kisejin's picture
Upload 486 files
9f61031 verified
# PFLlib: Personalized Federated Learning Algorithm Library
# Copyright (C) 2021 Jianqing Zhang
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
import copy
import random
import time
import torch
import torch.nn as nn
import torch.nn.functional as F
from flcore.clients.clientgc import clientGC
from flcore.servers.serverbase import Server
from threading import Thread
from collections import defaultdict
class FedGC(Server):
def __init__(self, args, times):
super().__init__(args, times)
self.global_model = copy.deepcopy(args.model.base)
# select slow clients
self.set_slow_clients()
self.set_clients(clientGC)
print(f"\nJoin ratio / total clients: {self.join_ratio} / {self.num_clients}")
print("Finished creating server and clients.")
# self.load_model()
self.Budget = []
self.server_learning_rate = args.local_learning_rate * args.lamda
self.client_heads = [copy.deepcopy(c.model.head) for c in self.clients]
self.opt_client_heads = [torch.optim.SGD(h.parameters(), lr=self.server_learning_rate)
for h in self.client_heads]
self.classes_indexs = [copy.deepcopy(c.classes_index) for c in self.clients]
self.client_inlude_cla = defaultdict(list)
for cid, (head, classes_index) in enumerate(zip(self.client_heads, self.classes_indexs)):
for idx, h in enumerate(head.weight.data):
cla = classes_index[idx].item()
self.client_inlude_cla[cla].append(cid)
self.client_exlude_cla = defaultdict(list)
for cla in range(self.num_classes):
for cid in range(self.num_clients):
if cid not in self.client_inlude_cla[cla]:
self.client_exlude_cla[cla].append(cid)
print('client_inlude_cla', self.client_inlude_cla)
print('client_exlude_cla', self.client_exlude_cla)
self.CEloss = nn.CrossEntropyLoss()
self.zero_tensor = torch.tensor(0, device=self.device)
def train(self):
for i in range(self.global_rounds+1):
s_t = time.time()
self.selected_clients = self.select_clients()
self.send_models()
if i%self.eval_gap == 0:
print(f"\n-------------Round number: {i}-------------")
print("\nEvaluate global model")
self.evaluate()
for client in self.selected_clients:
client.train()
# threads = [Thread(target=client.train)
# for client in self.selected_clients]
# [t.start() for t in threads]
# [t.join() for t in threads]
self.receive_models()
if self.dlg_eval and i%self.dlg_gap == 0:
self.call_dlg(i)
self.aggregate_parameters()
self.reg_train()
self.Budget.append(time.time() - s_t)
print('-'*25, 'time cost', '-'*25, self.Budget[-1])
if self.auto_break and self.check_done(acc_lss=[self.rs_test_acc], top_cnt=self.top_cnt):
break
print("\nBest accuracy.")
# self.print_(max(self.rs_test_acc), max(
# self.rs_train_acc), min(self.rs_train_loss))
print(max(self.rs_test_acc))
print("\nAverage time cost per round.")
print(sum(self.Budget[1:])/len(self.Budget[1:]))
self.save_results()
self.save_global_model()
if self.num_new_clients > 0:
self.eval_new_clients = True
self.set_new_clients(clientGC)
print(f"\n-------------Fine tuning round-------------")
print("\nEvaluate new clients")
self.evaluate()
def send_models(self):
assert (len(self.clients) > 0)
for client in self.clients:
start_time = time.time()
client.set_base(self.global_model)
client.set_head(self.client_heads[client.id])
client.send_time_cost['num_rounds'] += 1
client.send_time_cost['total_cost'] += 2 * (time.time() - start_time)
def receive_models(self):
assert (len(self.selected_clients) > 0)
active_clients = random.sample(
self.selected_clients, int((1-self.client_drop_rate) * self.current_num_join_clients))
self.uploaded_ids = []
self.uploaded_weights = []
self.uploaded_models = []
tot_samples = 0
for client in active_clients:
try:
client_time_cost = client.train_time_cost['total_cost'] / client.train_time_cost['num_rounds'] + \
client.send_time_cost['total_cost'] / client.send_time_cost['num_rounds']
except ZeroDivisionError:
client_time_cost = 0
if client_time_cost <= self.time_threthold:
tot_samples += client.train_samples
self.uploaded_ids.append(client.id)
self.uploaded_weights.append(client.train_samples)
self.uploaded_models.append(client.model.base)
self.client_heads[client.id].weight.data = client.model.head.weight.data.clone()
for i, w in enumerate(self.uploaded_weights):
self.uploaded_weights[i] = w / tot_samples
def reg_train(self):
embs = defaultdict(list)
for head, classes_index in zip(self.client_heads, self.classes_indexs):
for idx, h in enumerate(head.weight.data):
cla = classes_index[idx].item()
embs[cla].append(h.data.clone())
embs = agg_func(embs)
Reg = 0
for head, classes_index in zip(self.client_heads, self.classes_indexs):
for idx, h in enumerate(head.weight.data):
cla = classes_index[idx].item()
denominator1 = torch.exp(torch.dot(embs[cla], embs[cla]))
denominator2 = 0
if type(embs[cla]) != type([]):
for cid in self.client_exlude_cla[cla]:
denominator2 += torch.sum(torch.exp(self.client_heads[cid](embs[cla])))
Reg += - torch.log(denominator1 / (denominator1 + denominator2))
for opt in self.opt_client_heads:
opt.zero_grad()
Reg.backward()
for opt in self.opt_client_heads:
opt.step()
print('Server reg:', Reg.item())
def agg_func(protos):
for [label, proto_list] in protos.items():
if len(proto_list) > 1:
proto = 0 * proto_list[0].data
for i in proto_list:
proto += i.data
protos[label] = proto / len(proto_list)
else:
protos[label] = proto_list[0]
return protos