kisejin's picture
Upload 486 files
9f61031 verified
# PFLlib: Personalized Federated Learning Algorithm Library
# Copyright (C) 2021 Jianqing Zhang
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
import time
import torch
import torch.nn as nn
from flcore.clients.clientgh import clientGH
from flcore.servers.serverbase import Server
from threading import Thread
from torch.utils.data import DataLoader
class FedGH(Server):
def __init__(self, args, times):
super().__init__(args, times)
self.global_model = None
# select slow clients
self.set_slow_clients()
self.set_clients(clientGH)
print(f"\nJoin ratio / total clients: {self.join_ratio} / {self.num_clients}")
print("Finished creating server and clients.")
# self.load_model()
self.Budget = []
self.CEloss = nn.CrossEntropyLoss()
self.server_learning_rate = args.server_learning_rate
self.head = self.clients[0].model.head
self.opt_h = torch.optim.SGD(self.head.parameters(), lr=self.server_learning_rate)
def train(self):
for i in range(self.global_rounds+1):
s_t = time.time()
self.selected_clients = self.select_clients()
self.send_models()
if i%self.eval_gap == 0:
print(f"\n-------------Round number: {i}-------------")
print("\nEvaluate personalized models")
self.evaluate()
for client in self.selected_clients:
client.train()
client.collect_protos()
# threads = [Thread(target=client.train)
# for client in self.selected_clients]
# [t.start() for t in threads]
# [t.join() for t in threads]
self.receive_protos()
self.train_head()
self.Budget.append(time.time() - s_t)
print('-'*25, 'time cost', '-'*25, self.Budget[-1])
if self.auto_break and self.check_done(acc_lss=[self.rs_test_acc], top_cnt=self.top_cnt):
break
print("\nBest accuracy.")
# self.print_(max(self.rs_test_acc), max(
# self.rs_train_acc), min(self.rs_train_loss))
print(max(self.rs_test_acc))
print("\nAverage time cost per round.")
print(sum(self.Budget[1:])/len(self.Budget[1:]))
self.save_results()
def send_models(self):
assert (len(self.clients) > 0)
for client in self.clients:
start_time = time.time()
client.set_parameters(self.head)
client.send_time_cost['num_rounds'] += 1
client.send_time_cost['total_cost'] += 2 * (time.time() - start_time)
def receive_protos(self):
assert (len(self.selected_clients) > 0)
self.uploaded_ids = []
self.uploaded_protos = []
for client in self.selected_clients:
self.uploaded_ids.append(client.id)
for cc in client.protos.keys():
y = torch.tensor(cc, dtype=torch.int64, device=self.device)
self.uploaded_protos.append((client.protos[cc], y))
def train_head(self):
proto_loader = DataLoader(self.uploaded_protos, self.batch_size, drop_last=False, shuffle=True)
for p, y in proto_loader:
out = self.head(p)
loss = self.CEloss(out, y)
self.opt_h.zero_grad()
loss.backward()
self.opt_h.step()