kisejin's picture
Upload 486 files
9f61031 verified
# PFLlib: Personalized Federated Learning Algorithm Library
# Copyright (C) 2021 Jianqing Zhang
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
import numpy as np
import time
from flcore.clients.clientditto import clientDitto
from flcore.servers.serverbase import Server
from threading import Thread
class Ditto(Server):
def __init__(self, args, times):
super().__init__(args, times)
# select slow clients
self.set_slow_clients()
self.set_clients(clientDitto)
print(f"\nJoin ratio / total clients: {self.join_ratio} / {self.num_clients}")
print("Finished creating server and clients.")
# self.load_model()
self.Budget = []
def train(self):
for i in range(self.global_rounds+1):
s_t = time.time()
self.selected_clients = self.select_clients()
self.send_models()
if i%self.eval_gap == 0:
print(f"\n-------------Round number: {i}-------------")
print("\nEvaluate global models")
self.evaluate()
if i%self.eval_gap == 0:
print("\nEvaluate personalized models")
self.evaluate_personalized()
for client in self.selected_clients:
client.ptrain()
client.train()
# threads = [Thread(target=client.train)
# for client in self.selected_clients]
# [t.start() for t in threads]
# [t.join() for t in threads]
self.receive_models()
if self.dlg_eval and i%self.dlg_gap == 0:
self.call_dlg(i)
self.aggregate_parameters()
self.Budget.append(time.time() - s_t)
print('-'*25, 'time cost', '-'*25, self.Budget[-1])
if self.auto_break and self.check_done(acc_lss=[self.rs_test_acc], top_cnt=self.top_cnt):
break
print("\nBest accuracy.")
# self.print_(max(self.rs_test_acc), max(
# self.rs_train_acc), min(self.rs_train_loss))
print(max(self.rs_test_acc))
print("\nAverage time cost per round.")
print(sum(self.Budget[1:])/len(self.Budget[1:]))
self.save_results()
self.save_global_model()
if self.num_new_clients > 0:
self.eval_new_clients = True
self.set_new_clients(clientDitto)
print(f"\n-------------Fine tuning round-------------")
print("\nEvaluate new clients")
self.evaluate()
def test_metrics_personalized(self):
if self.eval_new_clients and self.num_new_clients > 0:
self.fine_tuning_new_clients()
return self.test_metrics_new_clients()
num_samples = []
tot_correct = []
tot_auc = []
for c in self.clients:
ct, ns, auc = c.test_metrics_personalized()
tot_correct.append(ct*1.0)
tot_auc.append(auc*ns)
num_samples.append(ns)
ids = [c.id for c in self.clients]
return ids, num_samples, tot_correct, tot_auc
def train_metrics_personalized(self):
if self.eval_new_clients and self.num_new_clients > 0:
return [0], [1], [0]
num_samples = []
losses = []
for c in self.clients:
cl, ns = c.train_metrics_personalized()
num_samples.append(ns)
losses.append(cl*1.0)
ids = [c.id for c in self.clients]
return ids, num_samples, losses
# evaluate selected clients
def evaluate_personalized(self, acc=None, loss=None):
stats = self.test_metrics_personalized()
stats_train = self.train_metrics_personalized()
test_acc = sum(stats[2])*1.0 / sum(stats[1])
test_auc = sum(stats[3])*1.0 / sum(stats[1])
train_loss = sum(stats_train[2])*1.0 / sum(stats_train[1])
accs = [a / n for a, n in zip(stats[2], stats[1])]
aucs = [a / n for a, n in zip(stats[3], stats[1])]
if acc == None:
self.rs_test_acc.append(test_acc)
else:
acc.append(test_acc)
if loss == None:
self.rs_train_loss.append(train_loss)
else:
loss.append(train_loss)
print("Averaged Train Loss: {:.4f}".format(train_loss))
print("Averaged Test Accurancy: {:.4f}".format(test_acc))
print("Averaged Test AUC: {:.4f}".format(test_auc))
# self.print_(test_acc, train_acc, train_loss)
print("Std Test Accurancy: {:.4f}".format(np.std(accs)))
print("Std Test AUC: {:.4f}".format(np.std(aucs)))