kisejin's picture
Upload 486 files
9f61031 verified
# PFLlib: Personalized Federated Learning Algorithm Library
# Copyright (C) 2021 Jianqing Zhang
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
import time
from flcore.clients.clientdistill import clientDistill
from flcore.servers.serverbase import Server
from threading import Thread
from collections import defaultdict
class FedDistill(Server):
def __init__(self, args, times):
super().__init__(args, times)
# select slow clients
self.set_slow_clients()
self.set_clients(clientDistill)
print(f"\nJoin ratio / total clients: {self.join_ratio} / {self.num_clients}")
print("Finished creating server and clients.")
# self.load_model()
self.Budget = []
self.num_classes = args.num_classes
self.global_logits = [None for _ in range(args.num_classes)]
def train(self):
for i in range(self.global_rounds+1):
s_t = time.time()
self.selected_clients = self.select_clients()
if i%self.eval_gap == 0:
print(f"\n-------------Round number: {i}-------------")
print("\nEvaluate personalized models")
self.evaluate()
for client in self.selected_clients:
client.train()
# threads = [Thread(target=client.train)
# for client in self.selected_clients]
# [t.start() for t in threads]
# [t.join() for t in threads]
self.receive_logits()
self.global_logits = logit_aggregation(self.uploaded_logits)
self.send_logits()
self.Budget.append(time.time() - s_t)
print('-'*50, self.Budget[-1])
if self.auto_break and self.check_done(acc_lss=[self.rs_test_acc], top_cnt=self.top_cnt):
break
print("\nBest accuracy.")
# self.print_(max(self.rs_test_acc), max(
# self.rs_train_acc), min(self.rs_train_loss))
print(max(self.rs_test_acc))
print(sum(self.Budget[1:])/len(self.Budget[1:]))
self.save_results()
def send_logits(self):
assert (len(self.clients) > 0)
for client in self.clients:
start_time = time.time()
client.set_logits(self.global_logits)
client.send_time_cost['num_rounds'] += 1
client.send_time_cost['total_cost'] += 2 * (time.time() - start_time)
def receive_logits(self):
assert (len(self.selected_clients) > 0)
self.uploaded_ids = []
self.uploaded_logits = []
for client in self.selected_clients:
self.uploaded_ids.append(client.id)
self.uploaded_logits.append(client.logits)
# https://github.com/yuetan031/fedlogit/blob/main/lib/utils.py#L221
def logit_aggregation(local_logits_list):
agg_logits_label = defaultdict(list)
for local_logits in local_logits_list:
for label in local_logits.keys():
agg_logits_label[label].append(local_logits[label])
for [label, logit_list] in agg_logits_label.items():
if len(logit_list) > 1:
logit = 0 * logit_list[0].data
for i in logit_list:
logit += i.data
agg_logits_label[label] = logit / len(logit_list)
else:
agg_logits_label[label] = logit_list[0].data
return agg_logits_label