kisejin's picture
Upload 486 files
9f61031 verified
# PFLlib: Personalized Federated Learning Algorithm Library
# Copyright (C) 2021 Jianqing Zhang
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
import time
import numpy as np
import random
import torch
import cvxpy as cvx
import copy
from flcore.clients.clientpac import clientPAC
from flcore.servers.serverbase import Server
from threading import Thread
from collections import defaultdict
class FedPAC(Server):
def __init__(self, args, times):
super().__init__(args, times)
# select slow clients
self.set_slow_clients()
self.set_clients(clientPAC)
print(f"\nJoin ratio / total clients: {self.join_ratio} / {self.num_clients}")
print("Finished creating server and clients.")
# self.load_model()
self.Budget = []
self.num_classes = args.num_classes
self.global_protos = [None for _ in range(args.num_classes)]
self.Vars = []
self.Hs = []
self.uploaded_heads = []
def train(self):
for i in range(self.global_rounds+1):
s_t = time.time()
self.selected_clients = self.select_clients()
self.send_models()
self.Vars = []
self.Hs = []
for client in self.selected_clients:
self.Vars.append(client.V)
self.Hs.append(client.h)
if i%self.eval_gap == 0:
print(f"\n-------------Round number: {i}-------------")
print("\nEvaluate personalized models")
self.evaluate()
for client in self.selected_clients:
client.train()
# threads = [Thread(target=client.train)
# for client in self.selected_clients]
# [t.start() for t in threads]
# [t.join() for t in threads]
self.receive_protos()
self.global_protos = proto_aggregation(self.uploaded_protos)
self.send_protos()
self.receive_models()
self.aggregate_parameters()
self.aggregate_and_send_heads()
self.Budget.append(time.time() - s_t)
print('-'*50, self.Budget[-1])
if self.auto_break and self.check_done(acc_lss=[self.rs_test_acc], top_cnt=self.top_cnt):
break
print("\nBest accuracy.")
# self.print_(max(self.rs_test_acc), max(
# self.rs_train_acc), min(self.rs_train_loss))
print(max(self.rs_test_acc))
print(sum(self.Budget[1:])/len(self.Budget[1:]))
self.save_results()
def send_protos(self):
assert (len(self.clients) > 0)
for client in self.clients:
start_time = time.time()
client.set_protos(self.global_protos)
client.send_time_cost['num_rounds'] += 1
client.send_time_cost['total_cost'] += 2 * (time.time() - start_time)
def receive_protos(self):
assert (len(self.selected_clients) > 0)
self.uploaded_ids = []
self.uploaded_protos = []
for client in self.selected_clients:
self.uploaded_ids.append(client.id)
self.uploaded_protos.append(client.protos)
def evaluate(self, acc=None, loss=None):
stats = self.test_metrics()
# stats_train = self.train_metrics()
test_acc = sum(stats[2])*1.0 / sum(stats[1])
# train_loss = sum(stats_train[2])*1.0 / sum(stats_train[1])
accs = [a / n for a, n in zip(stats[2], stats[1])]
if acc == None:
self.rs_test_acc.append(test_acc)
else:
acc.append(test_acc)
# if loss == None:
# self.rs_train_loss.append(train_loss)
# else:
# loss.append(train_loss)
# print("Averaged Train Loss: {:.4f}".format(train_loss))
print("Averaged Test Accurancy: {:.4f}".format(test_acc))
# self.print_(test_acc, train_acc, train_loss)
print("Std Test Accurancy: {:.4f}".format(np.std(accs)))
def receive_models(self):
assert (len(self.selected_clients) > 0)
active_clients = random.sample(
self.selected_clients, int((1-self.client_drop_rate) * self.current_num_join_clients))
self.uploaded_ids = []
self.uploaded_weights = []
self.uploaded_models = []
self.uploaded_heads = []
tot_samples = 0
for client in active_clients:
try:
client_time_cost = client.train_time_cost['total_cost'] / client.train_time_cost['num_rounds'] + \
client.send_time_cost['total_cost'] / client.send_time_cost['num_rounds']
except ZeroDivisionError:
client_time_cost = 0
if client_time_cost <= self.time_threthold:
tot_samples += client.train_samples
self.uploaded_ids.append(client.id)
self.uploaded_weights.append(client.train_samples)
self.uploaded_models.append(client.model.base)
self.uploaded_heads.append(client.model.head)
for i, w in enumerate(self.uploaded_weights):
self.uploaded_weights[i] = w / tot_samples
def aggregate_and_send_heads(self):
head_weights = solve_quadratic(len(self.uploaded_ids), self.Vars, self.Hs)
for idx, cid in enumerate(self.uploaded_ids):
print('(Client {}) Weights of Classifier Head'.format(cid))
print(head_weights[idx],'\n')
if head_weights[idx] is not None:
new_head = self.add_heads(head_weights[idx])
else:
new_head = self.uploaded_heads[cid]
self.clients[cid].set_head(new_head)
def add_heads(self, weights):
new_head = copy.deepcopy(self.uploaded_heads[0])
for param in new_head.parameters():
param.data.zero_()
for w, head in zip(weights, self.uploaded_heads):
for server_param, client_param in zip(new_head.parameters(), head.parameters()):
server_param.data += client_param.data.clone() * w
return new_head
# https://github.com/yuetan031/fedproto/blob/main/lib/utils.py#L221
def proto_aggregation(local_protos_list):
agg_protos_label = defaultdict(list)
for local_protos in local_protos_list:
for label in local_protos.keys():
agg_protos_label[label].append(local_protos[label])
for [label, proto_list] in agg_protos_label.items():
if len(proto_list) > 1:
proto = 0 * proto_list[0].data
for i in proto_list:
proto += i.data
agg_protos_label[label] = proto / len(proto_list)
else:
agg_protos_label[label] = proto_list[0].data
return agg_protos_label
# https://github.com/JianXu95/FedPAC/blob/main/tools.py#L94
def solve_quadratic(num_users, Vars, Hs):
device = Hs[0][0].device
num_cls = Hs[0].shape[0] # number of classes
d = Hs[0].shape[1] # dimension of feature representation
avg_weight = []
for i in range(num_users):
# ---------------------------------------------------------------------------
# variance ter
v = torch.tensor(Vars, device=device)
# ---------------------------------------------------------------------------
# bias term
h_ref = Hs[i]
dist = torch.zeros((num_users, num_users), device=device)
for j1, j2 in pairwise(tuple(range(num_users))):
h_j1 = Hs[j1]
h_j2 = Hs[j2]
h = torch.zeros((d, d), device=device)
for k in range(num_cls):
h += torch.mm((h_ref[k]-h_j1[k]).reshape(d,1), (h_ref[k]-h_j2[k]).reshape(1,d))
dj12 = torch.trace(h)
dist[j1][j2] = dj12
dist[j2][j1] = dj12
# QP solver
p_matrix = torch.diag(v) + dist
p_matrix = p_matrix.cpu().numpy() # coefficient for QP problem
evals, evecs = torch.linalg.eig(torch.tensor(p_matrix))
# for numerical stablity
p_matrix_new = 0
p_matrix_new = 0
for ii in range(num_users):
if evals[ii].real >= 0.01:
p_matrix_new += evals[ii].real*torch.mm(evecs[:,ii].reshape(num_users,1), evecs[:,ii].reshape(1, num_users))
p_matrix = p_matrix_new.numpy() if not np.all(np.linalg.eigvals(p_matrix)>=0.0) else p_matrix
# solve QP
alpha = 0
eps = 1e-3
if np.all(np.linalg.eigvals(p_matrix)>=0):
alphav = cvx.Variable(num_users)
obj = cvx.Minimize(cvx.quad_form(alphav, p_matrix))
prob = cvx.Problem(obj, [cvx.sum(alphav) == 1.0, alphav >= 0])
prob.solve()
alpha = alphav.value
alpha = [(i)*(i>eps) for i in alpha] # zero-out small weights (<eps)
else:
alpha = None # if no solution for the optimization problem, use local classifier only
avg_weight.append(alpha)
return avg_weight
# https://github.com/JianXu95/FedPAC/blob/main/tools.py#L10
def pairwise(data):
n = len(data)
for i in range(n):
for j in range(i, n):
yield (data[i], data[j])