kisejin's picture
Upload 486 files
9f61031 verified
# PFLlib: Personalized Federated Learning Algorithm Library
# Copyright (C) 2021 Jianqing Zhang
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
import random
import time
from flcore.clients.clientrep import clientRep
from flcore.servers.serverbase import Server
from threading import Thread
class FedRep(Server):
def __init__(self, args, times):
super().__init__(args, times)
# select slow clients
self.set_slow_clients()
self.set_clients(clientRep)
print(f"\nJoin ratio / total clients: {self.join_ratio} / {self.num_clients}")
print("Finished creating server and clients.")
# self.load_model()
self.Budget = []
def train(self):
for i in range(self.global_rounds+1):
s_t = time.time()
self.selected_clients = self.select_clients()
self.send_models()
if i%self.eval_gap == 0:
print(f"\n-------------Round number: {i}-------------")
print("\nEvaluate personalized models")
self.evaluate()
for client in self.selected_clients:
client.train()
# threads = [Thread(target=client.train)
# for client in self.selected_clients]
# [t.start() for t in threads]
# [t.join() for t in threads]
self.receive_models()
if self.dlg_eval and i%self.dlg_gap == 0:
self.call_dlg(i)
self.aggregate_parameters()
self.Budget.append(time.time() - s_t)
print('-'*25, 'time cost', '-'*25, self.Budget[-1])
if self.auto_break and self.check_done(acc_lss=[self.rs_test_acc], top_cnt=self.top_cnt):
break
print("\nBest accuracy.")
# self.print_(max(self.rs_test_acc), max(
# self.rs_train_acc), min(self.rs_train_loss))
print(max(self.rs_test_acc))
print("\nAverage time cost per round.")
print(sum(self.Budget[1:])/len(self.Budget[1:]))
self.save_results()
if self.num_new_clients > 0:
self.eval_new_clients = True
self.set_new_clients(clientRep)
print(f"\n-------------Fine tuning round-------------")
print("\nEvaluate new clients")
self.evaluate()
def receive_models(self):
assert (len(self.selected_clients) > 0)
active_clients = random.sample(
self.selected_clients, int((1-self.client_drop_rate) * self.current_num_join_clients))
self.uploaded_weights = []
self.uploaded_models = []
tot_samples = 0
for client in active_clients:
client_time_cost = client.train_time_cost['total_cost'] / client.train_time_cost['num_rounds'] + \
client.send_time_cost['total_cost'] / client.send_time_cost['num_rounds']
if client_time_cost <= self.time_threthold:
tot_samples += client.train_samples
self.uploaded_weights.append(client.train_samples)
self.uploaded_models.append(client.model.base)
for i, w in enumerate(self.uploaded_weights):
self.uploaded_weights[i] = w / tot_samples