kisejin's picture
Upload 486 files
9f61031 verified
# PFLlib: Personalized Federated Learning Algorithm Library
# Copyright (C) 2021 Jianqing Zhang
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
import time
import numpy as np
from flcore.clients.clientpcl import clientPCL
from flcore.servers.serverbase import Server
from threading import Thread
from collections import defaultdict
class FedPCL(Server):
def __init__(self, args, times):
super().__init__(args, times)
# select slow clients
self.set_slow_clients()
self.set_clients(clientPCL)
print(f"\nJoin ratio / total clients: {self.join_ratio} / {self.num_clients}")
print("Finished creating server and clients.")
# self.load_model()
self.Budget = []
self.num_classes = args.num_classes
self.global_protos = [None for _ in range(args.num_classes)]
self.client_protos_set = [None for _ in range(self.num_clients)]
def train(self):
for i in range(self.global_rounds+1):
s_t = time.time()
self.selected_clients = self.select_clients()
if i%self.eval_gap == 0:
print(f"\n-------------Round number: {i}-------------")
print("\nEvaluate personalized models")
self.evaluate()
for client in self.selected_clients:
client.train()
# threads = [Thread(target=client.train)
# for client in self.selected_clients]
# [t.start() for t in threads]
# [t.join() for t in threads]
self.receive_protos()
self.global_protos = proto_aggregation(self.uploaded_protos)
self.prototype_padding()
self.send_protos()
self.Budget.append(time.time() - s_t)
print('-'*50, self.Budget[-1])
if self.auto_break and self.check_done(acc_lss=[self.rs_test_acc], top_cnt=self.top_cnt):
break
print("\nBest accuracy.")
# self.print_(max(self.rs_test_acc), max(
# self.rs_train_acc), min(self.rs_train_loss))
print(max(self.rs_test_acc))
print(sum(self.Budget[1:])/len(self.Budget[1:]))
self.save_results()
def send_protos(self):
assert (len(self.clients) > 0)
for client in self.clients:
start_time = time.time()
client.set_protos(self.global_protos, self.client_protos_set)
client.send_time_cost['num_rounds'] += 1
client.send_time_cost['total_cost'] += 2 * (time.time() - start_time)
def receive_protos(self):
assert (len(self.selected_clients) > 0)
self.uploaded_ids = []
self.uploaded_protos = []
for client in self.selected_clients:
self.uploaded_ids.append(client.id)
self.uploaded_protos.append(client.protos)
self.client_protos_set[client.id] = client.protos
def evaluate(self, acc=None, loss=None):
stats = self.test_metrics()
stats_train = self.train_metrics()
test_acc = sum(stats[2])*1.0 / sum(stats[1])
train_loss = sum(stats_train[2])*1.0 / sum(stats_train[1])
accs = [a / n for a, n in zip(stats[2], stats[1])]
if acc == None:
self.rs_test_acc.append(test_acc)
else:
acc.append(test_acc)
if loss == None:
self.rs_train_loss.append(train_loss)
else:
loss.append(train_loss)
print("Averaged Train Loss: {:.4f}".format(train_loss))
print("Averaged Test Accurancy: {:.4f}".format(test_acc))
# self.print_(test_acc, train_acc, train_loss)
print("Std Test Accurancy: {:.4f}".format(np.std(accs)))
def prototype_padding(self):
for cid in range(self.num_clients):
if self.client_protos_set[cid] is None:
self.client_protos_set[cid] = self.global_protos
else:
for k in range(self.num_classes):
if type(self.client_protos_set[cid][k]) == type([]):
self.client_protos_set[cid][k] = self.global_protos[k]
# https://github.com/yuetan031/FedPCL/blob/main/lib/utils.py#L1193
def proto_aggregation(local_protos_list):
agg_protos_label = defaultdict(list)
for local_protos in local_protos_list:
for label in local_protos.keys():
agg_protos_label[label].append(local_protos[label])
for [label, proto_list] in agg_protos_label.items():
if len(proto_list) > 1:
proto = 0 * proto_list[0].data
for i in proto_list:
proto += i.data
agg_protos_label[label] = proto / len(proto_list)
else:
agg_protos_label[label] = proto_list[0].data
return agg_protos_label