_model_gs.append(client.model.gate.cs)
self.cs = copy.deepcopy(self.uploaded_model_gs[0])
for param in self.cs.parameters():
param.data = torch.zeros_like(param.data)
for w, client_model in zip(self.uploaded_weights, self.uploaded_model_gs):
self.add_cs(w, client_model)
for client in self.selected_clients:
client.set_cs(self.cs)
def add_cs(self, w, cs):
for server_param, client_param in zip(self.cs.parameters(), cs.parameters()):
server_param.data += client_param.data.clone() * w
class ConditionalSelection(nn.Module):
def __init__(self, in_dim, h_dim):
super(ConditionalSelection, self).__init__()
self.fc = nn.Sequential(
nn.Linear(in_dim, h_dim*2),
nn.LayerNorm([h_dim*2]),
nn.ReLU(),
)
def forward(self, x, tau=1, hard=False):
shape = x.shape
x = self.fc(x)
x = x.view(shape[0], 2, -1)
x = F.gumbel_softmax(x, dim=1, tau=tau, hard=hard)
return x[:, 0, :], x[:, 1, :]