|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import copy |
|
import random |
|
import time |
|
import numpy as np |
|
from flcore.clients.clientkd import clientKD |
|
from flcore.servers.serverbase import Server |
|
from threading import Thread |
|
|
|
|
|
class FedKD(Server): |
|
def __init__(self, args, times): |
|
super().__init__(args, times) |
|
|
|
|
|
self.set_slow_clients() |
|
self.set_clients(clientKD) |
|
|
|
print(f"\nJoin ratio / total clients: {self.join_ratio} / {self.num_clients}") |
|
print("Finished creating server and clients.") |
|
|
|
|
|
self.Budget = [] |
|
self.T_start = args.T_start |
|
self.T_end = args.T_end |
|
self.energy = self.T_start |
|
self.compressed_param = {} |
|
|
|
|
|
def train(self): |
|
for i in range(self.global_rounds+1): |
|
s_t = time.time() |
|
self.selected_clients = self.select_clients() |
|
self.send_models() |
|
|
|
if i%self.eval_gap == 0: |
|
print(f"\n-------------Round number: {i}-------------") |
|
print("\nEvaluate personalized models") |
|
self.evaluate() |
|
|
|
for client in self.selected_clients: |
|
client.train() |
|
|
|
|
|
|
|
|
|
|
|
|
|
self.receive_models() |
|
if self.dlg_eval and i%self.dlg_gap == 0: |
|
self.call_dlg(i) |
|
self.aggregate_parameters() |
|
self.decomposition() |
|
|
|
self.Budget.append(time.time() - s_t) |
|
print('-'*25, 'time cost', '-'*25, self.Budget[-1]) |
|
|
|
if self.auto_break and self.check_done(acc_lss=[self.rs_test_acc], top_cnt=self.top_cnt): |
|
break |
|
|
|
self.energy = self.T_start + ((1 + i) / self.global_rounds) * (self.T_end - self.T_start) |
|
|
|
print("\nBest accuracy.") |
|
|
|
|
|
print(max(self.rs_test_acc)) |
|
print("\nAverage time cost per round.") |
|
print(sum(self.Budget[1:])/len(self.Budget[1:])) |
|
|
|
self.save_results() |
|
self.save_global_model() |
|
|
|
if self.num_new_clients > 0: |
|
self.eval_new_clients = True |
|
self.set_new_clients(clientKD) |
|
print(f"\n-------------Fine tuning round-------------") |
|
print("\nEvaluate new clients") |
|
self.evaluate() |
|
|
|
|
|
def send_models(self): |
|
assert (len(self.clients) > 0) |
|
|
|
for client in self.clients: |
|
start_time = time.time() |
|
|
|
client.set_parameters(self.compressed_param, self.energy) |
|
|
|
client.send_time_cost['num_rounds'] += 1 |
|
client.send_time_cost['total_cost'] += 2 * (time.time() - start_time) |
|
|
|
def receive_models(self): |
|
assert (len(self.selected_clients) > 0) |
|
|
|
active_clients = random.sample( |
|
self.selected_clients, int((1-self.client_drop_rate) * self.current_num_join_clients)) |
|
|
|
self.uploaded_ids = [] |
|
self.uploaded_models = [] |
|
for client in active_clients: |
|
try: |
|
client_time_cost = client.train_time_cost['total_cost'] / client.train_time_cost['num_rounds'] + \ |
|
client.send_time_cost['total_cost'] / client.send_time_cost['num_rounds'] |
|
except ZeroDivisionError: |
|
client_time_cost = 0 |
|
if client_time_cost <= self.time_threthold: |
|
self.uploaded_ids.append(client.id) |
|
|
|
for k in client.compressed_param.keys(): |
|
if len(client.compressed_param[k]) == 3: |
|
|
|
client.compressed_param[k] = np.matmul( |
|
client.compressed_param[k][0] * client.compressed_param[k][1][..., None, :], |
|
client.compressed_param[k][2]) |
|
|
|
self.uploaded_models.append(client.compressed_param) |
|
|
|
def aggregate_parameters(self): |
|
assert (len(self.uploaded_models) > 0) |
|
|
|
self.global_model = copy.deepcopy(self.uploaded_models[0]) |
|
for k in self.global_model.keys(): |
|
self.global_model[k] = np.zeros_like(self.global_model[k]) |
|
|
|
|
|
for client_model in self.uploaded_models: |
|
self.add_parameters(1/len(self.uploaded_models), client_model) |
|
|
|
def add_parameters(self, w, client_model): |
|
for server_k, client_k in zip(self.global_model.keys(), client_model.keys()): |
|
self.global_model[server_k] += client_model[client_k] * w |
|
|
|
def decomposition(self): |
|
self.compressed_param = {} |
|
for name, param_cpu in self.global_model.items(): |
|
|
|
if param_cpu.shape[0]>1 and len(param_cpu.shape)>1 and 'embeddings' not in name: |
|
u, sigma, v = np.linalg.svd(param_cpu, full_matrices=False) |
|
|
|
if len(u.shape)==4: |
|
u = np.transpose(u, (2, 3, 0, 1)) |
|
sigma = np.transpose(sigma, (2, 0, 1)) |
|
v = np.transpose(v, (2, 3, 0, 1)) |
|
threshold=0 |
|
if np.sum(np.square(sigma))==0: |
|
compressed_param_cpu=param_cpu |
|
else: |
|
for singular_value_num in range(len(sigma)): |
|
if np.sum(np.square(sigma[:singular_value_num]))>self.energy*np.sum(np.square(sigma)): |
|
threshold=singular_value_num |
|
break |
|
u=u[:,:threshold] |
|
sigma=sigma[:threshold] |
|
v=v[:threshold,:] |
|
|
|
if len(u.shape)==4: |
|
u = np.transpose(u, (2, 3, 0, 1)) |
|
sigma = np.transpose(sigma, (1, 2, 0)) |
|
v = np.transpose(v, (2, 3, 0, 1)) |
|
compressed_param_cpu=[u,sigma,v] |
|
elif 'embeddings' not in name: |
|
compressed_param_cpu=param_cpu |
|
|
|
self.compressed_param[name] = compressed_param_cpu |
|
|