kisejin's picture
Upload 486 files
9f61031 verified
# PFLlib: Personalized Federated Learning Algorithm Library
# Copyright (C) 2021 Jianqing Zhang
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
import copy
import random
import time
import numpy as np
from flcore.clients.clientkd import clientKD
from flcore.servers.serverbase import Server
from threading import Thread
class FedKD(Server):
def __init__(self, args, times):
super().__init__(args, times)
# select slow clients
self.set_slow_clients()
self.set_clients(clientKD)
print(f"\nJoin ratio / total clients: {self.join_ratio} / {self.num_clients}")
print("Finished creating server and clients.")
# self.load_model()
self.Budget = []
self.T_start = args.T_start
self.T_end = args.T_end
self.energy = self.T_start
self.compressed_param = {}
def train(self):
for i in range(self.global_rounds+1):
s_t = time.time()
self.selected_clients = self.select_clients()
self.send_models()
if i%self.eval_gap == 0:
print(f"\n-------------Round number: {i}-------------")
print("\nEvaluate personalized models")
self.evaluate()
for client in self.selected_clients:
client.train()
# threads = [Thread(target=client.train)
# for client in self.selected_clients]
# [t.start() for t in threads]
# [t.join() for t in threads]
self.receive_models()
if self.dlg_eval and i%self.dlg_gap == 0:
self.call_dlg(i)
self.aggregate_parameters()
self.decomposition()
self.Budget.append(time.time() - s_t)
print('-'*25, 'time cost', '-'*25, self.Budget[-1])
if self.auto_break and self.check_done(acc_lss=[self.rs_test_acc], top_cnt=self.top_cnt):
break
self.energy = self.T_start + ((1 + i) / self.global_rounds) * (self.T_end - self.T_start)
print("\nBest accuracy.")
# self.print_(max(self.rs_test_acc), max(
# self.rs_train_acc), min(self.rs_train_loss))
print(max(self.rs_test_acc))
print("\nAverage time cost per round.")
print(sum(self.Budget[1:])/len(self.Budget[1:]))
self.save_results()
self.save_global_model()
if self.num_new_clients > 0:
self.eval_new_clients = True
self.set_new_clients(clientKD)
print(f"\n-------------Fine tuning round-------------")
print("\nEvaluate new clients")
self.evaluate()
def send_models(self):
assert (len(self.clients) > 0)
for client in self.clients:
start_time = time.time()
client.set_parameters(self.compressed_param, self.energy)
client.send_time_cost['num_rounds'] += 1
client.send_time_cost['total_cost'] += 2 * (time.time() - start_time)
def receive_models(self):
assert (len(self.selected_clients) > 0)
active_clients = random.sample(
self.selected_clients, int((1-self.client_drop_rate) * self.current_num_join_clients))
self.uploaded_ids = []
self.uploaded_models = []
for client in active_clients:
try:
client_time_cost = client.train_time_cost['total_cost'] / client.train_time_cost['num_rounds'] + \
client.send_time_cost['total_cost'] / client.send_time_cost['num_rounds']
except ZeroDivisionError:
client_time_cost = 0
if client_time_cost <= self.time_threthold:
self.uploaded_ids.append(client.id)
# recover
for k in client.compressed_param.keys():
if len(client.compressed_param[k]) == 3:
# use np.matmul to support high-dimensional CNN param
client.compressed_param[k] = np.matmul(
client.compressed_param[k][0] * client.compressed_param[k][1][..., None, :],
client.compressed_param[k][2])
self.uploaded_models.append(client.compressed_param)
def aggregate_parameters(self):
assert (len(self.uploaded_models) > 0)
self.global_model = copy.deepcopy(self.uploaded_models[0])
for k in self.global_model.keys():
self.global_model[k] = np.zeros_like(self.global_model[k])
# use 1/len(self.uploaded_models) as the weight for privacy and fairness
for client_model in self.uploaded_models:
self.add_parameters(1/len(self.uploaded_models), client_model)
def add_parameters(self, w, client_model):
for server_k, client_k in zip(self.global_model.keys(), client_model.keys()):
self.global_model[server_k] += client_model[client_k] * w
def decomposition(self):
self.compressed_param = {}
for name, param_cpu in self.global_model.items():
# refer to https://github.com/wuch15/FedKD/blob/main/run.py#L187
if param_cpu.shape[0]>1 and len(param_cpu.shape)>1 and 'embeddings' not in name:
u, sigma, v = np.linalg.svd(param_cpu, full_matrices=False)
# support high-dimensional CNN param
if len(u.shape)==4:
u = np.transpose(u, (2, 3, 0, 1))
sigma = np.transpose(sigma, (2, 0, 1))
v = np.transpose(v, (2, 3, 0, 1))
threshold=0
if np.sum(np.square(sigma))==0:
compressed_param_cpu=param_cpu
else:
for singular_value_num in range(len(sigma)):
if np.sum(np.square(sigma[:singular_value_num]))>self.energy*np.sum(np.square(sigma)):
threshold=singular_value_num
break
u=u[:,:threshold]
sigma=sigma[:threshold]
v=v[:threshold,:]
# support high-dimensional CNN param
if len(u.shape)==4:
u = np.transpose(u, (2, 3, 0, 1))
sigma = np.transpose(sigma, (1, 2, 0))
v = np.transpose(v, (2, 3, 0, 1))
compressed_param_cpu=[u,sigma,v]
elif 'embeddings' not in name:
compressed_param_cpu=param_cpu
self.compressed_param[name] = compressed_param_cpu