|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import time |
|
import numpy as np |
|
from flcore.clients.clientpcl import clientPCL |
|
from flcore.servers.serverbase import Server |
|
from threading import Thread |
|
from collections import defaultdict |
|
|
|
|
|
class FedPCL(Server): |
|
def __init__(self, args, times): |
|
super().__init__(args, times) |
|
|
|
|
|
self.set_slow_clients() |
|
self.set_clients(clientPCL) |
|
|
|
print(f"\nJoin ratio / total clients: {self.join_ratio} / {self.num_clients}") |
|
print("Finished creating server and clients.") |
|
|
|
|
|
self.Budget = [] |
|
self.num_classes = args.num_classes |
|
self.global_protos = [None for _ in range(args.num_classes)] |
|
self.client_protos_set = [None for _ in range(self.num_clients)] |
|
|
|
|
|
def train(self): |
|
for i in range(self.global_rounds+1): |
|
s_t = time.time() |
|
self.selected_clients = self.select_clients() |
|
|
|
if i%self.eval_gap == 0: |
|
print(f"\n-------------Round number: {i}-------------") |
|
print("\nEvaluate personalized models") |
|
self.evaluate() |
|
|
|
for client in self.selected_clients: |
|
client.train() |
|
|
|
|
|
|
|
|
|
|
|
|
|
self.receive_protos() |
|
self.global_protos = proto_aggregation(self.uploaded_protos) |
|
self.prototype_padding() |
|
self.send_protos() |
|
|
|
self.Budget.append(time.time() - s_t) |
|
print('-'*50, self.Budget[-1]) |
|
|
|
if self.auto_break and self.check_done(acc_lss=[self.rs_test_acc], top_cnt=self.top_cnt): |
|
break |
|
|
|
print("\nBest accuracy.") |
|
|
|
|
|
print(max(self.rs_test_acc)) |
|
print(sum(self.Budget[1:])/len(self.Budget[1:])) |
|
|
|
self.save_results() |
|
|
|
|
|
def send_protos(self): |
|
assert (len(self.clients) > 0) |
|
|
|
for client in self.clients: |
|
start_time = time.time() |
|
|
|
client.set_protos(self.global_protos, self.client_protos_set) |
|
|
|
client.send_time_cost['num_rounds'] += 1 |
|
client.send_time_cost['total_cost'] += 2 * (time.time() - start_time) |
|
|
|
def receive_protos(self): |
|
assert (len(self.selected_clients) > 0) |
|
|
|
self.uploaded_ids = [] |
|
self.uploaded_protos = [] |
|
for client in self.selected_clients: |
|
self.uploaded_ids.append(client.id) |
|
self.uploaded_protos.append(client.protos) |
|
self.client_protos_set[client.id] = client.protos |
|
|
|
def evaluate(self, acc=None, loss=None): |
|
stats = self.test_metrics() |
|
stats_train = self.train_metrics() |
|
|
|
test_acc = sum(stats[2])*1.0 / sum(stats[1]) |
|
train_loss = sum(stats_train[2])*1.0 / sum(stats_train[1]) |
|
accs = [a / n for a, n in zip(stats[2], stats[1])] |
|
|
|
if acc == None: |
|
self.rs_test_acc.append(test_acc) |
|
else: |
|
acc.append(test_acc) |
|
|
|
if loss == None: |
|
self.rs_train_loss.append(train_loss) |
|
else: |
|
loss.append(train_loss) |
|
|
|
print("Averaged Train Loss: {:.4f}".format(train_loss)) |
|
print("Averaged Test Accurancy: {:.4f}".format(test_acc)) |
|
|
|
print("Std Test Accurancy: {:.4f}".format(np.std(accs))) |
|
|
|
def prototype_padding(self): |
|
for cid in range(self.num_clients): |
|
if self.client_protos_set[cid] is None: |
|
self.client_protos_set[cid] = self.global_protos |
|
else: |
|
for k in range(self.num_classes): |
|
if type(self.client_protos_set[cid][k]) == type([]): |
|
self.client_protos_set[cid][k] = self.global_protos[k] |
|
|
|
|
|
|
|
def proto_aggregation(local_protos_list): |
|
agg_protos_label = defaultdict(list) |
|
for local_protos in local_protos_list: |
|
for label in local_protos.keys(): |
|
agg_protos_label[label].append(local_protos[label]) |
|
|
|
for [label, proto_list] in agg_protos_label.items(): |
|
if len(proto_list) > 1: |
|
proto = 0 * proto_list[0].data |
|
for i in proto_list: |
|
proto += i.data |
|
agg_protos_label[label] = proto / len(proto_list) |
|
else: |
|
agg_protos_label[label] = proto_list[0].data |
|
|
|
return agg_protos_label |