|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import copy |
|
import time |
|
import torch |
|
from flcore.clients.clientdyn import clientDyn |
|
from flcore.servers.serverbase import Server |
|
from threading import Thread |
|
|
|
|
|
class FedDyn(Server): |
|
def __init__(self, args, times): |
|
super().__init__(args, times) |
|
|
|
|
|
self.set_slow_clients() |
|
self.set_clients(clientDyn) |
|
|
|
print(f"\nJoin ratio / total clients: {self.join_ratio} / {self.num_clients}") |
|
print("Finished creating server and clients.") |
|
|
|
|
|
self.Budget = [] |
|
|
|
self.alpha = args.alpha |
|
|
|
self.server_state = copy.deepcopy(args.model) |
|
for param in self.server_state.parameters(): |
|
param.data = torch.zeros_like(param.data) |
|
|
|
|
|
def train(self): |
|
for i in range(self.global_rounds+1): |
|
s_t = time.time() |
|
self.selected_clients = self.select_clients() |
|
self.send_models() |
|
|
|
if i%self.eval_gap == 0: |
|
print(f"\n-------------Round number: {i}-------------") |
|
print("\nEvaluate global model") |
|
self.evaluate() |
|
|
|
for client in self.selected_clients: |
|
client.train() |
|
|
|
|
|
|
|
|
|
|
|
|
|
self.receive_models() |
|
if self.dlg_eval and i%self.dlg_gap == 0: |
|
self.call_dlg(i) |
|
self.update_server_state() |
|
self.aggregate_parameters() |
|
|
|
self.Budget.append(time.time() - s_t) |
|
print('-'*50, self.Budget[-1]) |
|
|
|
if self.auto_break and self.check_done(acc_lss=[self.rs_test_acc], top_cnt=self.top_cnt): |
|
break |
|
|
|
print("\nBest accuracy.") |
|
|
|
|
|
print(max(self.rs_test_acc)) |
|
print("\nBest local accuracy.") |
|
print("\nAveraged time per iteration.") |
|
print(sum(self.Budget[1:])/len(self.Budget[1:])) |
|
|
|
self.save_results() |
|
self.save_global_model() |
|
|
|
if self.num_new_clients > 0: |
|
self.eval_new_clients = True |
|
self.set_new_clients(clientDyn) |
|
print(f"\n-------------Fine tuning round-------------") |
|
print("\nEvaluate new clients") |
|
self.evaluate() |
|
|
|
def add_parameters(self, client_model): |
|
for server_param, client_param in zip(self.global_model.parameters(), client_model.parameters()): |
|
server_param.data += client_param.data.clone() / self.num_join_clients |
|
|
|
def aggregate_parameters(self): |
|
assert (len(self.uploaded_models) > 0) |
|
|
|
self.global_model = copy.deepcopy(self.uploaded_models[0]) |
|
for param in self.global_model.parameters(): |
|
param.data = torch.zeros_like(param.data) |
|
|
|
for client_model in self.uploaded_models: |
|
self.add_parameters(client_model) |
|
|
|
for server_param, state_param in zip(self.global_model.parameters(), self.server_state.parameters()): |
|
server_param.data -= (1/self.alpha) * state_param |
|
|
|
def update_server_state(self): |
|
assert (len(self.uploaded_models) > 0) |
|
|
|
model_delta = copy.deepcopy(self.uploaded_models[0]) |
|
for param in model_delta.parameters(): |
|
param.data = torch.zeros_like(param.data) |
|
|
|
for client_model in self.uploaded_models: |
|
for server_param, client_param, delta_param in zip(self.global_model.parameters(), client_model.parameters(), model_delta.parameters()): |
|
delta_param.data += (client_param - server_param) / self.num_clients |
|
|
|
for state_param, delta_param in zip(self.server_state.parameters(), model_delta.parameters()): |
|
state_param.data -= self.alpha * delta_param |
|
|