# PFLlib: Personalized Federated Learning Algorithm Library # Copyright (C) 2021 Jianqing Zhang # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # You should have received a copy of the GNU General Public License along # with this program; if not, write to the Free Software Foundation, Inc., # 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. import numpy as np import os import random from utils.HAR_utils import * random.seed(1) np.random.seed(1) data_path = "HAR/" dir_path = "HAR/" def generate_dataset(dir_path): if not os.path.exists(dir_path): os.makedirs(dir_path) config_path = dir_path + "config.json" train_path = dir_path + "train/" test_path = dir_path + "test/" if not os.path.exists(train_path): os.makedirs(train_path) if not os.path.exists(test_path): os.makedirs(test_path) # download data if not os.path.exists(data_path+'rawdata/UCI HAR Dataset.zip'): os.system(f"wget https://archive.ics.uci.edu/ml/machine-learning-databases/00240/UCI%20HAR%20Dataset.zip -P {data_path}rawdata/") if not os.path.exists(data_path+'rawdata/UCI HAR Dataset/'): os.system(f"unzip {data_path}rawdata/'UCI HAR Dataset.zip' -d {data_path}rawdata/") X, y = load_data_HAR(data_path+'rawdata/') statistic = [] num_clients = len(y) num_classes = len(np.unique(np.concatenate(y, axis=0))) for i in range(num_clients): statistic.append([]) for yy in sorted(np.unique(y[i])): idx = y[i] == yy statistic[-1].append((int(yy), int(len(X[i][idx])))) for i in range(num_clients): print(f"Client {i}\t Size of data: {len(X[i])}\t Labels: ", np.unique(y[i])) print(f"\t\t Samples of labels: ", [i for i in statistic[i]]) print("-" * 50) train_data, test_data = split_data(X, y) save_file(config_path, train_path, test_path, train_data, test_data, num_clients, num_classes, statistic) def load_data_HAR(data_folder): str_folder = data_folder + 'UCI HAR Dataset/' INPUT_SIGNAL_TYPES = [ "body_acc_x_", "body_acc_y_", "body_acc_z_", "body_gyro_x_", "body_gyro_y_", "body_gyro_z_", "total_acc_x_", "total_acc_y_", "total_acc_z_" ] str_train_files = [str_folder + 'train/' + 'Inertial Signals/' + item + 'train.txt' for item in INPUT_SIGNAL_TYPES] str_test_files = [str_folder + 'test/' + 'Inertial Signals/' + item + 'test.txt' for item in INPUT_SIGNAL_TYPES] str_train_y = str_folder + 'train/y_train.txt' str_test_y = str_folder + 'test/y_test.txt' str_train_id = str_folder + 'train/subject_train.txt' str_test_id = str_folder + 'test/subject_test.txt' X_train = format_data_x(str_train_files) X_test = format_data_x(str_test_files) Y_train = format_data_y(str_train_y) Y_test = format_data_y(str_test_y) id_train = read_ids(str_train_id) id_test = read_ids(str_test_id) X_train, X_test = X_train.reshape((-1, 9, 1, 128)), X_test.reshape((-1, 9, 1, 128)) X = np.concatenate((X_train, X_test), axis=0) Y = np.concatenate((Y_train, Y_test), axis=0) ID = np.concatenate((id_train, id_test), axis=0) XX, YY = [], [] for i in np.unique(ID): idx = ID == i XX.append(X[idx]) YY.append(Y[idx]) return XX, YY if __name__ == "__main__": generate_dataset(dir_path)