|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import time |
|
import numpy as np |
|
import random |
|
import torch |
|
import cvxpy as cvx |
|
import copy |
|
from flcore.clients.clientpac import clientPAC |
|
from flcore.servers.serverbase import Server |
|
from threading import Thread |
|
from collections import defaultdict |
|
|
|
|
|
class FedPAC(Server): |
|
def __init__(self, args, times): |
|
super().__init__(args, times) |
|
|
|
|
|
self.set_slow_clients() |
|
self.set_clients(clientPAC) |
|
|
|
print(f"\nJoin ratio / total clients: {self.join_ratio} / {self.num_clients}") |
|
print("Finished creating server and clients.") |
|
|
|
|
|
self.Budget = [] |
|
self.num_classes = args.num_classes |
|
self.global_protos = [None for _ in range(args.num_classes)] |
|
|
|
self.Vars = [] |
|
self.Hs = [] |
|
self.uploaded_heads = [] |
|
|
|
|
|
def train(self): |
|
for i in range(self.global_rounds+1): |
|
s_t = time.time() |
|
self.selected_clients = self.select_clients() |
|
self.send_models() |
|
|
|
self.Vars = [] |
|
self.Hs = [] |
|
for client in self.selected_clients: |
|
self.Vars.append(client.V) |
|
self.Hs.append(client.h) |
|
|
|
if i%self.eval_gap == 0: |
|
print(f"\n-------------Round number: {i}-------------") |
|
print("\nEvaluate personalized models") |
|
self.evaluate() |
|
|
|
for client in self.selected_clients: |
|
client.train() |
|
|
|
|
|
|
|
|
|
|
|
|
|
self.receive_protos() |
|
self.global_protos = proto_aggregation(self.uploaded_protos) |
|
self.send_protos() |
|
|
|
self.receive_models() |
|
self.aggregate_parameters() |
|
|
|
self.aggregate_and_send_heads() |
|
|
|
self.Budget.append(time.time() - s_t) |
|
print('-'*50, self.Budget[-1]) |
|
|
|
if self.auto_break and self.check_done(acc_lss=[self.rs_test_acc], top_cnt=self.top_cnt): |
|
break |
|
|
|
print("\nBest accuracy.") |
|
|
|
|
|
print(max(self.rs_test_acc)) |
|
print(sum(self.Budget[1:])/len(self.Budget[1:])) |
|
|
|
self.save_results() |
|
|
|
|
|
def send_protos(self): |
|
assert (len(self.clients) > 0) |
|
|
|
for client in self.clients: |
|
start_time = time.time() |
|
|
|
client.set_protos(self.global_protos) |
|
|
|
client.send_time_cost['num_rounds'] += 1 |
|
client.send_time_cost['total_cost'] += 2 * (time.time() - start_time) |
|
|
|
def receive_protos(self): |
|
assert (len(self.selected_clients) > 0) |
|
|
|
self.uploaded_ids = [] |
|
self.uploaded_protos = [] |
|
for client in self.selected_clients: |
|
self.uploaded_ids.append(client.id) |
|
self.uploaded_protos.append(client.protos) |
|
|
|
def evaluate(self, acc=None, loss=None): |
|
stats = self.test_metrics() |
|
|
|
|
|
test_acc = sum(stats[2])*1.0 / sum(stats[1]) |
|
|
|
accs = [a / n for a, n in zip(stats[2], stats[1])] |
|
|
|
if acc == None: |
|
self.rs_test_acc.append(test_acc) |
|
else: |
|
acc.append(test_acc) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
print("Averaged Test Accurancy: {:.4f}".format(test_acc)) |
|
|
|
print("Std Test Accurancy: {:.4f}".format(np.std(accs))) |
|
|
|
def receive_models(self): |
|
assert (len(self.selected_clients) > 0) |
|
|
|
active_clients = random.sample( |
|
self.selected_clients, int((1-self.client_drop_rate) * self.current_num_join_clients)) |
|
|
|
self.uploaded_ids = [] |
|
self.uploaded_weights = [] |
|
self.uploaded_models = [] |
|
self.uploaded_heads = [] |
|
tot_samples = 0 |
|
for client in active_clients: |
|
try: |
|
client_time_cost = client.train_time_cost['total_cost'] / client.train_time_cost['num_rounds'] + \ |
|
client.send_time_cost['total_cost'] / client.send_time_cost['num_rounds'] |
|
except ZeroDivisionError: |
|
client_time_cost = 0 |
|
if client_time_cost <= self.time_threthold: |
|
tot_samples += client.train_samples |
|
self.uploaded_ids.append(client.id) |
|
self.uploaded_weights.append(client.train_samples) |
|
self.uploaded_models.append(client.model.base) |
|
self.uploaded_heads.append(client.model.head) |
|
for i, w in enumerate(self.uploaded_weights): |
|
self.uploaded_weights[i] = w / tot_samples |
|
|
|
def aggregate_and_send_heads(self): |
|
head_weights = solve_quadratic(len(self.uploaded_ids), self.Vars, self.Hs) |
|
|
|
for idx, cid in enumerate(self.uploaded_ids): |
|
print('(Client {}) Weights of Classifier Head'.format(cid)) |
|
print(head_weights[idx],'\n') |
|
|
|
if head_weights[idx] is not None: |
|
new_head = self.add_heads(head_weights[idx]) |
|
else: |
|
new_head = self.uploaded_heads[cid] |
|
|
|
self.clients[cid].set_head(new_head) |
|
|
|
def add_heads(self, weights): |
|
new_head = copy.deepcopy(self.uploaded_heads[0]) |
|
for param in new_head.parameters(): |
|
param.data.zero_() |
|
|
|
for w, head in zip(weights, self.uploaded_heads): |
|
for server_param, client_param in zip(new_head.parameters(), head.parameters()): |
|
server_param.data += client_param.data.clone() * w |
|
return new_head |
|
|
|
|
|
|
|
def proto_aggregation(local_protos_list): |
|
agg_protos_label = defaultdict(list) |
|
for local_protos in local_protos_list: |
|
for label in local_protos.keys(): |
|
agg_protos_label[label].append(local_protos[label]) |
|
|
|
for [label, proto_list] in agg_protos_label.items(): |
|
if len(proto_list) > 1: |
|
proto = 0 * proto_list[0].data |
|
for i in proto_list: |
|
proto += i.data |
|
agg_protos_label[label] = proto / len(proto_list) |
|
else: |
|
agg_protos_label[label] = proto_list[0].data |
|
|
|
return agg_protos_label |
|
|
|
|
|
|
|
def solve_quadratic(num_users, Vars, Hs): |
|
device = Hs[0][0].device |
|
num_cls = Hs[0].shape[0] |
|
d = Hs[0].shape[1] |
|
avg_weight = [] |
|
for i in range(num_users): |
|
|
|
|
|
v = torch.tensor(Vars, device=device) |
|
|
|
|
|
h_ref = Hs[i] |
|
dist = torch.zeros((num_users, num_users), device=device) |
|
for j1, j2 in pairwise(tuple(range(num_users))): |
|
h_j1 = Hs[j1] |
|
h_j2 = Hs[j2] |
|
h = torch.zeros((d, d), device=device) |
|
for k in range(num_cls): |
|
h += torch.mm((h_ref[k]-h_j1[k]).reshape(d,1), (h_ref[k]-h_j2[k]).reshape(1,d)) |
|
dj12 = torch.trace(h) |
|
dist[j1][j2] = dj12 |
|
dist[j2][j1] = dj12 |
|
|
|
|
|
p_matrix = torch.diag(v) + dist |
|
p_matrix = p_matrix.cpu().numpy() |
|
evals, evecs = torch.linalg.eig(torch.tensor(p_matrix)) |
|
|
|
|
|
p_matrix_new = 0 |
|
p_matrix_new = 0 |
|
for ii in range(num_users): |
|
if evals[ii].real >= 0.01: |
|
p_matrix_new += evals[ii].real*torch.mm(evecs[:,ii].reshape(num_users,1), evecs[:,ii].reshape(1, num_users)) |
|
p_matrix = p_matrix_new.numpy() if not np.all(np.linalg.eigvals(p_matrix)>=0.0) else p_matrix |
|
|
|
|
|
alpha = 0 |
|
eps = 1e-3 |
|
if np.all(np.linalg.eigvals(p_matrix)>=0): |
|
alphav = cvx.Variable(num_users) |
|
obj = cvx.Minimize(cvx.quad_form(alphav, p_matrix)) |
|
prob = cvx.Problem(obj, [cvx.sum(alphav) == 1.0, alphav >= 0]) |
|
prob.solve() |
|
alpha = alphav.value |
|
alpha = [(i)*(i>eps) for i in alpha] |
|
else: |
|
alpha = None |
|
|
|
avg_weight.append(alpha) |
|
|
|
return avg_weight |
|
|
|
|
|
def pairwise(data): |
|
n = len(data) |
|
for i in range(n): |
|
for j in range(i, n): |
|
yield (data[i], data[j]) |