# PFLlib: Personalized Federated Learning Algorithm Library # Copyright (C) 2021 Jianqing Zhang # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # You should have received a copy of the GNU General Public License along # with this program; if not, write to the Free Software Foundation, Inc., # 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. import numpy as np import os import sys import random import torchtext from utils.dataset_utils import check, separate_data, split_data, save_file from torchtext.data.utils import get_tokenizer from torchtext.vocab import build_vocab_from_iterator random.seed(1) np.random.seed(1) num_clients = 20 max_len = 200 dir_path = "AGNews/" # Allocate data to users def generate_dataset(dir_path, num_clients, niid, balance, partition): if not os.path.exists(dir_path): os.makedirs(dir_path) # Setup directory for train/test data config_path = dir_path + "config.json" train_path = dir_path + "train/" test_path = dir_path + "test/" if check(config_path, train_path, test_path, num_clients, niid, balance, partition): return # Get AG_News data trainset, testset = torchtext.datasets.AG_NEWS(root=dir_path+"rawdata") trainlabel, traintext = list(zip(*trainset)) testlabel, testtext = list(zip(*testset)) dataset_text = [] dataset_label = [] dataset_text.extend(traintext) dataset_text.extend(testtext) dataset_label.extend(trainlabel) dataset_label.extend(testlabel) num_classes = len(set(dataset_label)) print(f'Number of classes: {num_classes}') tokenizer = get_tokenizer('basic_english') vocab = build_vocab_from_iterator(map(tokenizer, iter(dataset_text)), specials=[""]) vocab.set_default_index(vocab[""]) text_pipeline = lambda x: vocab(tokenizer(x)) label_pipeline = lambda x: int(x) - 1 def text_transform(text, label, max_len=0): label_list, text_list = [], [] for _text, _label in zip(text, label): label_list.append(label_pipeline(_label)) text_ = text_pipeline(_text) padding = [0 for i in range(max_len-len(text_))] text_.extend(padding) text_list.append(text_[:max_len]) return label_list, text_list label_list, text_list = text_transform(dataset_text, dataset_label, max_len) text_lens = [len(text) for text in text_list] # max_len = max(text_lens) # label_list, text_list = text_transform(dataset_text, dataset_label, max_len) text_list = [(text, l) for text, l in zip(text_list, text_lens)] text_list = np.array(text_list, dtype=object) label_list = np.array(label_list) # dataset = [] # for i in range(num_classes): # idx = label_list == i # dataset.append(text_list[idx]) X, y, statistic = separate_data((text_list, label_list), num_clients, num_classes, niid, balance, partition) train_data, test_data = split_data(X, y) save_file(config_path, train_path, test_path, train_data, test_data, num_clients, num_classes, statistic, niid, balance, partition) print("The size of vocabulary:", len(vocab)) if __name__ == "__main__": niid = True if sys.argv[1] == "noniid" else False balance = True if sys.argv[2] == "balance" else False partition = sys.argv[3] if sys.argv[3] != "-" else None generate_dataset(dir_path, num_clients, niid, balance, partition)